The Enumeration of Neighbors on Cubic
and Hexagonal-Based Lattices
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Radii and occupation numbers have been calculated for the first 50 shells
of meighbors on each atomic sublailice for the CsCl, NaCl, zincblende,
wurtzite, and CaF, binary lattices. We present the results in tabular form
along with rules for extending the tables to higher shell numbers. A sub-
lattice approach is used and tables are given for key cubic and hevagonal-
based sublattices. The generality of the sublattice approach is such as to
allow easy application of the tables to more complex lattice structures or to
such problems as enumeration of preferred interstitial sites. A number-
theoretic explanation s offered for previously observed difficulties in
obtaining a simple expression for the radius of the m-th shell in cubic-based
structures.

I. INTRODUCTION

In discussing phenomena involving the interaction of ions in a
crystalline lattice it is often necessary to know the radii and occupation
numbers of near-lying shells of lattice sites. Such information is ex-
tremely important, for example, in the interpretation of donor-acceptor
pair recombination spectra’” and in caleulations of ion pairing®"* and
other defect clustering phenomena. The present work was motivated by
the apparent lack of any generally available tables or formulae for
calculating these m-th neighbor shell parameters for common lattices.
Shell radius formulae and partial tables have been published'** for the
interpretation of pair spectra in materials with zineblende lattices but
these tables are inadequate for other applications. Wood® and Ferris-
Prabhu® have given slightly more complete treatments but do not
present sufficiently general rules to allow indefinite extension of their
tables.* The methods which will be deseribed here differ from those

*In fact, if the diamond lattice radius rules given by Ferris-Prabhu® were used
to extend his table beyond the 25 shells which he lists, one would err in predict-

ing the radius of the 28th shell and would have all higher shells improperly
numbered. Further errors would be made for much higher shell numbers.
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reported previously'**® in that greater attention is given to the
formulation of general rules which allow extension of the tables to higher
shell numbers. It is hoped, however, that the tables presented will be
sufficiently large for most applications and will not require extension.
The general approach will be discussed in Section IT and final tables of
shell parameters will be presented together in Section III.

II. DISCUSSION

The notation to be used throughout is as follows: A convenient
lattice point will be chosen as the origin and will be taken as the center
of a spherical shell which is allowed to expand. At certain radii, p, , the
shell will coincide with other points of the lattice. The number, Z., , of
lattice points on the shell of radius p,, will be referred to as the occupa-
tion number of the m-th shell or the number of m-th neighbors. To find
the radius and occupation number of the m-th shell, the following
general approach®® will be used: For each lattice a rectangular set of
basis vectors (a; , a», as) will be chosen in such a way as to allow the
coordinates of any lattice point to be written as (£, , £, £;) where the ¢,
are integers. All lattice points will therefore fall on the corners of
rectangular parallelepiped (usually cubie) cells of the basis lattice but
gince the basis lattice is smaller than the actual lattice, there will be sets
of integers which do not correspond to actual lattice points. Rules must
therefore be formulated to allow these fictitious points to be rejected
in the enumeration process. Points of the real lattice can then be
enumerated by systematically counting all allowed combinations
(4, , L2, £;). Since each point (£, , {,, £;) is located on a sphere of radius

p = Lo + Ga; + Ga; , (1)

one ean obtain Z,, by counting all lattice points with equal p* values and
arranging the shells in order of ascending p*. This process is simplified by
making use of reflection and permutation symmetries but is best done
by computer in any case.

It frequently turns out that one can write the radius of the m-th shell
as a simple function of m: p, = f(m). Although there is no a prior:
reason to expect that such a formula will exist for any given lattice, it
is very convenient if one can be found. (Radius formulae are useful, for
example, in estimating the number of £; values which must be considered
in order to count all lattice points of the m-th shell.) Since the subject
of radius formulae has been a source of some eonfusion in the literature,”
it will be given special attention in the discussions of specific lattices
which follow.
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2.1 Cubic-Based Lattices

Four monatomic cubic-based lattices will be considered first: Simple
Cubic (sc), Body Centered Cubic (bec), Edge Centered Cubic (ece),
and Face Centered Cubie (fee). In each case the origin will be chosen
to be at a cube corner and the basis vectors will be (a/2)i, (a/2)j, and
(a/2)k, where a is the length of a full cube edge and i, j, and k are unit
vectors in the z, y, and z directions respectively which are taken to be
cube edges. In the case of sc¢, one could choose vectors of length a but
the a/2 choice turns out to be more convenient.

The bee, fee, and ecc lattices will each be decomposed into two
sublattices: Sublattice 1 will consist of eube corners (as defined by the
position of the origin) and sublattice 2 will consist of body centers (be),
face ecenters (fc), or edge centers (ec) as the case may be. This is illus-
trated in Tig. 1.

Since the basis lattice is a sc lattice with edge length a/2, all lattice
points of the larger se, fee, ece, and bee structures can be written with
integer coordinates (f,, f;, {;). Furthermore, it is seen by inspection
that the following rules apply: ({) Points on sublattice 1 are obtained
if and only if £, , £, , and {; are all even. (¢7) Points on the be sublattice
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sC bc
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T ~—-a-->
f'c ec

Fig. 1—The fundamental cubic-based lattices sc, bee, fee and ecc are shown
decomposed into convenient sublattices: sc = se, bee = (be + se), fee = (fe + se),
ecc = (ec + sc).
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are reached if and only if the coordinates are all odd. (#77) Points on the fc
sublattice are reached if and only if two of the coordinates are odd.
(iv) Points on the ee sublattice are reached if and only if two of the
coordinates are even.

By systematically enumerating all combinations of £, , £, , and ¢; that
satisfy these criteria, one obtains all points of the respective sublattices.
For the simple lattices considered here one can make use of reflection
symmetry and permutation symmetry by considering only points for
which £, = £ = £, = 0. Any point (¢, , £, , £;) is then one-, three-, or
sixfold degenerate under permutation of coordinates (p) and two-, four-,
or eightfold degenerate under reflection in the coordinate planes (d).
The total number of points equivalent to (¢, , £z , £;) is then Z, = dp
where d and p are given by Table I where 4, B, and C are distinct
integers and order is immaterial. In many cases there will be two or
more nonequivalent sets of lattice points on the same shell. In such
cases Z,, = »_: d;p; where 7 ranges over the various distinguishable
sets of lattice points. For example, the 22nd shell of the se lattice has
p* = 100(a/2)*. This shell contains points of the type (8, 6, 0) and
(10, 0, 0) (in units of @/2). There are 6 X 4 = 24 of the former and
3 X 2 = 6 of the latter for a total of 30 points on this shell.

Having chosen cartesian basis vectors of equal lengths we can write
the distance from the origin to any lattice point in the form

r=6+6+14, 2)

where r is the shell radius in units of the basis vector length. Thus the
square of the radius vector to any lattice point must be expressible
as the sum of three perfect squares. This is highly relevant to previously
observed difficulties in obtaining simple expressions for the radius 7,
of the m-~th shell in cubic based lattices. The usual difficulty is that
one is able to find a formula which works only for a limited number of

TaBLE I—NUMBER oF PoiNTs EQUIVALENT BY SYMMETRY
Coordinates of the Form ‘

(A, A, C)

R oW |3

Number of Zero Coordinates l

? |

Q0 W= b0




ENUMERATION OF NEIGHBORS 359

TaBLE II—VaALUES oF r; WHicH ARE ForBibDEN 1IN CuBlc-BasED

LATTIcES*
,
s i 0 1 2 3 4
0 7 28 112 448 1792
1 15 60 240 960 .
2 23 92 368 .
3 31 124 .
4 39 156
5 47 188
6 5Hb 220
7 63 252
8 71 .
9 79
10 87
11 95
12 103

* Numbers of the form 47 (8s + 7) where r and s are integers = 0.

shells and then fails by predicting a shell of lattice points at some radius
r» where, in fact, no actual lattice points exist. Thomas, and others,'**
call these “empty shells” and count them as m-th neighbors with
Zn = 0. Through this device a formula can be made to work for all r,, .
Thomas, and others, also give a formula which predicts the shells which
will require Z,, = 0 for the zincblende lattice but do not discuss the
origin of this formula. In every case investigated in the present work,
a failure of shell radius formulae occurred because these formulae
predicted values for 7? which were not expressible as the sum of three
perfect squares.* It is known from the theory of numbers’ that an
integer can be expressed as the sum of three squares' if and only if it
is not of the form 4"(8s 4+ 7) where r and s are integers = 0. Thus
whenever a radius formula prediets a value of 7?2 of the form 47(8s + 7),
no shell of lattice points will exist since r,; will fail to satisfy the physical
constraint given by equation (2). A few of these forbidden r? values
are listed in Table II.

The se, be, fe, and ec sublattices form a basic set from which one
can construct more complex lattices. They all have reflection and per-

*It is possible, in more complex lattices, for a radius rule to fail for other
reasons,

7 It can be shown that any integer can be expressed as the sum of not more
than four squares, nine cubes, or nineteen fourth powers.?” The important point,
however, is that three squares are sufficient.
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mutation symmetry, however, and will not be directly applicable to
any lattices or sublattices that do not share these symmetries. This is
illustrated in the final monatomic lattice to be considered in this sec-
tion: diamond.

The diamond lattice is composed of two interpenetrating fce lattices
which are shifted along a common diagonal by an amount (a/4, ¢/4, a/4)
as indicated in Fig. 2. A corner of one of these fee lattices will be chosen
as the origin and this sublattice will be denoted “I.” The shifted sub-
lattice is then “IL.” The basis vectors are taken to be a/4 in length
and span a sc basis lattice with cube edges a/4. The restrictions on
L, , £ , L, are found by inspection (this process is aided by consideration
of projections in the coordinate planes), and are given in Table III
along with a summary of similar results for the se, be, fe, and ec sub-
lattices. The radius formulae given in column 5 of Table III are ob-
tained by inserting general integers of the forms given in column 4

z z

L ] L ]
o]
. o
. . [] [
. X o
Ve
L L ]
v X
R - -
DIAMOND SUBLATTICE I Y
—>|  |eala

DIAMOND SUBLATTICEIL

ZINCBI_LENDE

Fig. 2—The diamond and zincblende lattices are shown decomposed into two fee
sublattices. In diamond, atoms on sublattices I and II are identical. In zincblende,
atoms on I are of one type and atoms on II are the other type.



361

ENUMERATION OF NEIGHBORS

"PUOWBIP I0] USSOYD BISEq F/D 9Y) 0} }I9AU0D 0} §
Aq seo1yyRIqNS 99 2Y3 JO BAN[BA ;4 oy} Jurd|diynw £q A[joemp pesn pus ﬁuﬁWES aq UBD BADI}IB[QNS D] PUB 98 Y} A[PAIIBUIAYY ‘P
‘(4 + $8).F WLIO] UDPPIQIO) Y} JO BAN[RA ;s AuB §)9Ipaid I9ADU 8SBD BIY) UT B[MULIOJ SNIPBI dYJ, O

(*3x99 Ul UOISSNOSIP pu® JT A[qEJ, OS[8 22G) *() = SI0F0)UL AIB § PUL £ AIBYM (2, + §8).F ULIO] 973} Jo aneA
3“4 uB 5301paad (sjuswarour snoraesd Furpnpeur) F[NULIO} 2y} swry £1a4d | £q pajuawRIOU] Bl PUR () 8 BJIB)S YIIYM IaFa)Ul uv St % °q
"P0U7DIQNS YoV3 Upypm s10qUIRU JO S[[aYs JULBUINU XIPUI UB ST % UWM[0D ;“4 9y} uf °®

) I — Sf wog ((v/v v/ ¥/v)
o' (¥/7) (g — wg) = oy Jo £z - 77 4 13 4q payyys
PPO [1® &7 7 17 H(F/0) ‘Uw/0) 'WF/0) 201338 20)) ]I  puowsIp
§% uLIOjf
Pqle «(¥/7) (u 4 w)g = ™ oyl Jo £ + 7 + 17 (201338]
Uu9Ad [[B *} 5} ‘13 1(¥/?) ‘U%/?) ‘W¥/?) 00 payiysun) | puUOWSIp
o ‘w 3(g/7) (g — wp) = " U9A9 aq J8NUW &} T}
13 10 om] A)oBXa 1(g/0) ‘I(g/D) Ug/v) (s193u90 a8pa) 29 209
0 ‘e +(g/7) (1 — wg)g = "4 Ppo aq gsnut &3
‘17 Jo omy £pjoexa A(z/?) ‘K(z/?) ‘W(z/v) (8193ud0 B0Y) 0F 20§
o'w «(&/?) (¢ — wg) = g Ppo (1% & ‘5 ‘1 H(g/2) ‘l(g/?) ‘Wz/v) (s12qua0 £poq) aq 20q
q's «(g/?) (¥ + w)p = ;" U943 B 7} G T} H(g/2) ‘Hz/) We/v) (s19u100 3qN2) 98 o8
B310N e Jo ] (%7 53 ‘1) UISOYD BI0JDIA SISBE 01BqNS 201778
BjIu) s1959u] 9)BUIPIOO))

o SUOIIpUC))

SEDLLLVIANG OINOLVNOJN AaSVE[-0I80)) TVININVAND] THL J0 XAVWNINAG—][] I8V ],



362 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

into equation (2) and identifying “m” in the resulting expression.

The diamond sublattice I can be worked out directly using the rules
given in Table III or can be formed from the results of sc and fc by
converting the r* values from the a/2 basis to the a/4 basis, interleaving
the sc and fe sublattices to form a full fec lattice, and renumbering the
shells. The renumbering of shells invalidates the previous 7, formulae
but a new formula is found for the full fec lattice. The diamond sub-
lattice II enumeration proceeds in a straightforward manner but re-
quires explicit counting of a greater number of points since there is less
conveniently useable symmetry. In this case none of the simpler sub-
lattices ecan be used directly since diamond II lacks the full cubie
symmetries.

The simple monatomic lattices and sublattices can now be combined
to deseribe physically interesting binary crystals. We adopt the follow-
ing notation for sublattices of binary crystals: One X atom of the com-
pound X,,Y, is chosen to lie at the origin and all other X atoms are
said to oceupy sublattice Ix . Sublattice IIx consists of all Y atoms when
X is at the origin. Similarly, if Y is at the origin then Y atoms occupy
sublattice Iy and X atoms oceupy IIy . The distinction between Ix and
Iy or IIx and IIy disappears for compounds of the type X, Y, where
all atoms of X and Y could be interchanged without any physically
observable effect. The zincblende lattice, shown in the lower portion
of Fig. 2, differs from diamond only in that sublattices I and II are
occupied by different atomic species. Figure 3 shows three more com-
monly observed binary lattices: NaCl, CsCl, and Cal’; . In Table IV
we show how these lattices ean be formed from the basie cubic sub-
lattices. Thus, for example, a table of r,; and Z,, values for NaCl sub-
lattice I (Na neighbors if Na is at the origin or Cl neighbors if Cl is at
the origin) is composed of values from the sc and fe tables arranged in
order of increasing % . The NaCl II sublattice is obtained by combining
the be and ec sublattices. All final tables of r2 and Z, will be given
in Section III.

2.2 Hexagonal-Based Lattices

The hexagonal based lattices to be considered here are: (7) monatomic
hexagonal close-packed (hep) and (i7) wurtzite. These lattices are
pictured in Fig. 4 along with a diagram of the basal plane showing how
the basis vectors are chosen. The origin is placed at a corner of the
hexagonal prism and the z-axis is taken along the c-axis of the crystal.
The x and y axes are chosen as shown in Fig. 4 and the basis vectors
are (a/2)i, [a/2(3)Yi, [2a/ (6)}k. We assume that the hep structure is the
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Fig. 3—The cubic-based binary lattices CsCl, NaCl, and CaF,. CaTF, is shown
with Ca at the origin.

“ideal” one obtained by closest packing of spheres. In this case ¢ =
(8/3)%a. The wurtzite structure is composed of two such hep sublattices
displaced along their common c-axis by an amount » = (3/8)c and
having atoms of different types occupying the two hep sublattices.
The unshifted sublattice will be called I and the shifted sublattice will
be II. The enumeration of neighbors proceeds as in the cases already
discussed and need not be detailed again. By inspection of the planes
of lattice points one can obtain® the following conditions for ¢, , £, ,
and £; for the hep lattice:

36, — 6+ (=" —1
6

= integer. 3

To identify points of the wurtzite II sublattice one can first locate
points of the hep lattice (wurtzite I) using equation (3) and then add
(8)c to their z coordinates. The r? values are not integers for hep and
wurtzite because the separations between z-, y-, and z-planes of atoms
are not related by rational numbers. Thus no r? = f(m) formulae are
expected. The radii are related to the coordinate integers by the follow-
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TasLE IV—DEcomrosiTion oF CuBic-BAsED BINARY LATTICES
INTO FUNDAMENTAL SUBLATTICES

Equivalent
Lattice Sublattice Basis Vectors Monatomic Lattice
I Same asion
at origin (a/2)i, (a/2)j, (a/2)k fee (se + fe)
NaCl
II Opposite from fee shifted by
ion at origin (a/2)i, (a/2)j, (a/2)k (a/2, 0, 0) or (ec + bc)
I Same (a/2)i, (a/2)j, (a/2)k se
CsCl
II Opposite (a/2)i, (a/2)j, (a/2)k be
I Same (a/4)i, (a/4)j, (a/Hk diamond T
Zincblende
II Opposite (a/4)i, (a/4)], (a/Hk diamond IT
Ca Sublattice
I, Ca at orgin (a/4)i, (a/4)j, (a/Hk diamond 1
F Sublattice
OaF II, Ca at origin | (a/4)i, (a/4)], (a/4)k be with cube edge a/2
a
’ F Sublattice
Iz F at origin (a/4)i, (a/4)], (a/4)k s¢
Ca Sublattice
IIg F at origin (a/4)i, (a/4)], (a/4)k diamond II
ing formulae
36 4+ & + 84
=== (hep) 4)
and
' { 1+ (44 2 .
r’ = 66 + 26 _2::( 2+ 3) (wurtzite I1). (5)
III. TABLES

Tables V-VIII contain shell parameters for the basic monatomic
lattices and sublattices. Table VIII can be used for both diamond and
zincblende. In each case the shell number m refers to the m-th shell of
neighbors on that sublaitice. In order to combine two or more sublattices
one must convert the r2 values to the same basis (a, a/2, a/4, and so on)
and interweave the appropriate columns in order of increasing r*. The
sc table includes 72 columns for three choices of basis vector lengths:
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a, a/2 and a/4. Tables IX-XIII give the corresponding results for
CsCl, NaCl, CaF, and wurtzite.

The cubic based tables are easily extended to higher shell number by
using the methods described earlier. In this regard the shell radius
formulae are particularly useful if the search for lattice points is done
by hand. For the diamond II and hexagonal based lattices, however,
one must resort to computer enumeration and summation of allowed
combinations of coordinates.

It should be pointed out here that there is a possible complication
which ean arise in utilizing these tables in physical applications in-
volving more complex lattices. As was indicated in Section II, many
of the shells in Tables V-XIII are degenerate. Although points on the
same shell always belong to the same sublattice (for all sublattices which
have been defined here), it is possible in some cases that different points

i ¢
1
R
oL e o !
! ‘ i Lo
j i | ;
I
y | T
| /a2 i
L] ° a ¢ | .
c=(%
[~ o / (‘B)a ;\
! § ¥
l ! 2c
| 1 )
S Y
== — 3 —— = I-———a—-—

WURTZITE

BASAL PLANE

Fig. 4 —Geometry of the hep and wurtzite lattices. Wurtzite consists of two hep
lattices shifted c along their common ¢ axis. The two hep sublattices of wurtzite
are oceupied by different atomic species. x = (a/2)i; ¥y = [a/2(3)12]j; z = [2a/(6)12k

«

= (e/2)k
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TABLE V-—SHELL PARAMETERS FOR THE SC LATTICES*

|
Shell r*(a?) ra?/4) rYa?/16) Z
1 (1)t 1 4 16 6
2(2) 2 8 32 12
3(3) 3 12 48 8
4 (4) 4 16 64 6
5(5) 5 20 80 24
6 (6) 6 24 096 24
7(8) 8 32 128 12
8 (9) 9 36 144 30
9 (10) 10 40 160 24
10 (11) 11 44 176 24
11 (12) 12 48 192 8
12 (13) 13 52 208 24
13 (14) 14 56 224 48
14 (16) 16 64 256 6
15 (17) 17 68 272 48
16 (18) 18 72 288 36
17 (19) 19 76 304 24
18 (20) 20 80 320 24
19 (21) 21 84 336 48
20 (22) 22 88 352 24
21 (24) 24 96 384 24
22 (25) 25 100 400 30
23 (26) 26 104 416 72
24 (27) 27 108 432 32
25 (29) 29 116 464 72
26 (30) 30 120 480 48
27 (32) 32 128 512 12
28 (33) 33 132 528 48
29 (34) 34 136 544 48
30 (35) 35 140 560 48
31 (36) 36 144 576 30
32 (37) 37 148 592 24
33 (38) 38 152 603 72
34 (40) 40 160 640 24
35 (41) 41 164 656 96
36 (42) 42 168 672 48
37 (43) 43 172 688 24
38 (44) 44 176 704 24
39 (45) 45 180 720 72
40 (46) 46 184 736 48
41 (48) 48 192 768 8
42 (49) 49 196 784 54
43 (50) 50 200 800 84
44 (51) 51 204 816 48
45 (52) 52 208 832 24
46 (53) 53 212 848 72
47 (54) 54 216 864 96
48 (56) 56 224 896 48
49 (57) 57 228 . 912 48
50 (58) | 58 232 | 928 24
|

* For convenience, r? has been given for three choices of basis-vector lengths
(a?, (a/2)? and (a/4)%.

t Numbers in parentheses conform to the notation of Refs. 1 and 2 in which
“missing shells’” are included in the sequential numbering as discussed in the text.
If these shell numbers are used one must set n = 0 in the radius formula.
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TaBLE VI—SHELL PARAMETERS FOR THE BC AND EC SUBLATTICES®
! be Sublattice ec Sublattice

Shell L B 1 r= z
1 ‘ 3 8 1 6
2 11 24 5 24
3 19 | 24 9 30
4 27 32 13 24
5 35 48 17 48
6 43 | 24 21 48
7 51 48 25 30
8 59 72 29 72
9 67 24 33 48
10 75 56 37 24
11 3 72 41 96
12 91 48 45 72
13 99 72 49 54
14 107 72 53 72
15 115 48 57 48
16 123 48 61 72
17 131 120 65 96
18 139 72 69 06
19 147 56 73 48
20 155 96 77 06
21 163 24 81 102
22 171 120 85 48
23 179 120 89 144
24 187 48 93 48
25 195 96 97 48
26 203 96 101 168
27 211 72 105 96
28 219 96 109 72
29 227 120 113 96
30 235 48 117 120
31 243 104 121 78
32 251 168 125 144
33 259 96 129 144
34 267 48 133 48
35 275 120 137 96
36 283 72 141 96
37 201 96 145 96
38 299 192 149 168
39 307 72 153 144
40 315 144 157 72
41 323 96 161 192
42 331 72 165 96
43 339 144 169 78
44 347 120 173 168
45 355 96 177 48
46 363 104 181 120
47 371 192 185 192
48 379 72 189 192
49 387 120 193 48
50 395 i 192 197 120

* r?is in units of (a/2)2
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TapLe VII—SHELL PARAMETERS FOR THE FC AND HCP SUBLATTICES*

fc Sublattice hep Lattice

Shell 2 z 2 Z
1 2 12 1.00 12
2 6 24 2.00 6
3 10 24 2.67 2
4 14 48 3.00 18
5 18 36 3.67 12
6 22 24 4.00 6
7 26 72 5.00 12
8 30 48 5.67 12
9 34 48 6.00 6
10 38 72 6.33 6
11 42 48 6.67 12
12 46 48 7.00 24
13 50 84 7.33 6
14 54 96 8.33 12
15 58 24 9.00 12
16 62 96 9.67 24
17 66 96 10.00 12
18 70 48 10.33 12
19 74 120 10.67 2
20 78 48 11.00 12
21 82 48 11.33 6
22 86 120 11.67 24
23 90 120 12.00 6
24 94 96 12.33 12
25 98 108 13.00 24
26 102 48 13.67 12
27 106 72 14.33 6
28 110 144 14.67 24
29 114 96 15.00 12
30 118 72 15.33 12
31 122 120 15.67 24
32 126 144 16.00 6
33 130 48 16.33 12
34 134 168 17.00 24
35 138 96 17.67 24
36 142 48 18.00 18
37 146 192 18.33 12
38 150 120 18.67 12
39 154 96 19.00 24
40 158 96 19.67 12
41 162 120 20.33 12
42 166 120 21.00 36
43 170 144 21.67 24
44 174 144 22.00 12
45 178 96 22.33 18
46 182 144 22.67 12
47 186 144 23.00 24
48 190 48 23.33 12
49 194 240 23.67 48
50 198 120 24 .00 2

* For the fe sublattices 12 is in units of (a/2)% For hep r? is expressed in units of a2
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TaBLE VIII—SHELL PARAMETERS FOR SUBLATTICES OF THE DIAMOND
OR ZINCBLENDE LATTICES*

Sublattice T Sublattice II

Shell r2 Z rl Z
1 (Nt 8 12 3 4
2(2) 16 6 11 12
3 (3) 24 24 19 12
4 (4) 32 12 27 16
5 (h) 40 24 35 24
6 (6) 48 8 43 12
7(7) 56 48 51 24
8(8) 64 6 59 36
9(9) 72 36 67 12
10 (10) 80 24 75 28
11 (11) 88 24 83 36
12 (12) 96 24 91 24
13 (13) 104 72 99 36
14 (15) 120 48 107 36
15 (16) 128 12 115 24
16 (17) 136 48 123 24
17 (18) 144 30 131 60
18 (19) 152 72 139 36
19 (20) 160 24 147 28
20 (21) 168 48 155 48
21 (22 176 24 163 12
22 (23 184 48 171 60
23 (24) 192 8 179 60
24 (25) 200 84 187 24
25 (26) 208 24 105 48
26 (27) 216 96 203 48
27 (28) 224 48 211 36
28 (29) 232 24 219 48
29 (31) 248 96 227 60
30 (32) 256 6 235 24
31 (33) 2064 96 243 52
32 (34) 272 48 251 84
33 (35) 250 48 259 48
34 (36) 288 36 267 24
35 (37) 206 120 275 60
36 (38) 304 24 283 36
37 (39) 312 48 291 48
38 (40) 320 24 299 96
39 (41) 328 48 307 36
40 (42) 336 48 315 72
41 (43) 344 120 323 48
42 (44) 352 24 331 36
43 (45) 360 120 339 72
44 (47) 376 96 347 60
45 (48) 384 24 355 48
46 (49) 392 108 363 52
47 (50) 400 30 371 96
48 (51) 408 48 37 36
49 (52) 416 72 387 60
50 (53) 424 72 395 96

* 72 is in units of (a/4)

t Numbers in purentheses apply only to sublattice I and conform to the notation
of Refs. 1 and 2 in which “missing shells” are included in the sequential numbering
as discussed in the text. If these shell numbers are used one must set n = 0 in the
radius formula.
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TaBLE IX-—SHELL PARAMETERS FOR SUBLATTICES OF THE CsCl

LaTTice*
Sublattice I Sublattice II
Shell e |z r z
1 4 6 3 8
2 S 12 11 24
3 12 8 19 24
4 16 6 27 32
5 20 24 35 48
6 24 24 43 24
7 32 12 51 48
8 36 30 50 72
9 40 24 67 24
10 44 24 75 56
11 48 8 83 72
12 52 24 91 48
13 56 48 99 72
14 64 6 107 72
15 68 48 115 48
16 72 36 123 48
17 76 24 131 120
18 80 24 139 72
19 84 48 147 56
20 88 24 155 96
21 06 24 163 24
29 100 30 171 120
23 104 72 179 120
24 108 32 187 48
25 116 72 195 06
26 120 48 203 96
27 128 12 211 72
28 132 48 219 96
29 136 48 297 120
30 140 48 235 48
31 144 30 243 104
32 148 24 251 168
33 152 72 259 06
34 160 24 267 48
35 164 96 275 120
36 168 48 283 72
37 172 24 201 96
38 176 24 200 192
39 180 72 307 72
40 184 48 315 144
41 192 8 323 06
42 196 54 331 72
43 200 84 339 144
44 204 48 347 120
45 208 24 355 96
46 212 72 363 104
47 216 9% | 371 192
48 224 48 | 370 72
49 298 48 387 120
50 232 | 24 395 192
|

* 72 is in units of (a/2)%
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TaBLe X-——SHELL PARAMETERS FOR SUBLATTICES OF THE NACI

LATTICE*
Sublattice T Sublattice IT
Shell r? Z r2 VA

1 2 12 1 6

2 4 6 3 8

3 6 24 5 24

4 8 12 ] 30

5 10 24 11 24

6 12 8 13 24

7 14 48 17 48

8 16 6 19 24

9 18 36 21 48
10 20 24 25 30
11 22 24 27 32
12 24 24 29 72
13 26 72 33 48
14 30 48 35 48
15 32 12 37 24
16 34 48 41 96
17 36 30 43 24
18 38 72 45 72
19 40 24 49 54
20 42 48 51 48
21 44 24 53 72
22 46 48 57 48
23 48 8 59 72
24 50 84 61 72
25 52 24 65 96
26 54 96 67 24
27 56 48 69 96
28 58 24 73 48
29 62 96 75 56
30 64 6 77 96
31 66 96 81 102
32 68 48 83 72
33 70 48 85 48
34 72 36 89 144
35 74 120 91 48
36 76 24 93 48
37 78 48 97 48
38 80 24 99 72
39 82 48 101 168
40 84 48 105 96
41 86 120 107 72
42 88 24 109 72
43 90 120 113 096
44 94 96 115 48
45 96 24 117 120
46 98 108 121 78
47 100 30 123 48
48 102 48 125 144
49 104 72 129 144
50 | 106 72 131 120

* 2

r2 s in units of (a/2)%
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TaBLE XI—SHELL PARAMETERS FOR SUBLATTICES OF THE CAT,
LarticeE WaHEN Ca 18 TAKEN To BE AT THE ORIGINY

Sublattice Iga Sublattice ITgs

Shell 72 Z r2 VA
1 8 12 3 8
2 16 6 11 24
3 24 24 19 24
4 32 12 27 32
5 40 24 35 48
6 48 8 43 24
7 56 48 51 48
8 64 6 59 72
9 72 36 67 24
10 80 24 75 56
11 88 24 83 72
12 96 24 91 48
13 104 72 99 72
14 120 48 107 72
15 128 12 115 48
16 136 48 123 48
17 144 30 131 120
18 152 72 139 72
19 160 24 147 56
20 168 48 155 96
21 176 24 163 24
22 184 48 171 120
23 192 8 179 120
24 200 84 187 48
25 208 24 195 96
26 216 96 203 96
27 224 48 211 72
28 232 24 219 96
29 248 96 227 120
30 256 6 235 48
31 264 96 243 104
32 272 48 251 168
33 280 48 259 96
34 288 36 267 48
35 206 120 275 120
36 304 24 283 72
37 312 48 201 96
38 320 24 299 192
39 328 48 307 72
40 336 48 315 144
41 344 120 323 96
42 352 24 331 72
43 360 120 339 144
44 376 96 347 120
45 334 24 3565 96
46 392 108 363 104
47 400 30 371 192
48 408 48 379 72
49 416 72 387 120
50 424 72 395 192

* r?is in units of (a/4)%
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TaBLE XII—SHELL PARAMETERS FOR SUBLATTICES OF THE CATl,
LarriceE WHEN F Is TAREN To BE AT THE ORIGIN*

Sublattice Iy Sublattice IIg

Shell 2 A r? Z
1 4 6 3 4
2 8 12 11 12
3 12 8 19 12
4 16 6 27 16
5 20 24 35 24
6 24 24 43 12
7 32 12 51 24
8 36 30 59 36
9 40 24 67 12
10 44 24 75 28
11 48 8 83 36
12 52 24 91 24
13 56 48 99 36
14 64 6 107 36
15 68 48 115 24
16 72 36 123 24
17 76 24 131 60
18 80 24 139 36
19 84 48 147 28
20 88 24 155 48
21 96 24 163 12
22 100 30 171 60
23 104 72 179 GO
24 108 32 187 24
25 116 72 195 48
26 120 48 203 48
27 128 12 211 36
28 132 48 219 48
29 136 48 227 60
30 140 48 235 24
31 144 30 243 52
32 148 24 251 84
33 152 72 259 48
34 160 24 267 24
35 164 96 275 60
36 168 48 283 36
37 172 24 291 48
38 176 24 299 96
39 180 72 307 36
40 184 48 315 72
41 192 8 323 48
42 196 54 331 36
43 200 84 339 72
44 204 48 347 60
45 208 24 355 48
46 212 72 363 52
47 216 96 371 96
48 224 48 379 36
49 228 48 387 60
50 232 48 395 96

* 72 ig in units of (a/4)%.
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TaBLE XIII—SHELL PARAMETERS FOR SUBLATTICES OF THE
WurrziTE LaTTicE*

Sublattice I Sublattice II

Shell r? Z 2 Z
1 1.000 12 .375 4
2 2.000 6 1.042 1
3 2.667 2 1.375 9
4 3.000 18 2.042 6
5 3.667 12 2.375 9
6 4.000 6 3.375 9
7 5.000 12 3.708 3
8 5.667 12 4.042 6
9 6.000 6 4.375 18
10 6.333 6 4.708 3
11 6.667 12 5.042 7
12 7.000 24 5.375 3
13 7.333 6 5.708 6
14 8.333 12 6.042 6
15 9.000 12 6.375 12
16 9.667 24 7.042 1
17 10.000 12 7.375 15
18 10.333 12 7.708 6
19 10.667 2 8.042 24
20 11.000 12 8.375 9
21 11.333 6 8.708 3
22 11.667 24 9.042 6
23 12.000 6 9.375 12
24 12.333 12 9.708 9
25 13.000 24 10.042 12
26 13.667 12 10.375 9
27 14.333 6 10.708 3
28 14.667 24 11.042 6
29 15.000 12 11.375 6
30 15.333 12 11.708 9
31 15.667 24 12.042 12
32 16.000 6 12.375 21
33 16.333 12 12.708 6
34 17.000 24 13.042 6
35 17 .667 24 13.375 15
36 18.000 18 13.708 12
37 18.333 12 14.042 30
38 18.667 12 14.375 18
39 19.000 24 14.708 3
40 19.667 12 15.042 1
41 20.333 12 15.708 12
42 21.000 38 16.042 12
43 21.667 24 16.375 27
44 22.000 12 17.042 12
45 22.333 18 17.375 9
46 22.667 12 17.708 9
47 23.000 24 18.042 ‘ 18
48 23.333 12 18.375 16
49 23.667 48 18.708 6
50 24.000 2 19.042 12

* y? is in units of a*
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on the same shell can occupy physically distinguishable sites in the
lattice (that is, sites which, even though they belong to the same sub-
lattice, have differing local environments). In addition to this, inter-
actions between electrons and holes bound to donors and acceptors
may depend upon the relative orientations of the electron and hole
wavefunctions, the vector separation between ions, and the crystallo-
graphic axes. Thus in the interpretation of pair spectra, for example, one
may expect energy splittings in such cases to cause deviations from the
spacings and magnitudes predicted on the basis of neighbor tables.'*****
Wurtzite is particularly complicated in this respect, providing a variety
of local symmetries for donor-acceptor pairs involving substitutional
and/or interstitial ions.”"'* In the absence of externally imposed asym-
metries, however, lattice sites on the same sublattice will usually be
physically indistinguishable. Among the structures considered here,
wurtzite is the sole exception. For this reason it was felt that the tables
would be unnecessarily complicated by the inclusion of any information
regarding degeneracies or coordinate types. In most cases, however, the
computer programs were written in such a way as to preserve this
information and it is available from the authors upon request.

1V. FURTHER APPLICATIONS

The crystal structures which have been explicitly discussed account
for the vast majority of binary compounds X, Yy and virtually all of
the important XY compounds. This is indicated in Table XIV where
we have shown the crystal structures of the common binary compounds
formed by combining elements from groupings IA, IIA, and IB-IVB*
with elements from groups IVB-VIIB." In Table XIV the important
elemental and compound semiconductors, the oxides and chalecogenides
of group ITA and IIB metals, the alkali halides, and the noble metal
salts have been enclosed in heavy lines. It is seen that nearly all of these
compounds crystallize in one of the structures which has been treated
here. Furthermore, it is noted that many of the structures which were
not treated explicitly are cubic-based or hexagonal-based so that the
one might be able to utilize one or more of the basic sublattices calcu-
lated here.

In certain kinds of defect interaction calculations it may also be
convenient to know the distribution of available interstitial sites as a
function of distance from a given ion. Inspection of crystalline lattice

*The A and B notation used here for subgroups of the periodic table was
chosen to agree with Frederiksel! but is not uniform throughout the literature.
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structures shows the most of them have regular arrays of preferred
interstitial sites. These sites form a sublattice which can be treated by
the methods already discussed. As an example we list in Table XV the
first 25 shells of interstitial sites for the fec lattice. These are at ec and
be sites. This table is the same as the table for Type III pair spectra
given by Ryan and Miller.” Similar tables can be constructed for inter-
stitials in other lattices.

V. SUMMARY

We have described a general method for obtaining radii and occupa-
tion numbers of m-th order shells of neighboring lattice points for
cubic and hexagonal based lattices. The method described here will, in

TapLE XIV—A SumMARY oF INorGAaNIC BiNaRY CoMPOUNDS Xy Yy
AND THEIR CRYSTAL STRUCTURES*

Y
IVB VB VIB VIIB
) C, Si, Ge, N, P, As, 0, S, Se, F, Cl, Br,
X Sn, Pb Sb Te 1
IVB C, Si, Ge, A, SiC XY, A7, XY, XY, XY,
Sn, Pb 3,7 1,8 1,4,6,7,8 6,8
IIIB B, Al, —_ AY X.Y,
Ga, In 3,4 3,4,6,7 —
IIB Zl'!, Cd, - AyYo XY XY,
Hg 6,7,8 1,3,4 5,6,7,8
IB Cu, Ag, — XY, XV, XV | XY, X.Y, XY, XYy
Au 6,7, 1,2,5,6,7,8 1,3,4
IA Li, Na, X.Y XY
K, Rb, Cs — — 5 1,2
ITA Be, Mg, Ca, X.Y XY, XY XY,
Sr, Ba 57,8 6,7 1,3,4 5,6,7,8

. NaCl Structure

. CsCl Structure

. Zincblende Structure (Diamond in case of element)
. Wurtzite Structure

CaF, Structure

. Other Cubic-based Structure

. Other Hexagonal-based Structure

. Complex
* Roman numerals and A or B refer to groups and subgroups of the periodic

table in the notation of Ref.11.Only representative compound-types are indicated
and not all of the elements of any one group form in all of the combinations shown.
See Ref. 11 for an extensive list of specific compounds.

NSO RN
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TAaBLE XV—THE FIRST 25 SHELLS OF PREFERRED INTERSTITIAL
SITES FOR THE Fc¢ LATTICE®

Interstitials
Shell 2 zZ
1 (0)t 1 6
2(1) 3 8
3(2) 5 24
4 (4) 9 30
5 (5) 11 24
6 (6) 13 24
7 (8) 17 48
8 (9) 19 24
9 (10) 21 48
10 (1:2) 25 30
11 (13) 27 32
12 (14) 29 72
13 (16) 33 48
14 (17) 35 48
15 (18) 37 24
16 (20) 41 96
17 (21) 43 24
18 (22) 45 72
19 (24) 49 54
20 (25) 51 48
21 (26) 53 72
22 (28) 57 48
23 (20) 59 72
24 (30) 61 72
25 (32) 65 06

* This table was obtained by combining the first few shells of the be and ec tables
and is easily extended further. All »? values are in units of (a/2)%

t Numbers in parentheses conform to the notation of Refs. 1 and 2 in which
“‘missing shells” are included in the sequential numbering as discussed in the text.
Note that Ryan and Miller began the numbering with m = 0.

principle, work for any specific lattice if the basis vectors are properly
chosen but is practical only in cases where the lattice contains no
arbitrary angles or spacings. A general hexagonal lattice, for example,
has an arbitrary ¢/a ratio which must be fixed before the basis vectors
can be chosen. The principal results are contained in Tables V-XIII
which contain shell parameters for simple building-block sublattices
as well as physieally interesting binary lattices. Extension of the tables
to higher shell numbers and application of the tables to physical prob-
lems were discussed.
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