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A method is presented for the computation of the far field radiation
patterns of paraboloid reflector antennas by using a modified stationary
phase approximation to eliminate one integration. This method is applicable
to open cassegrain, offset paraboloid and horn reflector antennas. For
symmetrical paraboloid antennas the modified approximation reduces to
the exact expression oblained by direct integration.

The errors introduced by the stationary phase and modified stalionary
phase approximations are tnvestigated. Specifically the far field of an open
cassegrain with a 128 wavelength aperture diameter is computed by the
approvimate method up to 20 degrees off-axis. The difference between these
radiation palterns and those computed by double integration, is less than a
few tenths of a dB up to 1.0 degree, and less than a few hundredths of a dB
at larger angles off-axis.

In order to estimate the computational advantage of this approximation,
the number of points required for integralion of an oscillatory function by
Simpson’s rule is also examined and 1t is determined that at least 6 points
per cycle are necessary to obtain 4 decimal accuracy. For fewer points the
error is appreciable.

I. INTRODUCTION

The computation of the far field radiation patterns of large reflector
antennas is of importance in predicting the performance of satellite
ground stations. For example, the antenna sidelobes contribute to the
system noise temperature and may cause interference with other com-
munication systems. The open cassegrain antenna' is a particularly
suitable configuration for obtaining low sidelobe levels, since blocking
by the subreflector and its supports are eliminated. A further advantage,
resulting from this feature, is that the radiation pattern can be accu-

431



432 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

rately predicted and it has been shown to be in good agreement with
experimental results.’

The previous computations of the radiation patterns of open cas-
segrain antennas have been performed by precise computation of the
appropriate diffraction integrals, generally requiring a double numerical
integration. For large angles off-axis, such computations require con-
siderable computation time. It is, however, for large angles that the
integrals which are used for the computation of the far field radiation
patterns are of a form which is suitable for approximation by the method
of stationary phase. This method was initially applied to eliminate the
azimuthal ¢ integration, but it was subsequently recognized that certain
terms in the approximation are related to the asymptotic expansions of
Bessel functions. The stationary phase approximation could therefore
be modified, with the observed result that the far field radiation pattern
can be computed with good accuracy also in the immediate vicinity of the
main beam.

In the following sections we derive the stationary phase approximation
and present a geometrical interpretation of the location of the station-
ary points. For the far field on axis, the ¢ integration is performed in
closed form and it is shown that the antenna gain is the same for both
perpendicular polarizations. Numerical computations are performed to
estimate the error introduced by the stationary phase and modified
methods. The extended range of applicability of the latter method is
evident from the computations. The number of points per cycle needed
to obtain an accurate value for an integral of an oscillatory function is
also examined, and it is shown that for the functions considered at
least 6 points/cycle are needed.

The far field radiation patterns of an open cassegrain with a 128
wavelength aperture diameter are computed with this method up to 20
degrees off-axis. In the vicinity of 20 degrees, the relative sidelobe levels
are less than —65 dB or about 15 dB below isotropic.

1.1 The Far Field

The far electric field E; of a paraboloid reflector antenna in an angular
region about the axis, can be, based on the projected aperture field
method, related to the reflected field at the aperture, E, , by the follow-
ing expression:”

B, = 1O ) ([ B y) exp Gho, i) ds (@)
RRO A
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where
A = wavelength,
k = 2r/\ (propagation constant),

R. = the distance to the far field observation point,
o, is a vector in the aperture plane,
1., is a unit vector which specifies the direction of the observation
point,
A is the aperture area.

Specifically the direction of the observation point lg, expressed in
terms of the unit vectors of the aperture (z, , ¥, , 2) coordinate
system is:

1z, = 1., sin 6, cos ¢, + 1,, sin 6, sin ¢ + 1., cos . (2)
where 6, and ¢, are the far field observation angles, and

0 = lszv + ]l"pyl" . (3)

For an open cassegrain the incident fields at the main reflector can
be more readily computed in a spherical coordinate system with the
axis aligned with the horn subreflector axis as shown in Fig. 1. There-
fore, the integrations in equation (1) are also performed in this co-
ordinate system. The relations between aperture coordinates and the
fields in the two coordinate systems were derived previously' and are

x, = r[cos 6, sin 8 cos ¢ + sin 6, cos 6], (4)
Yy, = rsin #sin ¢, (5)
%E, = 1,,{[sin 8, sin 6 — cos (1 + cos 6 cos 6.)1E,

+ sin ¢(cos @ + cos 6,)E,}
— 1,,{sin ¢(cos b, + cos 6)E,
— [sin 6sin 8, — cos ¢(1 + cos 6 cos 0)]E,}, (6)

where B, and E, are the 8 and ¢ components of the incident electric
field, { is the focal length of the paraboloid and r is the equation of the
paraboloid surface in the 6, ¢ coordinate system

_ 2f
~ 1 + cos 6, cos 8 — sin @sin 6, cos ¢

()

r
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Fig. 1 —Open cassegrain antenna.

6, is the offset angle. The surface element
ds = r* sin 0 dé de. (8)

Heretofore the above integral has been evaluated by double inte-
gration using Simpson’s rule. Although rather accurate results can be
obtained in this fashion, computation time for a given angle, 8, in-
creases roughly proportional to (sin 6,)* (see Appendix C). As a result,
except for the mainlobe and first few sidelobes of the far field, this ap-
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proach becomes extremely time consuming. To reduce the computation
time for large values of the off-axis angle 6, , the stationary phase
approximation to the ¢ integration is investigated.

1.2 The Method of Stationary Phase

Consider an integral of the form

Isin 0) = [ g(@) exp Lilk sin 0.)90)) do ()

where (k sin 6,) is large, ¥(¢) is a real function and g(¢) is a slowly
varying function. The method of stationary phase’ approximates the
above integral to O(1/k sin 6,) by considering only contributions in the
vicinity of the stationary points ¢, where ¢/(¢:) = 0.

Under these conditions

, }
Ik sin 0) ~ Zg(¢*>(m27fm) exp (jbsin 0.0@).  (10)

This method has been applied to the ¢ integration in the expression for
the far field (1).
From equations (1), (2) and (3) y(¢) can be written as

Y(¢) = (1., cos ¢, + 1,, sin ¢.]- @, - (11)

For specified observation angles 6, and ¢, , equation (11) can be con-
sidered as the projection of the vector g, in the direction of the unit
vector 1,, = 1., cos ¢, + 1,, sin ¢, . For the problem under consideration
o, is a function of 6 and ¢. It has been shown previously' that for con-
stant 6, the vector g, describes a circle as ¢ varies from 0 to 27. The
equation of the circle is
2fsin 0, \’ 2 2f sin @ 2
(o~ coratosa) - (orroes) - 0
A family of such circles for an offset angle 6, of 47.5° is shown in Fig. 2.
Therefore the condition y/'(¢) = 0 corresponds to determining the
extreme values of the projections of the vector g, in the direction of the
unit vector 1,, . It is evident from Fig. 2 that as g, describes a constant 6
cirele two extreme values for the projections exist, namely at those two
points on the circle such that tangents to the circle passing through the
points intersect normally a line in the direction of the unit veetor 1,, .
Furthermore the difference between the two extreme projections is the
circle diameter.
The expressions for the stationary points and the other values which
enter in the evaluation of the ¢ integration are derived in Appendix A.
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Fig. 2 — Projection circles of the paraboloid reflector for 80 = 47.5°.

1.3 Approximate Values
In order to approximate the ¢ integration in equation (1), namely

E~ [ 7B exp (jesin 0.5, cosé, + y,sing)} db (13)

by the stationary phase method, the reflected field E, has to be de-
termined at the stationary points. This field has an explicit ¢ dependence
for a TE,, mode or combined TE,, — TM,, excitation. For these modes
it has been shown' that for 2 and y polarization the field components
Ey and E, are

x polarization {E’ = E(r/2) cos ¢ (14)
E, = —E(0)sin ¢ (15)
y polarization {E‘ = E(r/2) sin ¢ (16)
E, = E(0) cos ¢ 17

where E(x/2) and E(0) denote the 6§ dependence of the fields when
the feed horn is excited for y polarization in the planes ¢ = 7/2 and
¢ = 0, respectively.
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As shown in Appendix A, it is sufficient to evaluate the fields at the
stationary points for one polarization only. For the other polarization
the fields are then readily obtained. Therefore only 3 polarization will
be considered. Furthermore it will be assumed that the radiated field
from the subreflector has been computed at a constant radius from the
focal point of the hyperboloid subreflector.

By assuming a 1/r dependence for subreflector fields, the relation
between the fields is

2f E.(8, ¢)

E.(0,4) = 1+ cosb, r (18)
where E, is the field at the distance 2f/(1 + cos 6,) and 7 is the equation
of the paraboloid (7). The spherical phase dependence of the field in
equation (18) is suppressed.

With the approximation (18) and the stationary phase approximation
to the ¢ integration, the far field using equation (1) is obtained from
the integral (see Appendix A)

(T Om
®,) = j S2LZIE) [ B sin 0 a0 (19)
}\Ru 0
where the subseript ¥ designates that the far field is for y polarization,
and @, is the illumination angle. The ¥ and 2 (cross polarization) com-

ponents of (E,) namely (E,), and (E,), are given by

(E’) — _7’_(2})?81’.3
YT ela® — b° cos® @) (1 + cos Bg)

9 i

et 3)
e’ + ¢7") {a sin® ¢, E(r/2) + ¢ cos® ¢, E.(0)}
— bsin® ¢, cos (¢ — ¢ ") [eE.(x/2) — aB.(0)}]  (20)

and the eross polarized component (£,), is

2

r(a + E)

(b’ — e ") {asin® ¢, E.(0) + ¢ cos’ ¢, E.(w/2)}
+ ¢ cos (e’ + eV [cE.(0) — aE.(r/2)}] (21

o 7(2f)%" sin ¢,
B = @ =1 cos’ a)(1 + cos 6,)

where

a =1+ cos @ cos 6,, (22a)
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b = sin @sin 6, (22b)
¢ = cos 0 + cos 6,. (22¢)

_ 2kfsin §,sin 8
chosB-I—cosﬂofT/Ll' (23)

2kf sin 6, cos 45“[ sin G, — SIn b ] (24)

B cos @ + cos 6, cos 6, + cos @,

The second term in equation (24) reduces the phase by a constant.

The expansions (20) and (21) are valid for (k sin 6,) very large. It
should be noted that (20) and (21) display singularities at « = —x/4,
that is, at 8, = 0, or # = 0. However, upon examination it can be seen
that (20) and (21) contain the first terms of the asymptotic expansions
for Bessel functions, that is,

0~ 2) (e~ -

~1 (j)"(,,—?;)*{(—n“ exp [ iz =) ] + e (il - )]}

By identifying and replacing the asymptotic terms by the actual
Bessel functions, the singularities are removed and it might be ex-
pected that the approximation for small 6 and 8, would improve and
furthermore for large values of  and 6, the approximations would be
equivalent. There is however, no unique method to introduce such a
replacement. The method chosen was dictated by the requirement that
for the symmetric case 8, = 0, the expressions reduce to the exact
expressions previously determined.* This necessitates associating a
Bessel function of order n, J,(r) with terms cos ng, or sin ng, .

On this basis the approximations to the ¢ integration are:

_ —r(2)%"
By = c(@® — b°® cos® ¢,)(1 + cos ;)
‘le(/o(x) {aE.(r/2) + cE.(0)} + Jo(x) cos 2¢.{ak . (r/2) — cE(0)})
— j/2b{cE (x/2) — aE (0)} {J.(z) cos ¢.+ Ji(z) cos 3¢.}] (26)
and the cross polarized component
_ 7 (2f)’e’®
). = c(a® — b* cos” ¢,)(1 + cos 6y)
-[jb{3aE.(0) + cE.(w/2)}J.(2) sin ¢.
+ 2elaB.(r/2) — cE{0)} (@) sin 26,
+ jb{aE.(0) — cE.(x/2)}Js(z) sin 3¢.] 27

(25)
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where

(28)

E:@g( sin 4, sin 4 )

A \cos 8 + cos 6,

It is noted the (/,), is symmetrical with respect to ¢, since by inter-
changing ¢, by —¢. the expression remains the same. This would be
expected since the plane ¢ = 0 is a plane of antenna symmetry. It is
also evident from equation (27) that the cross polarized component is
zero in the plane of symmetry and is antisymmetrical with respect to ¢, .

The above expressions reduce to those obtained by the method of
stationary phase for large values of z. As shown subsequently by nu-
merical integration the latter approximations extend considerably the
range of 8 and 8, beyond which the stationary phase approximations are
applicable.

For z polarization as outlined in Appendix A the expressions are
similar. In particular (E,), is of the same form as (E,), with E (o) and
E,(v/2) interchanged. The cross polarized component (E.), is of the
same form as — (%,), with E,(0) and E.(r/2) interchanged.

The expressions (26) and (27) are of course approximate. This is
evident by considering the special case 6, = 0, where the values for the
fields must be the same independent of ¢, . For this special case the ¢
integration is performed in closed form in Appendix B.

For the antenna shown in Fig. 1, with 8, = 55° and 6,, = 34.0°, by
assuming the radiation fields of the subreflector at a constant distance
are the same in the E and H planes, it is shown that the differences
between the exact and the approximate values at 6, = 0 are 0.049 in
the E-plane and —0.053 in the H-plane, both in eomparison to one.
The subsequent numerical computations indicate that these are the
largest errors introduced by the approximation.

1.4 Numerical Results

In order to determine the validity of the above approximations,
computations of the far field radiation patterns for the open cassegrain
antenna have been performed using the subreflector radiation pattern
E. shown in Fig. 3.

The integration with respect to ¢, as indicated in equation (13), has
been performed, employing Simpsons rule, as a function of @ in the E
and H planes, and for observation angles 6, = 0, 2.5, 5°, 10° and 20°.
Estimates for the number of points required for the ¢ integration and
the computation time are presented in Appendix C.

The normalized amplitudes obtained from the integration are shown
in the upper portions of Figs. 4-8. The normalization was based on the
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Fig. 3— Amplitude and phase of subreflector radiation pattern.

stationary phase approximation (20) which shows that in the planes
¢, = 0 or =/2 the integral (13) is proportional to E.(0) or E.(x/2) re-
spectively. The normalized values for the integrals Ey shown are

. _ (B)/E.

By = {E),/5., 20)
where the subseript zero indicates the value at ¢ = 0.

Immediately beneath Ey in Figs. 5-8 is shown a plot of the absolute
value of the difference between the normalized values obtained by inte-
gration and the stationary phase approximation given by equation
(20). The third plot in each figure show the corresponding difference
using the modified stationary phase approximation (26). As predicted
by the method of stationary phase and as shown in Figs. 5-8, the
approximations improve as k sin 6, increases. However, where as
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for small values of @ the stationary phase approximation (20) introduces
significant error, the modified approximation (26) becomes increasingly
accurate. It should also be noted that with both approximations rela-
tive maximum differences occur near zeros, therefore resulting in less
significance in the second integration.

Figures 9 and 10 show the amplitudes of the far field radiation as
computed by single integration and the modified stationary phase
approximation (26). Shown for y polarization are the far field in the
plane of antenna symmetry ¢, = 0 and =, and the fields in the plane of
asymmetry ¢, = 7/2 up to 20° off axis. Figure 11 shows the difference
in the plane ¢, = 0 between the far field pattern computed by the ap-
proximate method and the same pattern computed using double integra-
tion. Excluding the vieinity of relative minima, errors were less than 0.2
dB up to off-axis angles of 1°, and on the order of a few hundredths of a
dB for larger angles. It should be noted that on axis the difference is zero,
since the exact expression for the ¢ integration as given in Appendix B
is incorporated in the single integration program.

II. CONCLUSIONS

A method has been developed for the numerical computation of the
far field radiation patterns of open cassegrain antennas and related
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antenna configurations using a single numerical integration, which re-
duces considerably the computation time. The method is based on the
stationary phase approximation but modified such that for symmetrical
paraboloid antennas the approximation reduces to the exact expression
which is obtained by direct integration. The errors introduced by
stationary phase and modified approximations are examined. It is shown
by numerical computations that the error in the far field radiation
pattern introduced by the modified stationary phase approximation at
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angles beyond the main beam is on the order of a few hundreths of a dB.
The number of points needed for numerieal integration of oscillatory
funections by Simpson’s rule is also examined by using specific oscillatory
funections. It was determined that at least 6 points per cycle are necessary
to obtain four decimal-point accuracy.
The radiation patterns of an open cassegrain antenna with a 128
wavelength aperture diameter are computed up to 20° off axis. In this
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region the sidelobe levels are —65 dB or —15 dB below the isotropic
levels.

Although the stationary phase method has been applied here to the
computation of the far field based on the projected aperture field method,
the same approach may be used for the computations based on the
current distribution method. In particular in the plane of antenna sym-
metry, the locations of the stationary phase stationary points are the
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same and therefore the presented approximations are readily extended
to this plane.
APPENDIX A

Derivation of the Stationary Phase Approximation

Consider the ¢ integration of equation (1)
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2x
E(k, 6) = f E.(8, ¢) exp [jk sin 6,(z, cos ¢. + ¥, sin ¢.)]r* dp  (30)
0
with z, , ¥, , E, and r given by equations (4) through (7). The stationary
points are determined by

%c ¢,+—sm¢“

This leads to the relation

= 0. (31)

%Lf-

[(1 + cos @ cos 6,) cos ¢ — sin 8sin 6] sin ¢,
— sin ¢[cos 8 + cos 6,] cos ¢, = 0. (32)

Equation (32) is a quadratic equation in cos ¢. Solving this equation

o]
o ¢pa=0°
o ¢pa=180°

-8

-40

1,
T haaa
g i i
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Tig. 9 — Far field radiation pattern in the plane of symmetry.
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yields the following values for the stationary points

sin @sin 8, & cos ¢,(1 4 cos 8 cos ;)
1 + cos 6 cos 6, 2= cos ¢, sin 8 sin 8,

COS ¢ ,0 =

and from (32)

4+ sin ¢,(cos 8 + cos 8,) )
1 + cos 8 cos 6, £ cos ¢, sin #sin 6,

sin ¢, =

Evaluating the phase factor ¢ gives

(sin & + cos ¢, sin 6,) .
cos 8 + cos 6,

wlo) = 2f

(sin # — cos ¢, sin 6,)
cos @ + cos 6,

‘r"(‘f-’?) = —2f

0
o] 1.5 3.0 45 6.0 7.5 9.0 105 {20 135 150 165 18.0 19.5 210

(33)

(34)

(35)

(36)
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Note that
Yip) — ¢l¢.) = 2[_21(—‘%&“9.__] (37)

cos 0@ + cos 6,

which is the diameter of the circle given by equation (12). That is the

stationary points are antipodes on the projection of the plane of the

intersection of the paraboloid surface with the cone 8 = constant.
Evaluation of the second derivative leads to

&y B . [1 4+ cos 8 cos 8, & cos ¢, sin 8 sin §,]
de’ 1. F2fsin 0 [cos 8 + cos 8,]° (38)
Evaluation of » gives
_ [1 + cos @ cos f, &= sin fsin 6, cos ¢.)
"2 = 2f [cos 8 + cos 6, | (39)
It remains to evaluate E, at the stationary points. From equation (18)
E, = E 2 (40)

r (1 4 cos Bn)'
From equations (6) and (31)

__sing . {cos 8 4+ cos 6,) _ .
(Er)l.2 - Siﬂ ¢“ 1 __I_ cos 30 [lz:u(Ecﬂ CcOos ¢a Ecdv s ¢’u)

+ 1,,(E.osin ¢, + E.4 cos d,)].  (41)
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Substituting the values for z and y polarization in equations (14)
through (17) it is evident that the expressions are similar. Therefore
the = component for = polarization can be obtained from the y com-
ponent for y polarization by interchanging E. (o) with E(r/2). Similarly
the y component for  polarization can be obtained from the x com-
ponent for y polarization also by interchanging F.(0) with E(r/2) and
changing the sign in front of the resulting expression.

Substituting the appropriate expressions for y polarization into the
stationary phase approximation leads to equations (20) and (21).

APPENDIX B

The ¢ Integration on Axis (6, = 0)

From equations (6), and (13) for 8, = 0, the integral for the y com-
ponent of 3 polarization with respect to ¢ can be written

SN ) S
(Bv)y - (1 + coS Bu)
** J[E(r/2)c — aE,(0)] sin® ¢ E.(0)
./; { [@a — b cos ¢ + a — b cos ¢} ¢ (42)

where a, b, and ¢ are defined by equations (22a), (22b), and (22¢).
Integrating the first term by parts, reduces the evaluation of equation
(42) to a tabulated integral,® that is,

T dep .
/:, a— beosep (a8 — b))} (43)

hence
(E(r/2) + E0)]
(1 + cos 8,)°(1 + cos 6)

The integration for x polarization (E,.). gives the same result. As a
consequence the on-axis gain for an open cassegrain antenna is the same
for = and y polarization if the excitation is the same. Based on the
approximation (26)

(21) [E.(r/2)(1 + cos 8 cos 6,) + E.(0)(cos § 4 cos 6,)]
" (1 + cos 6,)[(1 + cos 6 cos 6,)° — (sin §sin 6, cos ¢.)’]

(E..), = —22))° (44)

(E,), = - (45)

To estimate the relative error it is assumed that E.(o) = E.(r/2).
This gives in the plane ¢, = O or =

v o [+ cos A + cos 8]
(ar), =1 [ 2(cos § + cos 6] ] '
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Fig. 12 — Numerical integration of oscillatory function.

Similarly in the plane ¢, = =/2

_ . [+ cos )1 + cos 6y) |*
(AE,), =1 [ 2(1 + cos 8 cos 0,) ] : (46)

Equations (48) and (49) can be combined yielding

1
(AE,), = 1 — [1 = (tan 6/2 tan 6,/2)°]" 4

where the minus sign corresponds to ¢ = 0 or = and the plus sign is for
b, = 7/2.

APPENDIX C

Computation Time Estimates
The attempt to find a suitable approximation to be used for the
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evaluation of far field radiation patterns was motivated, in fact necessi-
tated, by the excessive computation time required for a double inte-
gration procedure.

Both the ¢ integral [equation (13)] and the 6 integral [equation (19)]
have oscillatory integrands, with the ¢ integrand, for the maximum
value of #, having approximately double the number of oscillations as
the @ integrand. The maximum number of full eycles in the ¢ integrand
is equal approximately to

D .
o) sin 6,
where D is the antenna aperture diameter.
Figures 12 through 15 show the ¢ integrand for 8 = 34° and for
various values of observation angle 8, . Below these figures is shown

REAL PART

Pﬂ M 2 — —— IMAGINARY PART
’n r{\ N\ Ian , N
\
| \
AR
} h " <]
\‘l | ’l \
\ \ R

|
|
l)
-4 + { ¢
TIRIR R R
M\ ,‘r u’ 'UI Ul W ov ANGLE OFF AXIS = 5 DEGREES

-8 | | L
o 20 40 60 80 100 120 140 160 180
¢ IN DEGRESS

INTEGRAND {073
o

i.2 -
o.8 h I B ® REAL PART n
’ / o IMAGINARY PART

0 P
0

(o] 10 20 30 40 50 60 70 80 90 lo]e] 1o 120
NUMBER OF POINTS USED IN INTEGRATION

INTEGRAL 1073
|
o
2 _©
—

I'ig. 13 — Numerical integration of oscillatory function.
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the result of the ¢ integration using Simpson’s rule with increasing
number of points. We have found by numerical integration that for the
integrands discussed above, a minimum number of 6 points per cycle is
necessary to provide reasonable accuracy.

For a discussion of numerical integration of oscillatory integrands
the reader is referred to Ref. 6.

An estimate for the processor time required to caleulate both com-
ponents of the far field pattern in both the E and H planes (4 patterns)
out to an observation angle of 8, degrees by the method of double inte-
gration is given by:

o o O

s A#, 3

where
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k, is the fundamental program loop execution time (1.13 X 107*
min., on the G. E. 635).
N is the number of integrand evaluations per cycle required by the
integration procedure.
Af, is the observation angular increment at which results are to be
calculated.

An estimate for the same calculation by the approximate method

derived herein is:

0 O
k, A_Ba N )
where
k, = 0.75 X 107° min.
8
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Fig. 15 — Numerical integration of oscillatory function.
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Tasre I-—Exgcurion TiMES

fa 5° } 10° 20°
Double Int. 4.7 min. 38 min. 300 min.
Appr. Method 0.9 min. 3.7 min. 15 min.

Table I shows comparable execution times for various observation
angle extremes, assuming Aé, = 0.1°, N = 10.
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