Analysis of a Burst-Trapping Error

Correction Procedure

By W. K. PEHLERT, JR.
(Manuseript received November 6, 1969)

This paper presents an analysis technique for determining upper and
lower bounds on the performance of a bursi-trapping error control pro-
cedure. The analysis is valid for random, burst, or compound channels
provided that a block interleaving degree £ = 1 can be found for the channel
such that error patterns in blocks spaced £ blocks apart occur approximalely
independently. Good agreement is achieved between the’ theoretical per-
formance of codes on telephone channels and the performance obtained by
computer simulation.

I. INTRODUCTION

A burst-trapping error correction procedure for error control on
compound channels such as the telephone channel has been described
by 8. Y. Tong.! An evaluation of the burst-trapping procedure by
computer simulation of its performance on recorded telephone channel
error data is presented in the companion paper.” An analysis technique
for determining the performance of the burst-trapping procedure is
presented here. The analysis technique permits determination of upper
and lower bounds on the probability of block error. It is valid for random,
burst, or compound channels provided that a block interleaving degree
£ = 1 can be found for the channel such that error patterns in blocks
spaced £ blocks apart oceur (approximately) independently.

Expressions for upper and lower bounds on the probability of block
error for codes of rate 2 and % are given in Table I. For higher rate codes,
numerical determination of the stationary probabilities which yield
the bounds seems preferable to determination of expressions for the
bounds. The performance of a rate  code, the (39, 26) shortened BCH
code, has been computed using the expressions for probability of block
error of Table I for two sets of recorded telephone channel error data.
For both sets of data the computed performance agrees well with the
performance obtained by computer simulation.
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II. ENCODING AND BURST-TRAPPING DECODING PROCEDURES

The encoding procedure and burst-trapping decoding technique have
been deseribed in detail elsewhere.' The code is a rate (b — 1)/b recurrent
code® whose parity check matrix, 4, is constructed from the parity check
matrix, H, of an (n, k) linear systematic block code [where k/n =
(b — 1)/b] and the (n — k) X (n — k) identity matrix I. The truncated
parity check matrix, Ay , for rate # codes is given in Fig. 1. The con-
straint length of the codeis N = [(b — 1){ 4+ 1]n where £ = 1 is a block
interleaving constant.

Although encoding is specified by the A matrix, it is useful to interpret
encoding as the interleaved encoding of £ subcodes in the following way.
Blocks 0, ¢, 2¢, 3£, - - - form the first subeode. The k-tuple of information
bits, I,,, of the [¢{]th bloek ( = 0, 1, 2, - - -) is encoded into an n-tuple
M, which is the eoncatenation of I;, and a parity (n — k)-tuple Q.. :

fMu = Ie:”Qu- (1)

I;. can be represented as the concatenation of (b — 1) equal length
segments:

I, = Rt”ﬁ(” HI?:_I (2)

The parity (n — k)-tuple @, is
Qit = P:‘f. ‘I‘ Iti—l): + I%i—z)e + +‘ I?:—Ibﬂu (3)

where P,, is the parity (n — k)-tuple obtained by encoding I;, with
the block code parity check matrix H. Thus each encoded subcode block
is a block code word whose parity portion is modified by the addition
of an information segment from each of the previous (b — 1) subcode
blocks. Ffurther the jth information segment of the [¢{]th block is added

to the information portion of the [(¢ 4 j)¢{Jthblock (j = 1,2, --- ,b — 1).
BLOCK
NUMBER 0 + =« =+ « =« « &« « « « « « 28
re—n-——> |
0 H n-k=k/2
1 H T
k
H H
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2
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2!?. H

—

Fig. 1—Ax matrix of a rate 2/3 code.



496 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1970

A given block of a subcode is decoded by the burst-trapping procedure
in one of three ways. Successive blocks of a subcode (blocks 0, £, 2¢, - - )
are decoded by Random Error Decoding (RED) as long as the decoder
decides that ¢ or fewer errors occur in each block. When the decoder
decides that more than ¢ errors occur in a block, for example block
[#€], then that block is decoded by Burst-Trapping Decoding (BTD).
The next (b — 1) subcode blocks {blocks [( 4+ 1){], [(Z + 2)¢], -- -,
[(Z + b — 1){]} are decoded by Blind Faith Decoding (BFD). Detailed
descriptions of RED, BTD, and BFD are given below. Successive sub-
code blocks {blocks [(z + b)¢], [(z + b + 1){], - - -} are decoded by RED
until the decoder again decides that a block has more than ¢ errors.

Let M%, I%, Q% be the received n-tuple at the [i{]th block, the
received information k-tuple portion, and the received parity (n — k)-
tuple portion respectively. Let P % be the parity (n — k)-tuple obtained
by encoding I#% with the block code parity check matrix H. Let I;, be
the decoded information k-tuple of the [¢{]th block regardless of how the
decoding is accomplished.

The primary method of decoding is RED. RED is attempted at the
[7€]th block if none of blocks [(z — b + 1){], [(z — b + 2)¢], .-+, [(z —
1){] are decoded by BTD. RED is the removal of the effects of previous
block information segments from the parity portion and the decoding
of the bloek by bounded distance decoding of ¢ or fewer errors. That is, to
decode the [#{]th block the decoder computes

=0+ f::‘—l)t + f"()i—z)t + -+ ft(,:"—lb+1)£ 4)

and decodes I'% || P/, as a block code word. Following standard terminol-
ogy for recurrent codes we will say that I*,_,,,, I%, .., « -+, I%20e
are ‘‘fed back” to the [#{]th block.

The secondary method of decoding is BTD. BTD is effected when a
RED attempt indicates that the block code word is detected in error
but cannot be corrected by bounded distance decoding. If this occurs
in block [¢£] then blocks [(z 4+ 1){], [(z + 2)£], --- , [(z + b — 1){] are
necessarily decoded by BFD (to be described subsequently) and decod-
ing of block [#{] is delayed until block [(Z 4+ & — 1){] has been decoded.
The information segments of block [i{] are obtained from the corre-
sponding parity portion of blocks [(z 4+ 1){], [z + 2)¢], --- , [ +
b — 1){] as follows

I-:'l = Q’(i.'u)t + PTH-])C + I—?-'-l)t + Isi—s)t + e + -?:—lbn): ’ (5)
I?: = Qt’wu + P’(kn'z): + I:i+1)t + Ir:(;.'—nt + e + I-c(’-?—lbﬂ)t ) (6)
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I3 = QFis + Pligye + Tivne + Toone + Ttiony,
+ - + I?;T:bwl][ ’ (7)

b— F1 T2 Fb—2
I€{1=QT|'-H5—1)I+ P’(k1'+b—1)c + I(.'H;kz)e + I(i+b—a)( + . + I(;+1): . (8)

In equation (6), for example, we will say that (@¥.. ., + P¥.s,) and
Ii...,. are “fed forward” and I%,_,,,, *+- , I{7}ssa). are “fed back”
to the [if]th block.

The third method of decoding is BFD. BIFD is effected at the [if]th
block if one of bloeks [(z — b + 1){], [(¢ — b 4+ 2)¢], ---, [(? — 1)¢] has
been decoded by BTD. BFD of [i{]th block is the use of the received

information %-tuple as the decoded information k-tuple. That is

I":EI?;- (9)

II1. COMMUNICATION CHANNEL

We consider channels where each block word (binary n-tuple) is
subjected to the component-wise modulo-two addition of an error
pattern (binary n-tuple) during transmission. We define a partition of
the set of 2" possible error patterns as follows.

C\,—is the set of one element—the pattern with no errors.

(' ,—is the set of channel error patterns which are identical to nonzero
code words.

(.—is the set of nonzero channel error patterns which are correctable
by RED (bounded distance decoding of ¢ or fewer errors).

(,—is the set of channel error patterns which are both uncorrectable
by RED and undetectable (but are not nonzero code words).

(',—is the set of channel error patterns which are detectable (but not
correctable by RED).

We consider channels where error patterns separated by { or more
blocks occur independently. On burst or compound channels, proper
design of the burst-trapping procedure requires sufficient block inter-
leaving that the requirement of independent error patterns is approxi-
mately met. The nth power' of the binary symmetric channel with
any £ = 1 is included in the class of channels under consideration.

Let Po, Pu, Pos Pu, Pa be the probability that the channel error
pattern for a particular bloek is in set Cy , C,, , €., C., C, respectively.
Let a be the probability that the information bits of a received word are
unaffected by the channel error pattern given that the channel error
pattern is either correctable, detectable, or undetectable. For the class
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of communieation channels under consideration the probability that
the error patterns in successive blocks of a subcode are in sets C; and

Oi is PiDi, 1, jﬁ{O, w, €, U, d}

IV. ANALYSIS OF PERFORMANCE

Sinee each subeode is independently and identically decoded it suffices
to analyze the decoding of one subcode. The decoding of successive
blocks of a subcode can be described by a set of states and a set of
transition probabilities between states which form a Markov Chain.
The set of states is partitioned into a set of “normal’’ states and a set of
“anomalous” states. Given the block code parameters, the sequence of
states is determined by the error pattern sequence. The block code
parameters which are required are d,., the minimum distance of the
block code, and ¢, the amount of bounded distance random-error-cor-
rection done in RED.

Before enumerating the states we give a general description of the
two sets of states. In all following discussion we assume the decoding
of a single subcode. A block is decoded in a normal state only if all the
blocks containing information segments fed back to that block are
correctly decoded. Thus a block decoded in a normal state can only
be in error due to its own error pattern or due to errors which are fed
forward. A block is decoded in an anomalous state if one or more of
the blocks containing information segments to be fed back to that
block are incorrectly decoded. Once a block is decoded in an anomalous
state the decoder is affected by fed back errors in addition to the channel
error pattern sequence. Successive blocks are assumed to be decoded
in anomalous states until a run of V blocks with no channel errors
oceurs. V is termed the recovery space for a subcode. V is determined
in terms of d,, and ¢ (independent of details of the specific code) so
that if no channel errors occur in a period exceeding (V' — 1) blocks,
then no errors are fed back to subsequent blocks regardless of the
previous channel history. The first block after a run of V blocks free
of channel errors is decoded in a normal state. A block decoded in an
anomalous state can be in error due to its own error pattern, due to
errors which are fed forward, and/or errors which are fed back. Error
propagation which is due to fed back errors is bounded and can occur
only in anomalous states.

Each normal state is numbered by means of the following notation:

The first digit represents the method of decoding
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1—Random Error Decoding (RED),
2—Burst-Trapping Decoding (BTD),
3,4, -, (b + 1)—Blind Faith Decoding (BEFD).

States whose first digit is 1 or 2 have a two digit number. States whose
first digitis j, 3 < § < (b + 1), have a j digit number. The last digit
is 0(1) to designate that the block is correctly (incorrectly) decoded.
Interior digits for blocks with 3 < j < (b + 1) digit numbers designate
the decoding history of the (j — 2) previous blocks. An interior digit is
0(1) to designate that its corresponding block is correctly (incorrectly)
decoded. For rate (b — 1)/b codes there are 2°*! normal states. Normal
state diagrams illustrating this notation are given in Figs. 2 and 3
for rate 3 and % codes respectively. Throughout this paper a rate 2 code
will be used in a running example. The analysis technique is easily used
for any rate (b — 1)/b code.

Since the error pattern sequence determines the state sequence the
transition probabilities between normal states can be expressed in terms
of Po,y Puy Pes Pu, Pa and a. Transition probabilities between normal
states are given in Figs. 2 and 3 and Appendix A for rate 1 and % codes.
For simplicity of notation in writing the one step transition probabilities,
p..i, from state 7 to state j the normal states are renumbered as in
Figs. 2 and 3.

The normal state diagrams represent the possible state transitions
until an undetected error oceurs (state 11) or a BTD and its associated
(b — 1) BFD’s occur [states (b + 1)00 - - - 0 to (b + 111 - - - 1]. Transi-
tions from state (b 4 1)00 - - - 0 or state (b + 1)10 --- 0 (states marked
with ¢ in Figs. 2 and 3) are the same as those from state 10 since the

5
(P0+Pc) (Pu+pw) @

pd (- (Po+Pw)) X

Fig. 2—Normal state diagram for rate 1/2 codes.



500 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1970

(Pu+pw) __@9

pa(t-(pot+pPw)?) X

Fig. 3—Normal state diagram for rate 2/3 codes.

last (b — 1) blocks containing information block segments to be fed
back are correctly decoded. Transitions from other normal states
(marked with X in Figs. 2 and 3) are to anomalous states since one or
more of the last (b — 1) blocks containing information block segments
to be fed back are incorrectly decoded. The enumeration of the anom-
alous states is presented later.

V. AN OPTIMISTIC ESTIMATE OF THE PROBABILITY OF BLOCK ERROR

If we assume, for purposes of obtaining an optimistic estimate of
performance, the presence of a Genie Decoder which corrects all fed
back information, then transitions from normal states marked X (in
Figs. 2 and 3) are the same as those from state 10 or the two states
marked ¢. Note that with the Genie Decoder blocks ean still be in-
correctly decoded and incorrect information can be fed forward but
only correct information can be fed back. The assumption of a Genie
Decoder in effect eliminates error propagation (which arises from
erroneous feedback) and the only possible states are normal states.
The entire transition probability matrix [p, ;] is then known from the
normal state diagram (for example, Figs. 2 and 3) where p;_; is the one
step transition probability from renumbered state 7 to renumbered
state j. The Markov Chain is regular and therefore the stationary
probabilities exist.’ The stationary probability = of being in renumbered
state 7,7 = 1,2, ---, 2" can be obtained from

2b+1

T = Z i, (10)

i=1
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and

2b +1

Z T = 1. (11)

The probability of block error with a Genie Decoder, P,,, is the
probability of being in a normal state whose identifying number has a
last digit of 1. I'or rate % codes,

Pw=W5+We+1fs+ﬂ'9+7fw+71'13+7f14+7|'16- (12)

Expressions for P,, for rate 3 and 3 codes are given in Table I. For
higher rate codes numerical determination of the stationary probabilities
which yield P,, seems preferable to determination of an expression
for P,, .

5.1 Upper Bound on the Probability of Block Error

An upper bound on the probability of block error can be obtained by
considering worst case error propagation. The set of anomalous states
is used to represent the decoder when error propagation can occur.
Assume that one or more of blocks [({ — b + 2)£] to [¢{] is incorrectly
decoded and that block [#(] has channel errors but all succeeding blocks
[(@ + 1)), [(Z 4 2)¢], -+ have no channel errors. Error propagation
is the effect that, although no channel errors occur beyond block [#],
decoding errors in block [if] and/or previous blocks may, through feed-
back, eause decoding errors to oceur in some succeeding blocks [(¢ + 1)¢],
@+ 2)4, --- .

The amount of error propagation, a, is the number of blocks after
the last block with channel errors that have decoding errors. The length
of error propagation, A, is the number of blocks after the last block
with channel errors up to and including the last block with decoding
errors. Upper bounds A and A on a and X\ respectively are derived in
Appendix B and given in Table II for codes with d,, = 2f + 2. In Table
IT the notation | = | means the greatest integer less than or equal toz.

Another required quantity, the reeovery space, is the minimum
number of blocks after the last block with channel errors that must
be free of channel errors to guarantee that error propagation ceases
and to guarantee that the decoder has completed any BTD decoding
and associated BFD decodings resulting from error propagation.
Specifically, the recovery space, V, is defined as the minimum number
of consecutive blocks free of channel errors (blocks [(i + 1){],
[(G + 2], -+, [(i + V)] required to guarantee that the decoder will
return to one of normal states 110, 11, 20, 21} at bloek [(z + V + 1)I]
regardless of the channel error sequence prior to block [(z + 1)I]. The
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TasLE II—RECOVERY SPACE AND BOUNDS ON THE AMOUNT AND
LenaTH oF ERROR PROPAGATION FOR CoDES WITH d,, > 21 + 2

h=2 A 1
4=1
V=2
b=31=1 A=2
A =2
V=5
L4, > b 4o < b
b=z4,t=1 A=23b—38 A=3b—8
b — 4
1=05 4-(b—1)+[dm 5 _I
Vo=4b—7 V=4b—-7
d. > bt dn = bt
bz3,t=2/A=3b—-6 d, = 3t dn > 3t
A=0b A=(20—3) A=3b—6
. . (b — 2t — 2
V =4b — T +L—"_dm—21
A=0-1 A=0B-1
(b — 2t —2 J I_(b—2)t—2 J
+ d, — 2t +1 + dn — 2t +1
V= (3b— 4) V=4b—7
(b—zs—zJ
+ | O2

recovery space for codes with d,, = 2¢{ 4 2 is derived in Appendix B
and is given in Table IT. Values for A, A, and V are presented in Table
IIT for typical values of b, ¢, and d,, .

The decoder can be represented by (V -+ 1) anomalous states, as in
Fig. 4, when it is not in a normal state. State 4, exists whenever channel
errors occur in a block. States A,, A., -+ , Ay represent successive
blocks free of channel errors. In Fig. 4 state X represents any normal
state marked X in Figs. 2 and 3 from which the transition from normal
state to anomalous state occurs. A complete state diagram includes
both normal and anomalous states. The transition probability matrix
is implicitly given in Figs. 2(3) and 4 for rate 3(}) codes, The Markoyv
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Chain is regular and therefore the stationary probabilities exist.” Let
pi,i=1,2---,2"" A, A, ---, Ay be the stationary probabilities
of being in the respective states.

An upper bound on the probability of block error, P... , is obtained
by summing the stationary probabilities that the decoder is in a normal
state whose last digit is 1 or in an anomalous state 4, through 4_, .
If the decoder reaches state Ay then correct decodings are assured in
states A,., to Ay, but if the decoder returns to state 4, after state
Ayeiyj=1,2,---,(V — A — 1) correct decodings are not assured
in states A,,, to A,,;. A tighter bound which accounts for this dif-
ference will be obtained next. For rate 2 codes with{ = 1 and d,, = 4

P, = Ps+.0n+Ps+P9+P19+P13+914+P16+PA.
Fpa, + pa. + pa, + pa. . (13)

Expressions for P,,; for rate 3 and % codes are given in Table 1.

A tighter upper bound, P.,.., is obtained by using 2V anomalous
states as in Fig. 5. State B, exists whenever channel errors occur.
States B,, Bs, '-- , By_, represent successive blocks free of channel
errors when the total number of consecutive blocks free of channel
errors is less than V. States €, , C,, - - - , C'y represent successive blocks
free of channel errors when the total number of consecutive blocks

TasLe IIT—A4, A, V For TyricaL VaLuss oF CoDE PARAMETERS

CopE PARAMETERS A A v
b =2, dn > 2t + 2 1 1 2
b =3, t=1, d, >4 2 2 5

t=2, dn>6 3 3 5
t =3, dn > 8 3 3 5
t =4, d = 10 4 4 6
dn > 11 3 3 5
b=4 t=1, don>4 4 4 9
t =2, dn =6 5 6 9
dn > T 4 6 9

t =3, dn =8 6 7 10
dn =9 b1 6 9

dn = 10 5 6 9

dn > 11 4 6 9
=4, dy =10 7 8 11
dn = 11 6 7 10

dn = 12 5 6 9

dn = 13 5 6 9

dn = 14 5 6 9

dn > 15 4 6 9
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pd[“(ptﬁpw)b_l]

Fig. 4—(V + 1) anomalous states for P., bound on probability of block error.

PoBz Pof3 PoBa Po
O\ A - B, “N\A
o (o e ) o

Pd [“(F’o*pw)b-l]

BL=1-po¥ L L=1,2,..

Fig. 5—(2V) anomalous states for P2 bound on probability of block error.
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free of channel errors is at least V. In Fig. 5 state X represents any
normal state marked X in TFigs. 2 and 3 from which the transition
from normal state to anomalous state occurs. A complete state diagram
includes both normal and anomalous states. The transition probability
matrix is implicitly given in Figs. 2(3) and 5 for rate (3) codes. The
Markov Chain is regular and therefore the stationary probabilities
exist.’ Tets, ,7=1,2, ---,2"" By, B,, -+ ,By_:,C,,Ca, -+, Cy
be the stationary probabilities of being in the respective states.

P,.. is obtained by summing the stationary probabilities that the
decoder is in a normal state whose last digit is 1 or in an anomalous
state B, through By_, or C, through C, . For rate ¥ codes with { = 1
and d,, = 4

Poa = ss + 8¢ + 85 + 89 + 810 + 813 + 814 + 816 + 85,
+ sp, + sp, + 85, + Sp. + 8¢, + Sc. - (14)

Expressions for P,,, for rate  and % codes are given in Table I.

5.2 Lower Bound on the Probability of Block Error

A lower bound on the probability of block error, P, , is obtained
by summing the stationary probabilities that the decoder is in a normal
state whose last digit is 1. That is, it is assumed that no decoding
errors are made when the decoder is in anomalous states. For rate

2 codes with¢ = 1l and d,, = 4

P.f_,=P5+Pa+P3+99+P10+P13+P14+P15a (15)

Expressions for P, are given in Table L.

VI. PERFORMANCE OF TWO CODES

The performance of a rate 3 (18, 9) code of minimum distance d,, = 6
has been evaluated on the binary symmetric channel ({ = 1). This
code is obtained by extending the (17, 9) quadratic residue code of
minimum distance d,, = 5 by one bit. Upper and lower bounds on
the probability of block error for the (18, 9) code used in burst-trapping
with £ = 1 and ¢{ = 2 versus the binary symmetric channel transition
probability, p, are given in Fig. 6. The probability of block error for
maximum likelihood decoding of the (18, 9) code and the probability
of block error for an uncoded 9 bit block are presented for comparison.
It is interesting to note that the performance of the code is better
with burst-trapping decoding (¢ = 2) than with maximum likelihood
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3 5
[ N
|

TRANSITION PROBABILITY
B
a
T

BINARY SYMMETRIC CHANNEL

1072

flond | l
10724 10720 10718 o712 10-8 1074 100
BLOCK ERROR RATE

Fig. 6—Performance of (18, 9) code on binary symmetric channel, a. Upper and
lower bounds for burst-trapping procedure, { = 2; b. Upper bound for burst-trapping
procedure, £ = 1; ¢. Maximum likelihood decoding; d. Uncoded 9-bit block; e. Deci-
sion feedback, ¢ = 0; f. Decision feedback, ¢ = 2.

decoding for values of p where the rate 4 is much less than the channe
capacity. Channel capacity is ¥ when p = 0.11. The probability of
block error for two decision feedback systems using the (18, 9) code
are also presented for comparison. In one system, (¢ = 0), repeat
requests are made on all received n-tuples but code words. In the
other system, (¢ = 2), single and double error corrections are made
and repeat requests are made on all received n-tuples but code words
or code words perturbed by one or two errors.

The performance of a rate 3 (39, 26) shortened BCH code of minimum
distance d,, = 6 with { = 1 has been computed on the basis of recorded
telephone error data. One set of recorded telephone error data is the
Vestigial-Sideband (VSB) data.®” A selected set of 85 calls was used.
Each call is an error sequence of about 3 X 10° bits recorded at 3600 b/s
(4-level operation of the VSB modem). The 85 calls were divided into
groups of calls of similar bit error rate as shown in Table IV and P(m, 39)
statistics® were determined for each group. P(m, 39),m = 1,2, --- , 39,
is the probability that m errors occur in a block of 39 bits. Estimates
of Po, Pes Pw, Pa, Pu, and « were obtained for each group by using
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approximate code and coset weight spectra. A plot of the distribution
of the percent of calls (quantized by the grouping of calls) with respect
to raw (39 bit) block error rate and the upper and lower bounds on the
distribution with respect to decoded block error rate is given in Fig. 7.
The distribution of the percent of calls with respect to decoded block
error rate as estimated by computer simulation® on the same 85 call
sample is also given for comparison. For the comparison simulation a
block interleaving degree £ = 117 was used as this amount of inter-
leaving attained approximate independence between successive blocks
of the subcodes.

Another set of recorded telephone error data is the Alexander-Gryb-
Nast (AGN) data.” AGN data consists of about 1000 calls recorded
at data rates of 600 b/s and 1200 b/s on an FM data modem. These
calls are from three classes of calls of approximately 3.6 X 10%, 7.2 X 10°,
or 2.16 X 10° bits in length. The 294 calls with bit error rate greater
than 10~° were divided into groups as shown in Table V and estimates
of Do, P, Pw, Pa, Pu, and a were obtained as for the VSB data. A

100

©
[=]
T

80

60—

50

30—

20—

PERCENT OF CALLS FOR WHICH BLOCK ERRCR
RATE IS LESS THAN ABSCISSA VALUE

0 I | ! | I | ]
1079 10-8 10°7 10”8 1078 104 1073 10°2 107!
BLOCK ERROR RATE

Fig. 7—Distribution of 85 call VSB sample with respect to block error rate. a.
Uncoded 39 bit blocks; b. Simulation of (39, 26) code interleaved to degree 117;
c¢. Upper and lower bounds for (39, 26) code.
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plot of the distribution of the percent of calls (quantized by the group-
ing of calls) with respect to raw (39 bit) block error rate and the upper
and lower bounds on the distribution with respect to decoded block
error rate is given in Figs. 8 and 9. The performance as estimated by
computer simulation® on the same call sample is also presented for
COMPATISON.

For both sets of data there is good agreement between the performance
estimates obtained by the theory and simulation. Two advantages of
the theoretical technique over the simulation technique are the ability
to obtain the tail of the distribution and the ability to obtain the
distribution from reduced data. This latter advantage is due to the
fact that po, De, Pw, Pa, Du, and @ can be approximately determined
from reduced data such as P(m, n) statistics.

VII. CONCLUSIONS

A technique for analyzing the performance of a burst-trapping error
correction procedure has been described. The criterion of performance
is the probability of block error. The analysis technique for burst-
trapping procedures with block interleaving degree £ is valid on channels
where error patterns in blocks separated by £ blocks are (approximately)
independent. Thus the analysis technique is valid for random error
channels or for properly designed burst-trapping procedures on burst
or compound channels such as the telephone channel.

The performance of a rate 2 code, the (39, 26) shortened BCH code,
has been computed for two sets of recorded error data. For both sets
of data the computed performance agrees with the performance obtained
by computer simulation. An advantage of the theoretical technique over
simulation is the ability to estimate performance on the basis of reduced
data [P(m, n) statistics] rather than on extensive error sequence data.
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APPENDIX A

Transition Probabilities for Normal State Diagrams

For simplicity the development of the one step transition probabilities
p..; from renumbered state 7 to renumbered state j is demonstrated for
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Fig. 8—Distribution of AGN eall sample with respect to block error rate. a.
Uncoded 39 bit blocks; 2. Simulation of (39, 26) code interleaved to degree 117;
c. Upper and lower bounds for (39, 26) code.

rate 2 codes (Fig. 3). The technique is easily generalized to rate (b—1)/b
codes, b = 2. Obviously,

g = Po+ Pes (16)
Pra = DPu + Pu; (a7
Pr2 + Pio = Du - (18)

Let p, ;(b) be the b step transition probability from renumbered state
7 to renumbered state j. Due to the structure of the normal state diagram
it is easily seen that,

P2 = pis3) + 250 + P1.:(3) + p1.s(3); (19)
P2a = (1 - p?.r‘.) = ?71_4(;))_)51)—15(&) y (20)
pos= (1= p ) = 2al® (21)

P1.2P2.a ’
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Fig. 9—Distribution of AGN call sample with respect to block error rate. a.
Uncoded 39 bit block; b. Upper and lower bounds for (39, 26) code.

pl.T(S) R (22)
P1.2P2.8

The three step transition probabilities p;.4(3), P1.5(3), P1.2(3), P1,s(3)
can be computed by summing the probabilities of all combinations of
three successive error patterns which cause transition from normal
state 10 to normal states 4000, 4001, 4010, and 4011 respectively.

Pe.7 = (1- ’Ps.s) =

P1.4B3) = paps ; (23)
P1.5(3) = PPoPw ; (24
P1.7(3) = Papuo ; (25)
P1.53) = pap - (26)

Further,
P10 = P1.12(3) + P1.13(3) + p1.15(3) + ?Jx.m(3)} (27)
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3 3
Pionn = 1 - Pm.u) = pl'u( ) + P1,1a( ) ) (28)
1.0
PL.12(3)
nas = (1 — 1.13) = ’ 29
P, ( Pa. ) P1.10P10,11 ( )
3
Pra1s = a- Pu,m) = p?:;;ful)u' (30)

The three step transition probabilities p; 15(3), P1.13(3), P1.15(3), P1.1s(3)
can be computed by summing the probabilities of all combinations
of three successive error patterns which cause transition from normal
state 10 to normal states 4100, 4101, 4110, 4111 respectively.

Pi2(3) = pale’(pe + pu + P2’ + 2poa®@. + pu + IS (31)
Pras(3) = palall — a)(p. + pu + po)’ + pol — @. + pu + p)

+ a(p. + pu + PP} ; (32)

Pras(3) = Pi.1a(3); (33)

Pras(3) = pol (1 — @)*(pe + pu + pa)* + 2pu(l — (P + pu + Pa)].

(34)

The transition probabilities for rate 3 codes are given in Fig. 2. The

transition probabilities for rate 3 codes with the exception of

- o*(p. + Z,‘ _:—pzzd) + 2ap, 35)
S (I — aalp. + p. l-id)pj Pl — @) Fape. (g4
pross = L elpet G + zg’)jpic'(l —etape (g7
S 1 — a)’(p. ?111 ;S z:.i)p-r 20 — o)p. 38)

are given in I'ig. 3.

APPENDIX B

Bounds on the Amount and Length of Error Propagation and Determina-
tion of the Recovery Space
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We consider codes in which d,, = 2t + 2. Let 0 = ¢; = & be the
maximum number of errors possible in the information part of the
decoded word at block [¢f]. The value of e; depends on the method
of decoding the block and the error pattern sequence. We will say that

i

fi= 2 & (39)
i=i—-b6+2

is the maximum number of errors “available’” for feedback to blocks
after block [#f]. As in the text, assume that one or more of bloeks [(¢ —
b + 2){] to [¥] is incorrectly decoded and that block [#f] has channel
errors, but all succeeding blocks [(¢ + 1)£], [(z + 2){], --- , have no
channel errors. We consider three mutually exclusive and exhaustive
cases. We use the fact that a block code of minimum distance d,, is
simultaneously capable of correcting ¢ errors and detecting d = ¢
errorsifd, =t -+ d + 1.

B.1 Case 1
Assume that no error deteetions (BTD’s) occur in blocks [(z + 1){],
[(z + 2){], --+ . Under this hypothesis error propagation cannot oceur

beyond block [#] if f; < d, — {. The maximum length of error propaga-
tion is then the smallest integer A, such that f,,,, < d, — (. Since
fi = (b — 1)k, blocks [(Z + 1){] to [(Z + b — 1)£] are subject to decoding
error due to error propagation and therefore f;,,-, = (b — 1){. Each
subsequent block, [(7 + b)], [(Z + b 4+ 1){], --- , which is correctly
(incorrectly) decoded removes ¢ (d, — 2f) errors from the maximum
number available for feedback. Therefore

(b—l)+[%’%22)ﬂ, it d, — 2t <t
A = " (40)
(b—1)+L“—‘3%"—_—?—QJ, i ody — 2> ¢

where | x | is the greatest integer less than or equal to z.
The maximum amount of error propagation is
_ (b — 21
a=0-n+|8=2. (1)

Blocks [(7 + A, + b)Y, [z + A, + b + 1}4], - - - are correctly decoded
by RED in normal state 10.

B.2 Case 2

Assume that an error detection (BTD) occurs in block [(¢ + 7){],
1 = j £ b — 1. Under this hypothesis error propagation cannot occur



PERFORMANCE OF BURST-TRAPPING CODES 515

beyond block [(Z + j)£]. The maximum length of error propagation is

Ap=b— 1 (42)

and the maximum amount of error propagation is
A, =b— 1 (43)
Blocks [(i + A, + b)), [(6 + A» + b + 1)¢], -- -, are correctly de-

coded by RED in normal state 10.

B.3 Case 3

Assume that an error detection (BTD) oceurs in block [( 4 j){],
b < j < J, where J is the maximum value of j such that block [(¢ + 7)¢]
can be detected in error when the last channel errors occur in block
[#f] and blocks [ + 1)¢], [(z + 2){], --- are free of channel errors.
Under this hypothesis, error propagation eannot occur beyond block
[(i + 7)€]. For block [(i + J){] to be detected in error it must have
t, = t + 1 errors fed back to it. For b = 2 (rate § codes) J = b — 1,
and Case 3 cannot oceur.

Asin Case 1, f; = (b — 1)k, and blocks [(Z + 1){] to [ 4+ b — 1){]
are subject to decoding error due to error propagation. Therefore,
fiss-1 = (b — 1)t. Each subsequent block, [(¢ + b)4], [(Z + b + 1){], - - -,
which is eorrectly (incorrectly) decoded removes t(d,. — 2t) errors from
the maximum number available for feedback. Let H, be the largest
integer such that f;,», = ¢t 4+ 1. Then when b = 3

[(b—l)+[u;iJ, i od, — 2t < i

— 9¢
H, = 1 dn — 21 (44)
9 — 4 i 4, — 20> 1.

Since errors must be fedback to block [(z + J){] from at least two
blocks to get ¢, > ¢ feedback errors,

J=H,+ (b —2). (45)
B.3.1 Case 3a
Assume block [(7 4+ 7)£] is correctly decoded by BTD. Then
Ay = H, ; (46)

Ag=(b— 1)+ L@%Q;—IJ (47)

Blocks [(z + J + b)), [(i + J + b + 1)4], - - - are correctly decoded in
normal state 10.
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B.3.2 Case 3b

Assume block [(z 4+ j){] is incorrectly decoded by BTD. Now b <
i = @ = J, where G is the maximum value of j such that block [(z 4+ 7){]
can be detected in error and incorrectly decoded due to error propaga-
tion when the last channel errors occur at block [7£] and blocks [(z + 1){],
[(z + 2)¢], - - are free of channel errors. For block [(i 4+ G){] to be
detected in error it must have {; = ¢ + 1 errors fed back to it to cause
the detection and ¢, = 1 errors fed back during the BTD fo cause er-
roneous decoding.

Iffiiyer = (b — 1t <t+4+ 2, G =b — 1and Case 3b cannot occur.
Let H, be the largest integer such that f..x, > ¢ + 1. Then when
b=z3and (b — 2)t = 2

[(b—1)+L%T——2%§§—2J, it d, — 2t <t
o, - "

L(b—1)+LQ:£2t;£J, i d, — 2> 1.

Since errors must be fed back to block [(i + G){] from at least two
blocks (three blocks if ¢ = 1) to get &, + ¢ = t + 2 feedback errors

(48)

H,+ (b—3), if t=1.
b—9t—2+d, — 2t -
A4=(b—1)+I' p—Y _I (50)

Blocks [(7 + Ay + b)], [(6 + Ay + b + 1){], - - - are correctly decoded
in normal state 10.
Table I is constructed by taking

A = max {A;, As, Ag, A4} (51)
and
A =max |A,, A,, As, A.}.

By definition the recovery space is the minimum number of con-
secutive blocks free of channel errors required to guarantee the return
of the decoder to one of normal states |10, 11, 20, 21} at block [(7 +
V+1){] regardless of the channel error sequence prior to block [(i4-1){].
We say that V is a necessary recovery space if fewer than V consecutive
blocks free of channel errors do not guarantee transition to one of
normal states {10, 11, 20, 21} at bloek [(z + V + 1){]. We say that
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V is a sufficient recovery space if V consecutive blocks free of channel
errors guarantee transition to one of normal states {10, 11, 20, 21}
at block [(i + V + 1){]. For Cases 1, 2, and 4 V; = A, + (b — 1),
i = 1, 2, and 4, is a necessary and sufficient recovery space. For Case 3
V, = Ay + (2b — 3) is a necessary and sufficient recovery space. Since
inall cases V. = V., = 1, 2, 3, 4, is a sufficient recovery space V' =
max |V,, Vo, Vi, V,} is a necessary and sufficient recovery space.

APPENDIX C

List of Symbols

¢ ~—block interleaving constant

b parameter determining rate of recurrent code
A —recurrent code parity check matrix

H —component block code parity check matrix
N —constraint length of recurrent code
Ay

n

k

I

—recurrent code truncated parity check matrix
—block length of component block code
—number of information bits per block of ecomponent block code
.« —k-tuple of information bits of [#£]th block
M,, —n-tuple of transmitted bits of [i¢]th block
Q.. —{n — k)-tuple of parity bits of [¢{]th block

I,  —jth segment of I,

M¥ —n-tuple of received bits of [i(]th block

I*x  —k-tuple of received information bits of [¢(]th block

Q% —(n — k)-tuple of received parity bits of [i¢]th block

P*,  —parity (n — k)-tuple obtained by encoding 7% with H

I., —k-tuple of decoded information bits of [i{]th block

P!, —Q# as modified by fed back information segments

Ii,  —jth segment of I,

Cy —the set of one element—the pattern with no errors

C,  —the set of channel error patterns which are identical to nonzero
code words

C. —the set of nonzero channel error patterns which are correctable
by RED

C, —the set of channel error patterns which are both uncorrectable
by RED and undetectable

Cy —the set of channel error patterns which are detectable

a —the probability that the information bits of a received word

are unaffected by the channel error pattern given that the
channel error pattern is correctable, detectable, or undetectable
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Do —the probability that the channel error pattern is in set C,

p.  —the probability that the channel error pattern is in set C,

Pe —the probability that the channel error pattern is in set C,

Du —the probability that the channel error pattern is in set C.

Da —the probability that the channel error pattern is in set C,

dom —minimum distance of the component block code

¢ —amount of error correction done in RED

V —Tecovery space

p..; —single step transition probability from state 7 to state j

T —stationary probability of being in state 7 with Genie Decoder

P., —probability of block error with Genie Decoder

a —amount of error propagation

A —upper bound on a

A ~—length of error propagation

A —upper bound on A

A;  —designation of anomalous states for upper bound one on block
error probability

pi —stationary probability of being in state ¢ for upper bound one

P,., —upper bound one on probability of block error

B, ,C; —designation of anomalous states for upper bound two on block

error probability
—stationary probability of being in state ¢ for upper bound two

P,.. —upper bound two on probability of block error
P,. —lower bound on probability of block error

;(3)—three step transition probability from state ¢ to state j

Pi

e; —maximum number of errors possible in decoded information
k-tuple at block [¢f]

fi —maximum number of errors available for feedback to blocks
after block [#f]

d —amount of error detection capability of component block code
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