THE BELL SYSTEM
TECHNICAL JOURNAL

Volume 49 March 1970 Number 3

Copyright © 1970, American Telephone and Telegraph Company

Adaptive Delta Modulation with a
One-Bit Memory

By N. S. JAYANT

(Manuseript received September 4, 1969)

We propose a delta modulator which, at every sampling instant r, adapts
its step-size (for a staircase approximation to the input signal) on the
basts of a comparison between the two latest channel symbols, C, and C,_, .
Specifically, the ratio of the modified step-size m, to the previous step size
m,_, is etther +P or —Q depending on whether C, and C,_, are equal or
not. (We recall that, in delta modulation, C, represents the polarity of the
difference, at the sampling instant r, between the input signal X, and the
latest staircase approximation to it, ¥,_, .)

A simulation of the delta modulator with a band-limited speech input
has revealed that PQ = 1 and P =~ 1.5 represent optimal adaptation
characteristics, on the basis of signal-to-error ratios, over an tmportant
range of sampling frequencies; and that at 60 kHz, delta modulation with
these adaptation paramelers compares favorably with T-bit logarithmic
PCM, which reproduces speech with good telephone quality. We present
several graphical results from this simulation, and include an evaluation
of the effect of independent channel errors on the adaptive delta modulator.

We proceed to suggest a heuristic theory of the delta modulator which
explains the optimality of the condition PQ = 1, and develops an upper
bound of 2 for the optimum value of P.

We conclude with a summary of results from a video simulation which
revealed that aforementioned optima for P and Q apply to a video signal
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as well; with these optimum parameters, a useful delta-modulator output
was obtained at 10 MHz operation.

The results of this paper reaflirm the utility of della modulation as a
simple alternative to PCM, particularly in systems that operale at rela-
tively low bit-rates.

I. INTRODUCTION

Linear (or unadaptive) delta modulators, which work with a fixed
step-size for the “staircase” approximation to an input signal, have the
following basic limitation. Small values of the step size introduce slope-
overload distortion during bursts of large signal slope; large values of
the step-size accentuate the granular noise during periods of small
signal slope; and, even when the step-size is optimized, the performance
of these modulators will be satisfactory only at sampling frequencies
that may be undesirably high. Equivalently, one encounters important
ranges of operating frequency in which the performance of conventional
delta modulation falls short of the standards attainable by conventional
PCM or by d-level differential PCM, of which delta modulation is a
special case (d = 2).

With a view to employing delta modulation (which is inherently a
very simple signal-processing strategy) at such relatively low operating
frequencies, several types of adaptive delta modulation have been pro-
posed.’™® In these schemes, the step size is changed in accordance with
the time-varying slope characteristics of the input signal, as per a
predetermined adaptation strategy. Such adaptation or “companding”
can be either at a syllabic rate (long-term) or instantaneous (short-
term).

Typical of syllabic-companding delta modulators are recently de-
veloped schemes for reproducing telephone quality speech at operating
frequencies of the order of 50 kHz."**® These systems are characterized
by “continuous” adaptation of the step magnitude. Instantaneous
compandors, on the other hand, usually incorporate discrete adapta-
tions, and illustrative schemes for speech, television and Gaussian
signals are given in Abate® and, for speech transmission, in Winkler.®
Abate shows the capabilities of linear and exponential adaptation for
speech transmission, but gives quantitative results only for specific,
finite, step-size dictionaries. Likewise, Winkler’s work on “High Infor-
mation Delta Modulation,” while providing a conceptual basis for our
paper, bypasses the question of optimal adaptation. We consider in this
paper, although only for a sub-class of possible schemes, the problem
of optimizing the adaptation logic.
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We ought to refer here to the paper entitled ‘‘Statistical Delta Modu-
lation” by Bello, and others.* Philosophically, this paper treats the
problem of optimizing delta modulation with a generality that exceeds
the scope of our work. However, the analysis of the cited paper does
not have explicit bearing on the design philosophy for the very specific,
but praetically important, problem of providing a time-invariant logic
for step-size adaptation. The purpose of our paper is to treat the latter
problem for the important case of a one-bit memory.

We begin by defining our adaptation scheme (Section II), and go
on to present results from a computer simulation of the delta modulator
with a speech input (Section IIT). The results refer to the optimization
of the adaptation logic, to a comparison of the optimal delta modulator
with PCM, and to an assessment of the effect of channel errors on the
delta modulator. We then present a heuristic theory (Section IV) for
the delta modulator and seek to explain the optimal adaptation param-
eters that emerged from the speech simulation. Finally, we illustrate
parallel results from a video simulation (Section V) and attempt a
general assessment of adaptive delta modulators (Section VI).

IT. DESCRIPTION OF THE ADAPTIVE DELTA MODULATOR

In this section, we define the delta modulator with exponential
adaptation and a one-bit memory, and indicate its basic performance
by illustrating its response to a constant input.

2.1 The Adaptation Logic

The delta modulator of this paper uses instantaneous, exponential
adaptation in the sense that the step-size is changed at every sampling
instant by a specific factor—more precisely, by one of two specific
factors. Furthermore, the adaptation logic ineorporates a one-bit mem-
ory in that the immediately past channel symbol C,_, is stored, and is
compared with the incoming bit C, for a decision on the new step-size

m, . Specifically, if the previous step-size is denoted by m,_, , the
adaptation will be of the form
= ' =1 -f r = r— ;
m, = P-m, if C C,, )

m, = —Q-m,_, f C,=C,_, .

In this paper, we assume that P and @ are time-invariant, and note
that in delta modulation, the following identity is usually assumed by
definition:*

*Bee Ref. 7 for an example where requirement (2) is waived.
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sgnm, = C, = sgn (X, — ¥,,) (2)

where X, and Y,_, represent the amplitude of the input signal and
that of the latest staircase approximation to it, respectively, at the
sampling instant 7. The sampling interval in question would be a suit-
ably small fraction of the Nyquist interval for X. A block diagram of
the modulator appears in Fig. 1.

2.2 Simple Bounds on P and Q

The crucial parameters of our delta modulator are the time-invariant
adaptation constants P and Q. The smallest and largest allowable
step-sizes are other important parameters, but we assume that their
design can be treated as an independent problem; and we mention at
suitable points in the paper the considerations which influence such
design. We now proceed, therefore, to state two simple bounds on
the adaptation parameters P and @Q:

() In order to adapt to the signal during slope overload, it is neces-
sary that

P> 1. (3)

(#4) In order to converge to a constant input signal during a purely
“hunting” situation (m, = —@Qm,_, with probability 1), it is
necessary that

Q< 1. (4)
Notice that P = @ = 1 represents (conventional) linear delta
modulation.

The adaptation logic of Section 2.1 represents the simplest nontrivial
form of diserete exponential adaptation, and the performance of this
scheme will be an important lower bound for that of an “n-bit” strategy

Tp=Xp-Y,
T r r-
! ' //59"' T
INPUT +Ho, y J’ " Cr
Xp ADAPTATION
_ c LOGIC
by =xm UNIT r-t - _
DELAY L=PIFCp=Cp_,
OUTPUT L=-QIF Cp#Cp-y
INTEGRATOR
Yy Mp=LMp_,

Fig. 1.— Schematic diagram of the Adaptive Delta Modulator.
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(n > 2) in which the step-size m, is some optimal funetion of C, ,
C._y, -+, C,_,,, and of the previous x step-sizes m,_, , My_g ,- -, m,_, "

2.3 Step Response of the Delta M odulator

Figure 2 shows the approximation of a step funetion by our adaptive
delta modulator for a typical case of P = 1.50 and @ = 0.66. (These
will emerge as optimum parameters later in the paper.) Step inputs of
9, 10 and 12 units have been considered for illustration, with a smallest
step-size of 1 for the delta modulator.

The dependence of the “hunting’” or “oscillating’”’ characteristics on
the actual magnitude of the step input is clear. We also see that during
hunting, the step-size does not always assume the smallest possible
value. This is an inherent feature of our adaptation logie, and emphasizes
the need to make the smallest step-size as small as is practicable so that
the in-band component of the noise due to hunting with nonminimal
step-sizes will be tolerably low.

ITI. PERFORMANCE WITH A SPEECH INPUT

We describe in this section several results from a simulation of the
adaptive delta modulator of Section II with a speech input. In particu-
lar, we highlight the optimization of the adaptation parameters P and
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Fig. 2 — Step response of the Delta Modulator.
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Q, and the relative performance of adaptive delta modulation (ab-
breviated henceforth as ADM) and of logarithmic PCM.

3.1 Deseription of the Simulator

The input speech signal used for the simulation was a male utterance
of “Have you seen Bill?”’, bandlimited to 3.3 kHz, and sampled for the
simulation at 20, 40, and 60 kHz. The sentence is illustrative in that it
includes sounds which are known to be susceptible to slope-overload
distortion.

In the computer simulation, the peak-to-peak range of the 12-bit
speech signal was 4096 units. The configuration of the step-size diction-
ary was not predetermined, and the changes of the step-size were
allowed to follow the exponential adaptation rule (i) of Section IL
The simulation started with an initial step-size magnitude of 1 unit and
it may be mentioned that step-size magnitudes as large as 380 units
were typically encountered in the simulation. A histogram of utilized
step-sizes for the typical case of P = 1.50, @ = 0.66 is illustrated in
Fig. 3, and represents mean step magnitudes of the order of 30 units.
For the special case of P = Q = 1.0, the constant step-size was se-
lected to maximize a performance criterion to be defined presently.
The step-size so optimized was approximately 80, 60 and 45 units for
sampling frequencies of 20, 40 and 60 kHz respectively.

The simulation used an ideal integrator in the feedback loop of the
delta modulator;* it also incorporated a nonrecursive low pass filter
using a Fourier kernel, which was designed to have a 40 dB attenuation
from 3 kHz to 3.3 kHz. Practical low pass filters may have to be sloppy
in comparison, but the sharp filter was included in the simulation for a
correct assessment of the modulator performance, and for comparison
with Nyquist-rate PCM.

3.2 Definition of a Signal-to-Noise Ratio G

The basic purpose of the simulator was to study the performance of
the delta modulator as a function of the adaptation parameters P and
Q, and the sampling frequency F. The quality criterion which was
adapted was an “objective signal-to-noise ratio’” G, which was defined
as the ratio of the power of the signal X, to that of the error B, =X, — Y,,
averaged over the duration of the speech sample.

It is seen that no distinction was made between overload distortion
and hunting noise in defining (. In adaptive delta modulation, instan-

* See Section 3.9 for a reference to the utility of leaky integrators for delta
modulation in the presence of channel errors.
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taneous companding is expected to render long bursts of one particular
type of distortion very improbable; the total error power, defined as
the summation of E? over the overload and hunting phases, was there-
fore adopted as a good measure of performance. As a matter of fact,
in the absence of a better criterion, the same measure has been assumed
in this paper for the nonadaptive case as well; and the credibility of the
procedure has been borne out by the observation of a good correlation
between the subjectively assessed quality of representative speech re-
productions and the corresponding values of G.

3.3 Stability of the Modulator

Preliminary studies of stability revealed the significance of the
product PQ, and the adaptation was seen to be inherently unstable
(that is, resulting in a step-size oscillation between limits that were
independent of the input) if PQ exceeded (1 + €) where e is positive,
and much smaller than unity. Further studies of performance therefore

0.44 — ’—l—

PROBABILITY

IV

=0.1 -0.05 o] 0.05 oA
STEP-SIZE IN UNITS OF PEAK-TO-PEAK SIGNAL AMPLITUDE

Fig. 3 — Histogram of utilized step sizes in the speech simulation.
F = 60 kHz)



328 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

assumed as stability condition of the form

PQ <1 ®)

The signal-to-noise ratio G was then studied as a function of allowable
values of PQ, of P and of the sampling frequency F.

3.4 The Dependence of G on PQ

Using a typical value of P = 1.6, Fig. 4 shows the behavior of G as
a function of PQ, with F as a parameter. The value of G = — « (dB) at
PQ = 1.1 represents an example of unstable adaptation, and the mono-
tonic rise of ¢ with PQ in its stable range is evident; in conjunction
with the condition (5) in Section 3.3, it follows that

PQ =1 (6

represents an optimal condition for all F; this conclusion was verified
to be independent of the value of P.

Notice that (6) also represents a very desirable condition from the
point of view of implementation. This is because the reciprocity of P
and @ facilitates the use of a compact step-size dictionary. Finally, note

that condition (6) is obviously satisfied in conventional delta modula-
tion.
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Tig. 4 — Results of the speech simulation: signal-to-error ratios as functions of

(PQ).
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3.5 The Dependence of G on P

Assuming the optimal reciprocity condition (6), the variation of G
with P was investigated, and the results are given in Fig. 5. The “flat”
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Fig. 5 — Results of the speech simulation: signal-to-error ratios as functions of P.

nature of the G — P curves in the region of their maxima is noteworthy,*
and the fact that the optimum value

P,,~15 (M)

is nearly independent of F is quite striking. Furthermore, the improve-
ment that the optimized adaptive delta modulator affords, over the
conventional system (P = 1), is seen to be an increasing function of F;
and for 60 kHz operation, the gain exceeds 10 dB.

3.6 A Note on Implementation

The step-sizes in our simulation were real-valued quantities which
changed according to equation (1). In a practical implementation, it
may be preferable to work with integer-valued step-sizes; or, equiva-
lently, to employ a suitably discretized step-size dictionary; and to
avoid the actual operation of analogue multiplication. Such multiplica-
tion could pose significant practical problems. For example, the values
of the multipliers P and @ may be subject to random perturbations
about their design values, and these fluctuations may be independent at
the encoder and at the decoder. Preliminary simulations that incor-
porated such imperfeet multipliers suggest that the attendant deteriora-
tion of delta-modulator performance may well justify a mandatory

* For a corresponding observation with the adaptation logic described in Ref. 8,
see I'ig. 12 in that reference.
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use of a discretized step-size dictionary. The design procedure for such
a dictionary is seen to be greatly facilitated by virtue of the reciprocity
condition for PQ, and the broad optima for P. The criteria for selecting
the minimum and maximum step-sizes have been mentioned elsewhere
in this paper, and the intermediate (discrete) step-sizes can be chosen
to fit the optimum condition (7) as closely as possible, through the
range of the dictionary. A further simplification will result if the slightly
suboptimal value P = 2 is adopted as a uniform adaptation parameter.

3.7 Subjective Performance

Formal subjective tests of performance have not been carried out.
However, the optimum ADM (P = 1.50, @ = 0.66) achieves very
good telephone quality at 60 kHz, and the degradation at 40 kHz is
very small. The ADM deteriorates in quality at 20 kHz operation,
though most of the intelligibility of speech is still preserved.

38 Comparison of ADM and Logarithmic PCM

Table I shows the objective signal-to-noise ratio G for the optimum
ADM at F = 20, 40 and 60 kHz; and, for n-bit logarithmic PCM at the
Nyquist rate, the three values of n which provide correspondingly equal
values of G. The PCM figures are due to the theory of Smith,’ and
represent average values over the significant range (100 < p < 1000)
of his logarithmic-companding parameter u. Furthermore, the PCM
figures refer to the ‘“‘strong-signal” or “full-load” case (C' — 0) in
Smith’s theory; inasmuch as our delta modulator could handle arbi-
trarily strong signals, according to equation (1), the “full-load” values
for PCM performance were adopted as meaningful measures for our
comparison.

It is generally accepted that 7-bit log-PCM represents a good quality
of speech reproduction. It would therefore appear, from Table I, that a
sampling frequency in the range of 40 to 60 kHz would be a critical
figure for the employment of instantaneously companding ADM to
reproduce telephone quality speech. This is an important conclusion
of this paper, and follows a similar claim for a syllabic-companding
delta modulator for speech at 56 kHz operation.’

Figure 6 replots the results of Table I, depicting & as a function of

TasLe I — ComparisoNy wiTH Locariramic PCM

ADM sampling rate: F(kHz) 20 40 60
ADM Performance: G(dB) 18 28 34
Equivalent log-PCM bits: n 4.7 6.3 7.3
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. Fig. 6 — Comparison of Adaptive Delta Modulation and Logarithmic PCM:
signal-to-error ratios as functions of bit-rate.

the bit-rate (product of the sampling frequency and the number of bits
per channel symbol). The bit-rate is equal to the product (6600.n) for
n-bit log-PCM at the Nyquist rate, and is equal to the sampling fre-
quency F for ADM. The crossover of the curves in Fig. 6 at about 40
KBPS is significant.* It suggests an important, though narrow, range
of usable bit-rates where ADM, which was conceived originally only
for its simplicity, can actually excel conventional log-PCM for speech
transmission.

3.9 The Effect of Independent Channel Errors

We conclude the section on ADM simulation with speech by pre-
senting a qualitative discussion of the effect of independent channel
errors on the performance of the delta modulator.

When such errors were first allowed in the simulation, deterioration
of ADM performance was observed at error rates as low as 1 in 10°. This
was expected because of the inherent susceptibility of ADM to channel
errors; every such error will have the effect of producing a long sequence
of erroneous or suboptimal step-sizes which integrate in the output.

* Crossovers of this type are indicated in Ref. 2 for television signals, and in
Ref. 10, for Gaussian signals with an integrated spectrum.
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In order to reduce the noise-memory of the ADM, the ideal integrator
in the ADM simulator of Section 3.1 was replaced by a counterpart that
had a finite time constant of the order of 10 to 20 sampling intervals.
Furthermore, to mitigate the instability arising out of incorrect step-size
adaptation in a noisy situation, the maximum allowable step-size was
limited to a suitable value* (that would not introduce noticeable slope
overload in the noiseless case). As a result of these refinements, the
tolerable probability of channel errors was raised from about 1 in 10° to
a figure of the order of 1 in 10* In fact, the intelligibility of ADM
speech was still very much preserved at error rates of the order of 1
in 10°, but the quality of the output was affected by “clicks” that were
introduced by the channel errors.

An additional parameter that has a potential for enhancing the
noise-resistance of ADM would be the length of the bit-memory in the
adaptation scheme. The simple adaptation used in this paper has a
minimal, one-bit memory and a suitably longer memory could indeed
decrease the noise-susceptibility of ADM by a useful factor. In the
ultimate analysis, however, it should be clear that such noise-suscepti-
bility is a general limitation of all classes of ADM, because of the
integrator employed in these systems; and this observation will be a
very important factor in the assessment of adaptive delta modulation
with reference to PCM for use on specific communication channels.

It may not be out of place to comment on the effect of transmitter-
receiver mistracking on delta-modulator performance. In general,
“mistracking’” would characterize a situation where the step-size
sequence in the receiver tracks that at the transmitter only in polarities
and adaptation ratios—as determined by the transmitted binary
sequence—but not in actual step-size magnitudes. Typically, this can
be a result of some kind of an asynchronous operation. Thus, for example,
the receiver may be switched on at a random instant in time, with the
transmitter already in operation; the step-size in the decorder will then
be different, in general, from that in the transmitter at that time instant.
It would appear, now, that the effect of such mistracking would be akin
to that of a random channel error occurring at the time instant in
question; for, as in the case of such an error, the “decoding failure”” due
to asynchronous operation can be traced to a single point in time,
although it propagates in the decoder output in the form of a long
sequence of suboptimal step-sizes. In other words, we expect that the

* Specifically, the maximum step-size was limited to 005D, where D was the
dynamic range of the input speech; in the original simulation of the noiseless
case, step-sizes as large as 0.10D had been encountered.



ADAPTIVE DELTA MODULATION 333

effect of mistracking—as that of a channel error—will be perceived as
a transient in the decoder output, and the extent of such decoding
failure will again depend, among other things, on () the time constant
of the integrator employed at the decoder, and (7Z) the maximum and
minimum allowable step-sizes, which provide ‘‘locking points” for an
asynchronous transmitter-receiver pair.

IV. A THEORY OF THE DELTA MODULATOR

We have mentioned in Section III that the optimal adaptation
equations (6} and (7) were nearly invariant with respect to the sampling
frequency. We shall see later, by virtue of the simulation in Section V,
that these equations also hold good for a video input. These observations
suggested the possibility of a fundamental and general explanation for
the observed optima of P and @. The purpose of this section is to
provide such an explanation. Specifically, we propose a heuristic statis-
tical model for the adaptive delta modulator, and go on to explain the
reciprocity between the optimum values of P and €. We also develop
an upper bound of 2 for the optimum value of P.

4.1 The Model

Our statistical model is based on assumptions that are backed by
computer simulation and physical appeal. We believe that the resulting
theory provides a simplified, but useful, description of our delta
modulator. The following are our tacit assumptions:

(z) The signal gradient s, = X, — X,_; is a random variable with
a probability density function that is symmetrical about a mean
value of zero.

(#7) In the optimal modulator, the “dynamic range’” of the distribu-
tion of | X, |, which denotes the signal magnitude, is much
greater than the “dynamic range” of |m, | = | Y, — ¥, |,
which denotes the random step-size in the staircase approxima-
tion to X.

(z7¢) With optimal adaptation, the probabilities of “P” type and
“—@)" type adaptations of the step-size are equal. If we denote
these probabilities by p and ¢ respectively, we assume that

p=q=05 8

Assumption (z27) would appear to be the strongest. It is also the most
crucial part of our model. In essence, the assumption states that, with
optimal adaptation, overload and hunting situations are equally likely.
In other words, the best adaptation logic is one which, by definition,
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is neither over-slow nor over-fast, but optimal in an average sense—as
expressed in equation (8)—for the given input signal.

4.2 The Optimum Value of PQ

Consider the ratio R(N) of the magnitude of my.» (the step size at
the sampling instant U + N) to that of the step size my at the sampling
instant /. Let the number of “P” type and “—@Q” type adaptations of
the step size m in the interval N be Np, and Ng, respectively, so that

R(N) — _Irn;f—yfll — P:\‘pn_Q.\'Qn — (PQuw’pu).\'m_ (9)

Note that, for the “most typical” sequence of step-sizes, as N — «,
Do and ¢, tend to the probabilities p and g. Furthermore, we have said
that, for optimal adaptation, p = ¢. We can therefore define, for the
optimal case, a “most typical” asymptotic value R"(e) for R(N)
as follows:

:{ﬂ;(m) = ]-im Ril{:t(N) = liIII (Pnthonl)Nn' (10)

N—owo N—ea
We will now postulate an optimality criterion which will insist that the
asymptotic ratio defined in equation (10) be finite and non-zero;* and
because Np — « when N — o, a necessary and sufficient condition for
such stability will be given by
(PQ)op: = L. (11)

Note that this condition applies only to the optimal system defined
by equation (8).

The next two sections of this article are devoted to the derivation of a
lower bound on the optimum value of @, . By virtue of equation (11)
such a bound on Q,,, will implicate a reciprocal bound on P, .

4.3 Minimization of Mean Square Error

We will adopt minimum mean square error as a criterion of optimality,
and employ the notation

Min (E?) — Min (X, — Y,)?) (12)
—Min (X,_, + s — Y,y — m,)")
—Min (E,_, + s, — L.m,.-,)") (13)

—Min <(§-1—+9 _ Lf) 'mf-1>'
L, My

* Clearly, the idea is to prevent the tendency of the step-size m either to
increase beyond bounds or to decay; and the formulation in equation (10)
provides a tractable way of expressing this idea.
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The method of optimization that will be adopted in the sequel is
equivalent to carrying out the above minimization for every specific
value of m,_, . Therefore, we may write

_ 2
Min (E?) — Min (E-;—us— - L,) > (14)
L, Mr—y

We note that, given the polarity of the adaptation parameter L, ,
the magnitude of L, is time-invariant, and hence that | L, | is inde-
pendent of E, s, or m. Therefore, it can be seen that the minimization
of (E?) is equivalent to the following optimization of L, :

Min (E7) — [L = %> given sgn (L,)]
r—1

&

(15)

[The above optimization of L, has the following physical meaning.
In the optimal system, the step size m, at every sampling instant is
designed so that, on the average, the resulting value of ¥, tends to that
of the input X, . In other words, the value of m, attempts to compensate,
at every sampling instant, for the corresponding “lag” of the staircase
signal, as expressed by the quantity X, — V,_, .

This random lag (X, — ¥,_,) has two distinet components. The first
component is given by the random error E,_, (an overload or under-
shoot) arising out of the “instantaneous” suboptimality of the previous
step m,_, ; the second component of the lag is the signal gradient s, ,
which is the amount by which the signal X will have deviated after the
delta-modulator integrated its previous step m,_, . Our optimization
procedure is tantamount to estimating the expected value of the sum of
these two components of the lag—E,_, and s,—with respect to the
value of m,_, .]

1.4 An Upper Bound for P,,, = 1/Q,,.

As mentioned earlier, in view of the reciprocity that has been de-
veloped for the values of P,,, and Q,,., we can now restrict the opti-
mization procedure to that of optimizing the value of @ on the basis
of equation (15):

— Qo = <E__?;L_+_s_>’ given thatsgn (L,) = —1; (16)
r—1

B, _ S, .
= <——i> -+ < >, given that sgn (L,) = —1; @17
m,—y m,—y
* We have utilized the well known statistical result: If A is a random variable
and B is a parameter that is statistically independent of A4, the expectation
{((A — B)2) has a minimum at Bo,e = (4).
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=Q, +Q,, giventhatsgn (L, = —1 (18)

where @, and Q, obviously refer to conditional expectations of the
ratios in equation (17).

Figure 7 depicts a situation where sgn (L,) is negative, and illustrates
the random variables in (17). The problem will be to evaluate @, and Q.
with reference to Fig. 7. Notice at the outset that in the figure

B, < 0}_ 19)
Mme—, > 0

In what follows, we will denote the probability density functions of
E,_,, s., and of the signal amplitude X,_, by fz( ), f.( ), and fx( )
respectively.

4.41 Evaluation of Q, :

Let us first note the following equivalence of events:

[E=¢e} > (X =YY+ e} (20)
Notice next the following constraint for the overshoot error £, _, :
—-_m,_, < E,_, <0. (21)

In other words, allowable values of E fall in the interval (—m._, , 0).
We can now invoke assumption (z7) in Section 4.1, (which says that
the “dynamic range’’ of the step-magnitude | m | is much smaller than
that of the signal amplitude | X |) to make the approximation

fx(Y,o + &) = fx(Y,_1 + e) (22)

where e, and e, are two values of E within the “small” permissible range
(—m,—y, 0) for E. In writing (22), we have approximated fx( ) in the
“narrow” range—from ¥ + e, to ¥ + e,—by a constant funection. In
other words, the distribution of the overshoot error can be assumed to be
uniform in the allowable range of E:

fo@) = =  —m,_, <e<0. (23)

My

Obviously then, the expected value of the ratio of the overshoot error
E,_, to the step-size m,_, is given by

0= [p@de= [ lode= 05 @)

r—1 mr—l m,-l
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L—f BIT— —»e— —BIT— —»
DURATION = DURATION

Fig. 7 — Illustration of a reversal of step-polarity.

4.4.2 Fvaluation of Q, :

As a requirement for the reversal of step polarity in Fig. 7, one notes
the constraint

E._,+s <0 (25)
Hence, allowable values of the signal gradient s, have to lie in the range

—w <s§ < —FE,._,. (26)

Notice that, by virtue of (19), the upper bound for s, in (26) is positive.

Before proceeding to evaluate the expected value of s,, we shall
comment on the use of the unconditional density function of s, in the
ensuing analysis. With a one-bit memory, the polarity of m,_, is un-
known. Equivalently, it can be seen that there is no constraint on the
gradient s,_, analogous to that on s, in (26). This means that, with a
one-bit memory, one cannot develop any conditional distributions for
the future signal gradient s, , and the use of the unconditional density
funetion f,( ) will therefore be valid. Consequently, using (26) and (19)



338 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

and the zero-mean assumption (z) for s, in Section 4.1,

Q. = f mf_l'f‘(x) dz = ',,ZLITI fﬁ; a z-f,(x) dx; @7
- ﬁ_l [j: af(x) dx — f_i_ zf,(x) d:c] . (28)

1
= Mrr [0 - E]r e > 0. (29)

In other words, during an overshoot situation, the expected value of
the future signal gradient is negative with respect to the present step m, ;
and this is a consequence of a finite positive bound —E,_, (26) on the
symmetrically distributed random variable s, .

Utilizing equations (24) and (29) we can rewrite (18) in the form

—Qope = —0.5 — §; 5> 0. (30)
Finally, utilizing the simple upper bound (4) of 1 for @,,. , we may
write
0<8<0.5, 31)
05 < Q. <10
and, by virtue of (11),

1.0 < Py = < 2.0. (32)

L
Qﬂnt
4.5 Evaluation of the Theory

Table II presents the values of important adaptation parameters
obtained in a 60 kHz speech simulation of optimum delta modulation
and compares them with the predictions of our theory. The comparison
is good, and is particularly so with reference to the critical parameter p
of assumption (z7z).

We believe, in retrospect, that the heuristic theory of this section

TasrLe II— CHaARAcTERISTICE OF AN OpTiMuM DErLra MODULATOR

Parameter (PQ)opt Pt » 3 O
Theoretical Value 1 1 <Py <2(0.50|0<8<05 —=0.5

Value from Speech
Simulation 1 1.5 0.47 0.12 —0.55
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provides a simple understanding of adaptive delta modulation charac-
terized by exponential adaption and a one-bit memory. The theory is
still insufficient, however, and unanswered problems include an explicit
derivation for the signal-to-error ratio and the question of analyzing the
noise performance of adaptive delta modulation.

V. RESULTS FROM A VIDEO SIMULATION

We devote this section to a cursory presentation of results obtained
from a simulation of the ADM with a video signal in a format that may
be appropriate for communication purposes. The picture frame was
made up of 250 scan lines, and a resolution of about 275 picture elements
per line. The picture elements were 10-bit samples; therefore, assuming
a scan rate of 30 frames/second, we were employing a 20 megabit/sec
(MBPS) original. The simulator used an ideal integrator in the feedback
loop and incorporated a digital low pass filter with a sharp cut-off at
1 MHz.

An important finding of the simulation was that optimum values of
the adaptation parameters P and @ were still nearly equal to 1.5 and
0.66, which were values encountered in the speech simulation. Further-
more, as with speech, these optima of P and @ were nearly independent,
of the sampling frequency. Also, the optimized ADM performed
significantly better than the unadaptive (P = @ = 1) encoder with an
optimized step-size; at 10 MHz operation, for example, the performance

40

30—

201

G IN DECIBELS

(o] 0.2 0.4 0.6 0.8 1.0 i.2
PQ (P=15)

Fig. 8 — Results of the video simulation: signal-to-error ratio as a function of

(PQ).



340 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

40 w

n 20 S S—
E | T — |
|
5 208
z F=10MHZ
© 10

o}

1.00 .25 1.50 1.75 200 2.25 2.50

Fig. 9 — Results of the video simulation: signal-to-error ratio as a function of P.

gain, using the criterion of Section 3.2, was nearly 10 dB. We have
provided, in Figs. 8 and 9, signal-to-error ratio curves that demonstrate
the delta-modulator performance at 10 MHz, as a function of P and @;
the function G represents a signal-to-error ratio as averaged over the
“aetive’” or “picture” portion of the video frame.

Other sampling rates used in the simulation were 5 and 20 MHz. The
performance of the modulator at 5 MHz was unsatisfactory, while the
picture reproduction at 20 MHz was very acceptable. The capabilities
and limitations of our scheme were best revealed in the 10 MHz simula-
tion. In Fig. 10, we compare the output of the 10 MHz ADM, corre-
sponding to a single frame of video input, with the 20 MBPS PCM
original. The 10 MBPS ADM picture can be said to constitute a useful
output; but it is not indistinguishable from the original. One notices,
for example, the inadequate reproduction of the stripes on the dress of
the subject.* This is attributable to the inability of the coder to follow
sudden changes of input signal level; and would manifest, in the ADM
version of a moving scene, as a corresponding twinkle.

The processing of moving scenes as well as the accumulation of
subjective performance measures, were topics that were beyond the
scope of our simulation. But such studies represent important pre-
requisites for a correct assessment of our delta modulator for general
video application.

* Interested readers may obtain glossy prints of Fig. 10 from the author at
Bell Telephone Laboratories, Murray Hill, New Jersey.
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VI. CONCLUSION

We have presented a very simple form of discrete adaptive delta
modulation, characterized by the use of a one-bit memory and by
exponential adaptations of the step-size. We have discussed optimization
procedures for such a device, and demonstrated the applicability of the
modulator to audio- and video-signal reproduction at practically useful
operating frequencies, such as 60 kHz for audio and 10 MHz for video.
It is well known that conventional (linear) delta modulators are ineffi-
cient at such frequencies. Though our ADM can be practically important
in its own right, we reiterate that the performance of our adaptation
logic is to be regarded as a lower bound on the performance of more
sophisticated schemes™—in particular, of adaptations that employ more
than a one-bit memory, or of those which exploit very specific statistics
of the signal to be encoded.

We have also afforded, in this paper, a comparative evaluation of
adaptive delta modulation and of PCM in the contexts of Fig. 6 (for
speech signals) and Fig. 10 (for video signals). It is an important eon-
clusion from the aforecited illustrations—and from Fig. 15 in Ref. 2—
that there are ranges of bit-rates, in both speech and picture systems,
where ADM performance is competitive with that of PCM; this consti-
tutes a nontrivial observation in that the original conception of delta

Fig. 10 — Results of a video simulation: (a) 20 MBPS PCM original (b) 10
MBPS ADM output.
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modulation was very much that of an inferior, though useful, alternative
to PCM. The noise-susceptibility of delta modulation could however
delimit its utility for specific noisy channels. On the other hand, a simple
adaptive delta modulator would appear to have an edge over conven-
tional/differential PCM in systems characterized by relatively noise-
protected channels, in low bit-rate applications, and in systems where
simplicity of implementation is a eritical matter.
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