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A rational transfer function to be realized by an RC-active network is
usually decomposed into functions of at most second degree. We present
a method for achieving this—which maximizes the dynamic range of the
whole network while minimizing inband losses. The method s based on
the “‘bottleneck problem.”

I. INTRODUCTION

A given rational transfer-function T'(s) of a passive network, which
is real for real s, is to be realized by an inductorless two-port. This is
usually done by breaking down 7T'(s) into functions T,(s) of the first
or second degree in s. All functions of the first and those of the second
degree with poles on the negative real axis are realized by passive RC-
networks with buffer amplifiers between the different stages. Those of
seecond degree but with poles not on the negative real axis are realized
by RC-active networks containing amplifiers. We deal at first with
the second group of functions. The extension to the general case follows
easily. The voltage swing at the input of the different stages with func-
tions T,(s) is often tightly limited by the threshold above which over-
driving of the amplifiers (that is, distortion) occurs. A further result
in many cases is high inband loss of the overall filter which cannot be
overcome by amplification because of both distortion and a too low
signal/noise ratio.

Our task is to find a method of factoring T'(s) into the different
funetions 7';(s) such that the allowable voltage swing at the input
is as high as possible without ereating distortion and the inband losses
as low as possible. We confine ourselves first to transfer functions
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which, as mentioned, have no poles on the negative real axis. Thus m
is even. If we count the zeros of T(s) including those at infinity, then
7T(s) has also m zeros. Let the number of zeros including the origin and
infinity on the real axis be r, . Then r, is even, since m and the number
of zeros not on the real axis are even. We are mainly dealing with
transfer-functions, which belong to the class of networks having a pass-
band. In the case of two ports without a passband a slightly different
approach will be necessary. The functions T’ (s) of second order have
the general form.
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To meet the aforementioned requirements as to distortion and inband
losses, we have these possibilities:

(2) There are in general a large number of ways of finding the
different functions T,;(s), because there are many methods of
choosing pairs of poles and zeros in forming T';(s). In Sections
II and IIT we discuss the best choice for our task.

() In RC-active two-ports there is some freedom in evaluating
the constant K; in equation (2).

(#%7) The functions T;(s) and their realizations once found, there
are many possibilities for the sequence in cascading the different
stages. In Section IV, we discuss some guidelines for this point as
well as for 4.
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II. A CRITERION FOR THE GOODNESS OF AN ASSIGNMENT OF POLES AND
ZEROS

We need a criterion which tells us when a chosen assignment meets
the requirement of voltage swing and inband losses. For this reason
we are looking for the shape of the function | 7;(j2) |*, which from
equation (3c¢) has the normalized form,
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We are interested in the shape of the funection in equation (4) for real
values of @, that is, for real nonnegative values of z. The extrema of
F;(z) occur, as can be easily calculated, at the values
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If x,, are real and nonnegative, extrema oceur with the ordinate
values F;(z,.,) from equations (4) and (5a) as follows:
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For the moment we need not know if F;(z,) or F;(x,) is 2 maximum
or a minimum. It is sufficient to note that besides the extremum at
z = o, at most two other extrema of F;(z) can occur.* Let the maxi-
mum be at 2,, and the minimum at 2, . We note from equation (4):

Fy0) = ¢ @
with F,(0) é Fi(«) = 1 depending on ¢. An example for a function

* For  as abscissa, a further extremum can occur at @ = 0. For ¢ = 0, one of
the extrema in equation (5a) lies at z = 0
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F;(z) with F;(z,) > ¢' and F;(0) > F;(«) is shown in Fig. la, while
Fig. 1b represents a function F;(z) with F;(z,.) < 1 and F;(0) < F;().

The passband of the whole filter may be in x € [z, , 2,] with , = 0
and z, > =, , as shown in Fig. 1. Let us first assume that a peal F..
of F;(z) may occur at z,, with z,, € [z, , 2,]. Considering only frequencies
in the passband, we are stating that overdrive of the amplifiers will
first occur at the maximal value F.. of F;(z), when the spectrum of
the input signal is assumed constant at least in & [z, , z.]. To prevent
overdrive of the amplifiers F,., should exceed the “mean” values in
the passband as little as possible. On the other hand, we have to re-
gard the minimum value F;, of F;(z) in z € [z, , 2. Fai. gives us
the strongest attenuation of the signal, which we have to overcome by
amplification. When this is not possible because of overdrive or a too
low signal/noise ratio, then a low F,;, yields high inband losses. For
this reason, F.;. should be as close to the “mean” values in the pass-
band as possible. It would seem at first sight that both requirements
can be met, namely that F... and F.;, be as close to the mean values
in the passband as possible, if we look for a transfer function T';(s)
such that d; = Fo.. — Fai, be minimized. But this eriterion does not
always cover our requirements as can be seen in Fig. 2. Both functions
F;(z) have the same value d; = Fp,. — Fui. . Their practical behavior
however is very different. The two port with the transfer function of
Fig. 2a almost entirely cuts off the frequencies in the passband in the
neighborhood of z, and x, and we would need a very high gain to bring
them up, which is not true in the case of Fig. 2b. To avoid this error,
we redefine the d,-value by the ratio

d; = 2= (®)

Fj(x)

m Lo Iz x

(b)

Fig. 1 — Functions F;(z) with (a) Fy(za) > ¢t and Fy(0) > F;(ee); and (b)
F;(.Tm) < 1 and F,(O) <FJ(UO)
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Fig. 2— Two-port almost entirely cuts off the frequencies in passband in
neighborhood of z;, and @: in (a) but not in (b).

with F.. and F;, for x € [z, , 2] and require it to be as close to unity
as possible. In order to compress the range of values we can let

(9)

where d; is obviously a positive number. The values d; in equation (9)
should be as close as possible to zero, that is, as small as possible.

Until now, we have assumed x,, & [, , 2;]. If z,, is outside the pass-
band we have to argue in a slightly different manner. Now we could
have two points of a peak value, one at # = z,, and one at the boun-
dary @ = . We look for that point among these two with the highest
F ..« value and we denote this point by z, . Let us assume that the
amplitude of a signal from a neighboring channel occurring at z,; is so
high that the amplifiers are overdriven. This will change the operating
points of the amplifiers resulting in an impaired transmission of signals
in the passband. This can sometimes be avoided by inserting the stage
under consideration at such a place in the cascade, that the amplitude
of the input signal at z! is not too high. This, however restricts the
freedom of choosing the cascade sequence. We therefore request that
the maximum F,,,,. at z’ be as close to the ““mean’ values in the pass-
band as possible, even if a!, & [, , x,]. Thus we look for Fy,, for z €
[0, «]. Minimum values of F;(x) for x € [z, , x.] are of no importance
since we don’t have to amplify those values outside the passband. For
these reasons the d;-values in equations (8) and (9) are replaced by

Frnus

4=F

(10)
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or
d; = logFLf" (11)

with
F.. for &[0, o] (12a)

and
Frin for z € [z, 2,]. (12b)

Thus each assignment of a pair of poles to a pair of zeros, that is,
each function 7;(s), is deseribed by a number d;, defined by one
of the equations (10) or (11), which in the case of (11) should be as
small as possible for all j = 1, 2, --- , m/2. In other words

max {d;};=1.2..+om2 — Min (13)

for the d; in equation (11).

M. Segal pointed out that this problem is an assignment problem
of the bottleneck type.' 0. Gross has given a solution which is con-
venient also for large numbers of poles and zeros.” This algorithm was
adopted by S. Halfin to find an optimal pairing and an optimal nested
solution.® He also presented a method of listing all equivalent solu-
tions. A further solution suitable for smaller numbers of poles and
zeros (for example, < 20) has been described in Ref. 4, where also all
equivalent solutions may be found. The next paragraph shows how
the various types of transfer functions should be treated as to this

assignment problem.

III. THE PAIRING OF POLES AND ZEROS

We have to check all possibilities of assigning a pair of poles to a
pair of zeros. For simplicity, we first assume all zeros including the
origin and infinity to lie off the real axis. We consider the case of zeros
on the real axis later. Remember that all poles of 7'(p)* lie in the in-
terior of the left half plane of p but not on the negative real axis. If
we assign a pole at p = p, to a zero at p = 2, as shown in TFig. 3, we
have to assign, as is well known, the conjugate complex pole p = p%
to the conjugate complex zero p = z* , thus forming the second order
function T,(p) in equation (3c). Therefore we need only regard in
Fig. 3 the assignments of the poles p,, ps *** Pms to the zeros z,,

* T(p) is the function T(s) of equation (1) normalized by equation (3a).
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Py D - PLANE

Fig. 3 — An example for a pole-zero assignment.

23 *** Zns2 where all values have positive imaginary part. To each
assignment (p, , z.), », » = 1, 2 --- m/2, belongs a number defined in
equations (10) or (11), which will here be denoted by d,,, . All possible
assignments (p, , z,), with their associated d,,, are listed in Table I.
Obviously their total number is (m/2)* The solution of the assign-
ment problem®"* starts with Table I.

Now we have to regard the case of zeros lying on the real axis in-
cluding the origin and infinity, while as before, all poles are assumed
to be complex. The problem now is to assign a pair of zeros to each
conjugate complex pair of poles. The zeros on the real axis with number
r,, where r, is even, can be arranged pairwise in many ways. For
example if we have the four distinet zeros 1, 2, 3, 4 in Fig. 4, where
one of them may be at infinity, then we have these three possibilities
to arrange them in pairs: (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3). In general,
if we have r, different zeros on the real axis with r, even, then we have

a, = (r, — (@, — 3)@r. —5) -+ 5-3-1 (14)
TABLE I

Z] 22 ——————— Zh
Py di | dip |[—~————- dih
Pa | day | daz |-————-~- dzh
| | | |
| | | |
| | I I
| | | |
| I i ]
Ph | dhs | dho |------= dhh
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p-PLANE

Fig. 4 — We have these possibilities to arrange zeros in pairs: (1, 2) (3, 4);
(1,3) (2,4); (1,4) (2,3).

different possibilities of a pairwise arrangement. In the case of multiple
zeros on the real axis we have less than a, possibilities of pairwise
assignments. For the zero arrangement shown in Fig. 5, we have only
the following two possibilities: (1, 2)(3, 4) and (1, 3)(2, 4).

Now we have to complete Table I by regarding also zeros on the
real axis. We pick out one pairwise combination of the zeros, for example,
the arrangement (1, 2)(3, 4) of Fig. 5, and add each pair of these zeros
to the pairs of conjugate complex zeros in Table I, where we treat
them like the other zeros. From that, one solution of the assignment
problem will be found. However, we did not yet regard all possible
assignments. We have to replace the pairwise combinations of the
real zeros by another possible combination, for example, by (1, 3)(2, 4)
in Fig. 5. This provides a second table like Table I from which a further
solution can be found, and so on. The solution with the least maximum
value of the d,,, is the solution to the whole problem.

Finally we have to deal with the case in which poles are also located
on the real axis. We consider first the simplest and most important
case of only one pole and r, different zeros on the real axis. The pole
on the real axis can be assigned to one of the zeros on the real axis.
There are r, ways of doing this.

The r, — 1 zeros left can be pairwise arranged according to equa-
tion (14) ina, = (r, — 2)(r, — 4) --+ 5-3-1 ways where each pair of
these a, sets is handled like a conjugate complex pair of zeros. Thus
we get r,a, sets of zeros to be assigned to the poles, which means r.a,
different tables of the kind of Table I. The solution with the least
maximum value of the d, , is the solution of the whole problem. The
case where the r, zeros on the real axis are not different is handled in a

lp—F’LANE
(=)
T.,a

Tig. 5— We have here two possibilities: (1, 2) (3, 4) and (1, 3) (2, 4).
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similar way. The more general case where r, > 1 poles, with 7, odd or
even, are on the real axis is usually not so important and is therefore
only deseribed briefly.

If r, is odd, we assign one pole to one zero on the real axis, which
can be done in several ways. The zeros and poles left on the real axis
are arranged in pairs, which once more can be done in several ways.
Then we form for each pairwise arranged set of poles and zeros a table
like Table I from which we get the solution. If r, is even, we start with
the pairwise arrangement of poles and zeros and proceed as above.

Incidentally more first order functions of the kind deseribed could be
formed with negative real poles and zeros. However this is undesirable
because it would require more buffer amplifiers.

In some cases the assignment of one particular pole to one particular
zero is preseribed by the realization procedure. Then we simply assign
them and eliminate this pole-zero pair from consideration. On the
other hand, if a particular assignment of one pole to one zero is for-
bidden, we provide it a high d,,.-value.

IV. THE CHOICE OF THE FACTORS K,— AND OF THE SEQUENCE OF CASCADING

In most realization procedures the factor K; in equation (2) can be
chosen within certain limits by evaluating the gain of the amplifiers.
We describe here one way to do that. The choice of K; should be made
in such a way that the “gain’ in the passband of all stages is as close
together as possible. This prevents one stage from having a much
lower gain than the others which results in a lower signal/noise level
in that stage. This is only a short hint because work on this point is
continuing. Within the building block concept of G. S. Moschytz® there
is enough freedom to choose the appropriate K; . In the case of the
low pass, bandpass and the high pass, this has been shown in Ref. 6.

Some guidelines for the sequence in cascading the different stages
follow where we use observations by Moschytz. The first stage should
be a low pass or a bandpass, thus keeping higher frequencies from the
amplifiers and avoiding slew rate problems. Also the last stage should
be a low or a bandpass for the purpose of suppressing noise created by
the amplifiers themselves. Where a peak in the frequency response of a
stage cannot be avoided, this stage should be preceded by stages de-
livering attenuation at the peak point. In special cases different con-
siderations for cascading could be necessary.

If the assignment problem gives us several solutions, then the one
best meeting these guidelines for cascading should be chosen. If the
two port has no passband, then z, and z, should define the frequency



464 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

range in which the network has to operate. The choice of the values K;
should also be made in such a way that there is no great difference in
gain in the frequency range z € [z, , z.].

V. AN EXAMPLE
Given a transfer function T(s) for a Single-Side-Band (SSB) filter

with the following poles p, - - - ps and the zeros 2, - - - 2; :

z, = =+30.32233523-10°,

z, = =440.36742346-10°,

z; = —0.31480-10° +;0.3132295-10°,

z, = 0 (twice),

z; = o (twice),

p1 = —0.276100-10° 4-;0.2961048- 10",

p. = —0.31480-10° =+-;0.3132295-10°,

p; = —0.8706-10" +40.314697-10°,

ps = —0.93340-10° +30.18670202-10°,

ps = —0.25280-10° 4-;70.62888167-10°.

The zero z; and the pole p, are a phantom pair which have been intro-
duced for the realization procedure.

The four zeros on the real axis z, and 2z; ean be pairwise arranged in
two ways: (24, 24), (25, 25) or (24, 25), (24, 25). Let the pairs of the first
arrangement be denoted by z,, = (2,, z,) and 25, = (25, 25) and the
pairs of the second assignment by z,., = (2, , 25) and 25, = (24 , 2s).

Now we calculate the d;-values of equation (11) from which we ob-
tain Table II, corresponding to Table I. Then we obtain with the help
of Ref. 4, the following pairings*

(25, Pe); (2, ps); (2s1>0); (22, 02); (21, P1)- (15)

In the realization procedures there is usually a constraint such that

one particular assignment of a pole to a zero is prescribed. In the reali-

zation by building blocks,” pole p; has to be assigned to zero z; . The
rest of the assignments are free. In this case the solution is

(23, P3); (zn» ps); (2a1 s Pe); (22, 22); (21, D) (16)

* The pairings in this example have been caleulated by a procedure deseribed
in Ref. 4, which is suitable for small numbers of poles and zeros.
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TABLE 11

Zy | Zz | 23 | Za1 | Zs1 | Z4z2| Zs2
Py |0.15|057 | 025| 3.7 | 1.36 | 2.47 | 2.47

P> [o0.18] 0.3 o] 3.8 | 1.49 | 2,69 | 2.69

P3 0.18 | .25 .1 4.9 2.5 | 377 | 3.77
Pa 1.87 1.4 1.6 1.9 0.56 | 0.87 | 0.87
Ps 4.1 3.3 37 04 | 264 | 15 1.5

Solution (16) has the five transfer functions 7; , § =1, 2, --- 5
listed and drawn with full lines in Figs. 6a through 6e. There the factors
K;,j=1,2, 3,4, 5 in equation (3b) have been chosen in aceordance
with Section IV such that the whole filter has an attenuation of 0 dB
at 30 kHz. The sequence in cascading the different stages is as de-
seribed in Section IV, using the denotations for the different stages
in Figs. 6a through 6e

Ty(s)T1(s) To(s) Ta(s) Ts(s).

T,, T, and T, deliver the attenuation for the peak of T; . Since it is
not possible to have a low pass as both the first and the last sections,
we chose the low pass to be the first because in this case, noise coming
in at the input terminals was stronger than noise created by the ampli-
fiers. The magnitude of the transfer function of the whole filter can be
seen in I'ig. 7.

We wish to compare the solution described above with an earlier
solution realizing the same transfer function in a different way. In the
earlier version the phantom pair (z; , p,) had the following location

23 = —0.12-10° &= j0.28-10% p, = —0.12-10° =+ j0.28-10°.

In the new realization we shifted this phantom pair closer to the pole
p; and thus were able to decrease the peak in the FEN* section as
shown in Fig. 6e.

The earlier realization had the following assignment of poles and
zeros; (2,p2) (22p1) (Zaps) (24p4) (2:ps), which leads to the following transfer
functions of Ref. 7. T} ,j = 1, 2. - -+ 5, are listed in Figs. 6a through 6e.
The magnitude in dB of these functions is plotted as dotted lines in
Figs. 6a through 6e. The passband lies between 12 and 46 kHz. The
functions T, , T and especially T,y of the new version have obviously
less attenuation in the passband, while the functions 7', and especially
T, have a lower peak than in the earlier version. The whole filter has

* Frequency Emphasizing Network.
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Fig. 6a — Transfer function Ty, j = 1.
82 0.1039-101 .
Ti(s) = 0.85 + (solid line);

3+ (0.5522-10%)s + 0.8844-10"
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Fig. 6b — Transfer function T, j = 2.
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T,'(s) = .4586 jl (dotted line).
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the frequency response of Fig. 7, where the full line represents the
new, the dotted line the earlier version. The new version has a minimum
attenuation of 0 dB in the passband, instead of —17 dB in the earlier
case. If needed, the new version is able to deliver some amplification
in the passband. In the earlier version a maximum voltage swing of
0.3V, at the input was admissible because of overdriving, while in
the new version the maximum voltage swing is limited by the ampli-
fiers and not by the peaks of the transfer-functions. Using the op. amp.
RCA 3015A, the maximum voltage swing in the new version is 1.8V, ,
since the amplifiers alone have a voltage swing of 1.8V,, . A way to
improve the dynamic range of the amplifiers by minimizing the current
drain can be found in Ref. 8. This method can also be used in con-
nection with the transfer-functions 7';(s) found by the method pre-
sented in this paper.

VI. CONCLUSIONS

The given transfer function of a filter, which is to be realized by an
RC-active two-port, is generally factored into second order functions.
A method has been presented to achieve this so that the whole filter
has minimum inband losses and maximum dynamic range in which no
overdrive of the amplifiers (that is, no distortion) oceurs. The problem
led to an assignment problem of the bottleneck type. The efficiency of
the method has been shown in the ease of an SSB-filter, where the in-

Tig. 6c — Transfer function Ty, j = 3.

. s* + 0.06296-10% + 9.911-1000 .
Ts) = G (174121005 T 9.011.100 (°lid line);
 4015? + 10.412-10% + 30.84-10°
= S F (1.7412-10%s + 9.911-10W

Ty'(s)

(dotted line).

Fig. 6d — Transfer function T, j = 4.
1 . .
3 T (1.8668-109)s  4.357. 10w (elid line);
15.287-107 )
= S (5.056.107s T 1504 705 (dotted line).

Fig. 6e — Transfer function Ty, j = 5.

Ty(s) = 3.277-10%

Td(s)

52
82 + (5.056 — 10%)s + 4.594.10°

B 21065
T 87 + (1.8668-10°)s + 4.357-101

Tis) = 0.834

(solid line);

Té'(s) (dotted line).
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Fig. 7— Gain of the bandpass. Earlier version with dotted line; new version
with solid line.

band loss could be reduced to 0 dB instead of —17 dB in an earlier
version and where the dynamic range of the input signal could be in-
creased to 1.8V, instead of 0.3V, as before.
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