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We investigate the steady-state probabilily density distribution of a
large class of random processes by solving the governing Folkker-Planck
equation. The random response statistics of a nonlinear single-degree-of-
freedom mechanical model with hyperbolic tangent stiffness are discussed
in some detail. The probability density of such systems is of the sech-power
type which belongs to a class of distributions whose behaviors are carefully
examined at the limils where the system parameter b approaches zero
and infinity. Other important response statistics such as the mean square
response, zero crossings, and peak distributions are also studied.

I. INTRODUCTION

In recent years, random vibrations of nonlinear systems have attracted
considerable attention among engineers.' In this paper we investigate
the Fokker-Planck equations®? associated with a class of random proc-
esses whose steady-state probability density distributions, of the Lia-
punov potential function type.

The random response statistics of a nonlinear single-degree-of-freedom
model having a hyperbolic tangent stiffness function can be described
as a softening spring whose force-deflection relationship is asymptotic
to some maximum force level. Such a model can be used to represent
an elastic-perfect-plastic system, material often encountered in classical
mechanics. Limiting situations for a class of probability density fune-
tions such as those obtained in this study are examined. We show that
the limiting behavior of the steady-state output probability density
function of a system having a generalized hyperbolic tangent stiffness
function, F(u) = (ko/b" ") tanh bu, is closely related to the range of the
parameter a. At the limit b — e, the probability density funection be-
comes a Dirac delta (impulse) function or an exponential distribution,
or identically approaches zero for all w, depending upon whether «
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is less than, equal to, or greater than 1. At the limit b — 0, it vanishes
identically for all u and becomes a normal distribution or a Dirac delta
function, depending upon whether « is less than, equal to, or greater
than 2. In addition, we study statistics of other response parameters
such as the mean square output, zero crossings and peak output dis-
tribution, which are relevant to the control of the failure modes of the

system.
The motion of a dynamic system under purely random disturbance
is described by a Markoff process y(t) = [y:(f), y2(2), - - , ya(f)] in the

n-dimensional phase space. It can be shown®* that for the initial con-
dition

p(¥y.) = Hﬁ(y. Yio)

i=1

where y, is the initial state of y(f) and 6 is the Dirac delta function, the
conditional probability density function p(y |y., t) of the process y(t)
satisfies the forward Fokker-Planck equation,

9G.(y)

9P _ . t=0 1
-2 ®

where
Giy) = 4.(p — );; 5y, Bip] @)
is the component of the probability current vector p(y | y. , t) in which
Ai(Y) = li‘nlﬂ Wiae — Ys) 3)

and

B(y) = iitmu (Wi ae — Y)Wiae — Yi)) (4)

are intensity coefficients depending on the input and the properties of
the system (the bracket indicating ensemble averaging).

We are interested in the solution of the steady-state equation (1),
that is when 8p/at = 0, for cases where all generalized response variables
of a system in the 2n phase-space coordinates are independent of one
another. For this type of motion it is sometimes possible to find appro-
priate partial operators which, when linearly operated on functions of the
type g:(y:)p + hi(y.)(9p/dy;), generate an equation equivalent to (1).
More specifically, the steady-state equation (1) can be put in the form

EL[ y)p+h(y)i’{| 0 (5)
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where the coefficients L, are arbitrary first-order partial-differential
operators. If there exists a p(y) independent of initial conditions and
satisfying each

d .
0w + hw) gh =0, (=12, ),

then by Gray’s uniqueness theorem such p(y) is the unique solution of
equation (5).° Sueh a solution is

puly) = C H1 exp [_ :i ;“igg (M‘] R

and C is the normalization factor.
Equations (5) and (6) will be used in the following sections to analyze
a class of nonlinear systems.

II. HYPERBOLIC TANGENT STIFFNESS MODEL

The mechanical system considered in this investigation is a single-
degree-of-freedom oscillator with a mass m, a linear viscous damping
¢, and a nonlinear spring function F(u). When the system is subjected
to a base aceeleration exeitation &,(¢), its response is characterized by
the displacement u(f) relative to the base. The equation of motion of
the system is

i+ 280 + Fu) = a(t) (7)
where
¢ Fu)
B=5,, Fw=-7,
and

Let a(f) be a gaussian, stationary white noise with zero mean; that is,
with the propertics
(a(t)) = 0
(a(t)a(l)) = 28, 6(t, — 1)
where S, is the constant power spectral density of a({). Then the as-
sociated steady-state Fokker—Planck equation for u(t) = [u(t), u(f)] is

o

S, 6‘61% plu, @) — 6%1 [up(u, 1)] + % {1280 + F(w)]}p@,w) = 0. (8)
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Tor this two-dimensional ease (n = 2), according to equations (5)
and (6), the solution can be written down readily,
(el B[+ s0)
plu, ) = Cexp{ 5. |2 + /. F() dt ©)

where C is the normalization factor determined by
f plu, @) dudu = 1.

A special kind of softening spring deseribed by a hyperbolic tangent
function will now be considered. The force-deflection characteristic is

shown in Fig. 1 and given as follows:
F@) = %tanh bu, k>0, (10)

where k, is the initial stiffness, and b is the rate of convergence of the
force-deflection curve.

It should be noted that the spring force F(u) developed during the
motion is bounded between k,/b and —k,/b. Therefore k,/b may be
regarded as yielding force and 1/b the corresponding yielding displace-
ment. The stiffness function F(w) described in equation (10) then pro-
vides a good representation of the elastic-perfect-plastic behavior often
encountered in the fields of classical mechanics and structural en-
gineering.

Let w? = k,/m where w, represents the natural frequency of the linear

Flu)
[
ko/b L
° ," b1 b? b3

by>b,>bs>0

/.
1

+ “kos/b
!

Fig. 1—Force-deflection relationship of hyperbolic tangent stiffness model.
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oscillator with stiffness k, ; then substitution of equation (10) into (9)
yields
s

o bz 3 In cosh bu} (11)

Yo

pu, ) = C exp {

where o2 = (78,/2Bw?) is the variance of the linear response [that is,
if F(u) = kyul.

Equation (11) shows that « and % are statistically independent. The
probability density funetion for velocity 1 is normal with zero mean
and variance o’w? , that is,

N 1 w ) _
p(u) = (Bw)%aowo exp (—erfwi ) o <u < o, (12)
The probability density function for the displacement v is
p(u) = C,(b)[sech bu]" """ (13)
where
] -1
C,(b) = ( [ seehrev b d.g) . (14)

Because (sech b£)'/**"*" converges to zero very rapidly as ¢ — o,
C,(b) in equation (14) can be evaluated numerieally for any positive
b. If 1/b°¢> is an integer, equntion (14) then becomes

C,(b) = H 2D — 2k — 1) (15)

2”(1) 1! ¥=o
where 2D = 1/b%? are integers.” It is interesting to see that, if tanh bu
is expanded into a power series, equation (13) then becomes

P(u)=Cl(b)exp[—£:?(2_b“u+ ):I |u|§2lba

which indicates that a cubic softening spring with nonlinear coefficient
k,b*/3 is the first approximation of the hyperbolic tangent spring.

Values of p(u) given by equation (13) for various 1/b%? are shown in
Figs. 2 and 3.

III. LIMITING SITUATIONS OF p(u)

In connection with the examination of the limiting behaviors of
p(w) in equation (13), where the parameter b approaches zero and in-
finity alternately, three useful theorems are presented.
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Fig. 2—Sech-power probability density distributions.
0.5
i
0.4 1=
Vigs b2 O‘g
o o.3l-
~
=
=
[=3 { =1
L _b2g2
0.2 -b%af
0.1 =05
~~b*e2
0 1 1
-8 -6 -4 -2 0 2 4 6

Fig. 3—Sech-power probability density distributions.
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Theorem 1: Let f.(x) be a sequence of monnegative density functions
integrable on [— », «). Suppose there exists a sequence of positive inte-
grable g,(x) such that

0@ 2 1) = 1@ ) [ 16 ds

and

lim [f ga(x) dx + f_ ga() d.’c] =0 forevery e > 0.

n—e0

Then
lim F.(z) = 8(2), (16)

the Dirae delta function.

Proof: We must show that, for every h in C%(R), the space of test
functions

lim f " PG dz = ).

n=o0

By the mean value theorem the following relationship holds:

lim f " F()h() da

n—o

— lim f () de + lim f ' F.@h(z) dz + lim h()

n=o0 € n—+0 n—0

-ﬁmmm

where ¢ is some member of [—¢, €], depending on e and n. The first two
limits on the right side of the previous equation are zero by a comparison
test; therefore, one can show that

limf F.(x) de = 1.

n—o0

Then

lim h®) = lim [ " P @)h() do.

n—oo n—x0

But the right side is independent of e. Thus, letting e approach zero,
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we deduce that

ho) = lim [ " F.(2)h(z) da,

which completes the proof.
Instead of considering p(u) of equation (13), we shall investigate
its more general form as

1724
P,y (®) = —3 [sech (bu)] )

[ sech @y dy
which is the steady-state displacement density function corresponding
to a generalized hyperbolic tangent stiffness function
k,

a—1

Flu) = tanh bu an

ifAd = o,
Theorem 2: Let p.(u) = lim,_.., D, a0 (w), then
(?) @ > 1 implies p.(u) = 0,

(%) a = 1 implies p,(u) = (—2%)3""" 4
and

(77) a < 1 implies p.(w) = &(u).
Proof: Tirst suppose > 1. We observe that

| Po.o@) | = — 1 for all wu,

[ och @1 ay

but
[sech (by)]'*"* = exp (—|y |/b""A),
thus

[ tsech @yt ay = [ " exp (— |y |/6"7A) dy = 2677,

Thus, since
[ P (@) | < 1/(26°7'4) (18)

for all u, we conclude that limy—.., P(,oy(w) = 0.
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Now suppose that & = 1. Then
lim In [sech (bu)]"** = lim (1/bA) In (sech bu)

b= b=

lim (—1/bA) In (cosh bu)

b—o

b—oa

Thus,
lim [sech (bu)]"** = exp (—|u |/4).

b—oo

By the Lebesgue dominated-convergence theorem

o0

lim [sech (0)]"** dy = [ exp (—|y |[/4) dy = 24.

b—tog v —o0

Thus,
limpe,. W) = (24)7" exp (—|u |/4).
Finally, we suppose that o < 1. Let
24" exp (= |w | b97/4)
[ e =@ 1y b/ ay

Gev,ar () =

or, equivalently,

21/!2"..4. {(1—a)

Gio,r (@) = (T) exp (—|u | BV /4).

Then, since

lim Q(b (@) dy = lim f Fo.ox® dy = 0

[ bsos
for every € > 0 and
Jv,ar(U) = Pv.ar(u) for every wu,
we conclude from Theorem 1 that

Lim pe, o) = (),

b—c0
and the proof is completed.

Theorem 3: Let p/(u) = lim,.q P, (u), then

lim [—tanh (bu)/A] = —|u |/A4.

Hb1
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(Z) a > 2 implies p/(uw) = 5{u),
(@) a = 2 implies pl(u) = normal distribution with variance o, , and
(#i1) a < 2 implies pl{u) = 0 for all .

Proof: The case @ > 2 implies p/(u) = 8(u) is proved in Appendix A
in which we also show that there exists for every vy £ (0, 1) a C;, > 0 such
that

u2

b %A
[sech (bu)]"/* 4

[ tsech by ay

g.(u) = C, exp (._ )(Qb“'lA)

¥
for |u| = o

It follows from the above that
plu) =0 for 1 < e <2

From equation (18) we immediately have p'(u) = 0 for @ < 1. Now we
have only to consider the cases when @ = 2 and @ = 1. In Appendix B
we show that when e = 2, p/(u) is a normal distribution with variance
¢? . In Appendix C we show that when & = 1, p/(w) = 0 for all u.
Therefore the proof is completed.

According to Theorem 3, for p(u) given by equations (13) and (14),
it follows that

2

lim p(u) = @1%%;— exp [—%] , a normal distribution,

b—0 &
and according to Theorem 2

lim p(uw) = 0. (20)
b—on
At the limit b — oo, the yielding force k,/b — 0, that is, the system
becomes perfect plastic. Thus one may expect an equal probability for
all % on [— =, ®], as equation (20) indicated. As b — 0, then &,/b — <,
the system remains elastic on [— «, «] with the initial stiffness &, . It
is well known that for linear systems the response probability distribu-
tion is gaussian, which agrees with the result of equation (19).
It is of interest to note that a similar force-deflection relationship as
shown in Fig. 1 and as described by the hyperbolic tangent stiffness
funection given in equation (10) can be described by a full-wave smooth
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limiter which is

Gw) = k f < (—’T—)d
(u) o exp B¥E n

in which d* = 2/#b°.

It will be noted that in the above equation, G(u) is proportional to
the integral of a gaussian probability curve. Function G(u) ean also be
used to evaluate the probability density function if made equivalent
to F(u) as given by equation (10) when both G(u) and F(u) have the
same initial slope and spring resistance limits.

IV. OTHER IMPORTANT RESPONSE STATISTICS

The failure modes of a mechanical system are generally controlled
by response parameters such as the mean square displacement, zero
crossings, or the peak displacement distributions. These response sta-
tistics are closely related to p(u) and will be briefly discussed.

The mean value of displacement response w vanishes because p(u)
in equation (13) is an even function. The mean square or the variance
of the displacement is given by

HO)

@) = f " wp) du

— 20,(b) fu w? sech”"™" bu du, @1)

which can be evaluated in the following manner*: Let
= 2az
(@) = f e_ti:v2 ,
~= (cosh x)*”

then it can be shown® that

i
- 22,

and

f _xdr [i% J(a)]FD = 3J(0)¢'(),

-= (cosh 2)*"

where ¢'(») = (d/dv)[T'(¥)/T(»)] is the “trigamma” function and has
been numerically tabulated.”

* This is pointed out by 8. O. Rice.
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From the above results and setting x = bu and » = bo, in equation
(21) we finally obtain

(1) = 33 GO OV (b, 22

Again according to Theorem 3, it is noted that

lim o%(b) = o’ ,
b—0

and from Theorem 2 that

lim oi(b) = .
b—o0
Thus the mean square response o-(b) with such limiting behavior can
be illustrated as in Fig. 4.
The expected number of zero crossings »* with positive slope per unit
time (that is, the expected frequency) can be evaluated according to
Rice,’

VE(b) = fo " ap(0, ) du = C‘T(b) (g)% (23)

where C,(b) is given by equation (14).
Also according to Theorem 3, it can be shown that

lim v} (b) = = (24)

a
H
b—0 27!"

which is the frequency of the linear system.

2,02
Ty T —

1/b =—>

Fig. 4—Variation of mean-square displacement response.
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The probability density of the peak amplitude of u(f), from equation
(13), is given by

‘ dp(u)
du |u-a

B [p@)]u-o

= ;217,) (sech ba)’**™" tanh ba. (25)

p(a)

By the same argument used in the proof of Theorem 2 it can be
shown that

lim p(a) = é&(a), (26)

b—w0

and it follows from Theorem 3 that

lim p(a) = lim (“‘“h b“) lim sech"/**"*" ba

b
b0 b—0 T, b—0

a —a’
- -‘;':’- exp (20_2;) ’ (27)

which is the Rayleigh distribution as expected because at this limit
(b — 0) the system becomes linear. The peak probability density dis-
tribution p(a) for various b in equation (25) is illustrated in Fig. 5.
Notice that for all cases p(a) approaches zero at large a; however, the
rate of fall of p(a) is reduced as b is increased.
Tt should be noted that when a = 1, the forcing function described

by equation (17) approaches a sgn function as b — =, that is

lim (k, tanh bw) = k, sgn w.

b—x
Therefore, by taking appropriate limits to the density function pre-
viously obtained for second-order systems with a general hyperbolic
tangent forcing function, we obtain the steady-state solution for the
response density of systems governed by the following equation

i + 2Bu + k, sgn u = a(f).
The response density for the above equation is given precisely in state-
ment (iz) of Theorem 2, which can also be verified by using equation (9).
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Fig. 5—Peak probability density distributions.
APPENDIX A

Partial Proof of Theorem 3 for Case o > 2
We claim that if & > 2, then
lim sech (bu)'"* 4

e f sech (by)'*"* dy

= &(u).

Proof: In view of Theorem 2 we have only to find functions
1/bTA
0@ = — sech (bu)

f sech (by)"*** dy

such that for every ¢ > 0

lim ¢(w) du = lim g) du = 0
b—0 =0 L]

€

and such that sup [*, g,(u) du < . We write
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sech (by)""*"* = exp {—In [cosh (by)]/b"A}.
We observe that if | by | < #/2, then

E (/6" 4)(1/161)[11111 (dﬁ) In cosh (By)]b"

In [cosh (by)]/b" A

i (y/b":'lk!)[lim (j—ﬁ)m tanh (,B-y)}b"

A—0

We now make use of the fact that | by | < 1 implies

tanh (by) = 3 p,(~ 12 — 1) G

Thus, there is for every y & (0, 1] a C, > 0such that | bu | < yr/2 implies
sech (bu)'*"* < C, exp (—u®/b" 2 4).

Thus, since

fu:l ( 9 )1/.‘»":1 i ) 2 1/b®A d
: 22 [ Gomm)
—= \exp (by) + exp (—by) W==1, \2exp (by) v

= 2b"7'4,

we therefore take
g@) = C, exp (—u’/b"°A)20°7'A for |u| < yw/20
and
g,(w) = 2b°7'A sech (bw)'*"* for |w| > yw/2b.
Note that

= . ky bk’y:r) 1hea
f”m gu(w) du < 26°7'A E (%) sech (—2b

]C‘Y'ﬂ' 1/b*A
b4 Z (kyr) sech (T)
k=1 =

< (52h°7% 4.

Il

Thus, for e > 2

20 Yy w/2b
lim f go) du = lim f O, exp (—12/b*24)20°7 A du
b—0 € €

b—0

k "y 1/b= A
+ lim 2b° %4 E (k) sech ( )

b—0
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i IT 2 jpa-2 a—1
= lim % C,exp(—e/b°"A20°'A + 0
b—0
= 0.

Also, we observe that

lim g,(w) du = limf 7.(w) du = 0.
o0 b—0 €

b=0 =

APPENDIX B

Partial Proof of Theorem 3 for Case a = 2

Let p,(x) = 6(b)(sech bz)"*** ;b = 0 for all z on [— o, = ]. We will
first show lim,., #(b) = 0, then lim,., p,(x) converges pointwisely to
a normal distribution with zero mean and variance o2 .

Proof: From the definition of p,(z), it follows that
pu(x) = {exp [In 6(b) Eaﬁ](sech bx)}l/b’n.,’

bioh

In py(x) = In 6(b) +
Then

lim — In sech bz = lim —%tanh bz
b DO, sl 2bo,

by L'Hopital’s rule. Thus, since

. tanh bx
lim ——

=T
b—0 b ’

we conclude that

. T
lblf:)l In p,(z) = T 242

or that

2
lim p,(x) = exp (—%) , the normal distribution.
b=0 T,

By using these expressions and equation (17) we can conclude that
p/(u) is a normal distribution with variance ¢ when o = 2.
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APPENDIX C

Partial Proof of Theorem 3 for Case « = 1

We claim that, when

sech (bu)*/*4
Po.n(m) = = ( )

[ sech (by)'** dy

then

linpg.,,(w) =0 forall wu.
b-0

Proof: We observe that

h b 1/bA
Po.n) = Nsec (o)

f sech (by)""** dy
-N

for all positive integers N.
We show that for every N > 0 thereis a p > 0 such that b < g implies

Do) = 1/2N.
We can show, using L’Hopital’s rule, that

lim sech (bw)*** = 1
b—=0

for all w and A. Thus, for every » > 0 no matter how small and every
N' = N(1 + 4)/(1 — u) we can show that there is a u > 0 such that by
taking b < u, we have

1
Pe.nW) = N_‘l‘ﬂ_ .

1 — ) dny
-

Thus, b < p implies

1+ n)( 1 ) 1
Po.n(®) = (1 — /2N’ = ON"

Thus, for every N > 0 there is a p > 0 such that 0 < b < p implies

1
Do) = N
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Hence

lim pg . (w) = 0.
b0

The proof is completed.
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