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In this paper we calculate radiation losses of a single mode dielectric
slab waveguide for TE and TM modes. The theory is based on the deler-
mination of the radiation losses of one abrupt slep. We obtain the losses
of arbitrarily deformed waveguides by regarding the arbitrary deformations
as a succession of infinitely many infinitesimal steps. This method yields
the same results as a very different method presented earlier. It allows us
to calculate the losses of TM modes that were hard to obtain by the earlier
method.

The radiation losses of single mode slab waveguides with abrupt steps of a
2:1 ratio are surprisingly low and can be kept below 1 percent by dimen-
sioning the guide properly. The loss advantage of linear tapers becomes
noticeable only when the tapers are very long. An optimized taper changes
more rapidly in its wider portion and becomes more gradual in its narrow
part.

I. INTRODUCTION

The study of radiation losses of dielectric waveguides, which has
been described in three earlier papers,'™ has been extended to cover
abrupt steps in a single mode waveguide as well as continuous tapers.
The mathematical theory of radiation losses caused by a step in the
waveguide is used to compute the losses caused by tapers by regarding
the taper as a succession of infinitely many infinitesimal steps. This
method can also be used to rederive the equations for a dielectric slab
waveguide with small wall distortions presented earlier.' Both the
earlier method and the derivation based on small steps lead to identical
results. The perturbation theory used in Ref. 1 was not very well suited
for calculating the losses of TM modes. The step method is equally ap-
plicable to TM and TE modes and allows us to derive for TM modes
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the corresponding expressions which for TE modes were presented in
Ref. 1.

The radiation losses of steps and tapers are surprisingly small. A
step which changes the thickness of a dominant mode slab waveguide
to one half of its original value eauses a loss of only about 1 percent for
TE modes and about 2 percent for TM modes if operated at favorable
frequencies. The losses of tapers are even smaller and can be made as
small as desired for sufficiently long tapers.

Comparison of the radiation losses of slab waveguides with round and
rectangular waveguides (to be published) shows that the slab wave-
guide losses are exceptionally low. The losses caused by steps in circular
waveguides are higher by an order of magnitude.

II. THE MODES OF THE SLAB WAVEGUIDE

We state briefly the TE and TM modes of the dielectric slab wave-
guide. For simplicity we assume that all the fields are independent of
one spatial coordinate so that we can write symbolically

9 _

oy
Incidentally, it is only because we limit the discussion to cases where
equation (1) applies that it is possible to speak of transverse electric
(TE) and transverse magnetic (TM) modes. In the general case the
modes are hybrids and possess longitudinal £ as well as H components.
The modes of the dielectric slab waveguide consist of a finite set of
guided modes and a continuum of radiation modes. The slab geometry
is shown in Fig. 1.

0. 1)

2.1 TE Modes

The field components E., E, and H, vanish. The remaining com-
ponents of the magnetic field can be obtained from F,

i3k, _ B

H, = - E, (2)
wu 0z [
1 o,
T ou A ®)

The dependence of the field component on the length coordinate z and
on the time ¢ is given by

e-‘(utﬁ,ﬂ:)- (4)

This factor will be omitted from the following equations.
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Fig. 1 — Dielectrie slab waveguide.

2.1.1 Fven Guided Modes

(5)

E, = A, coskr ixlgd}
E, = Ae" cosxde ™" lz|=d

The coefficient A, is related to the power P carried by the mode by the
following equation

9 3
A, = J—Ef‘ﬁ%l : (6)

|Bd+ |

'Y

The relation between «, ¥ and 8§, is given by
x = [(nk)* — B, (7a)
y = (B — K], (7h)
k= C"(fo.uo)%- (8)

n is the index of refraction of the dielectric slab. The index of the sur-
rounding medium is taken to be n = 1. The eigenvalue equation for the
determination of 8, is

tan kd = Y 9
K

A few numerical values for 8, are shown in Table I. The TE modes are
power orthogonal. With the power flow P in z-direction (per unit length
of ¥) we have

Prs,, = &‘f E,.Ef, dx. (10)
Wi Jo

2.1.2 Fven Radiation Modes
E, = B, cos ox | x| gd}'
E, = Ce*" 4 g% x| =zd

(11)
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TaBLE [—SoME NuMERICAL VALUES OF 8,

kd n TE Mode B.d TM Mode Bod
2.5 2.50271 2.50263
5.0 5.01550 5.01519
10.0 1.01 10.06061 10.06016
20.0 20.16711 20.16680
0.25 0.25781 0.25207
0.5 0.54916 0.51677
1.0 1.432 1.21972 1.12809
1.5 1.93825 1.84210
2.0 2.66839 2.58934
3.0 4.13075 4.08131

Propagation constants of TE and TM modes

(The asterisk indicates the complex conjugate value) with

o = [@mk)® — 6} (12)
p = [k — 87, (13)
C, = 3B, exp (—ipd)(cos ad + i%sin a'd) , (14)

B — { 2p wulP }%.
* 7 |xB(p° cos’ od + o° sin® od)
The power orthogonality of the radiation modes can be expressed by
the equation

(15)

Pé(p — o) = f; f Ey(x, 0Bz, o) do. (16)

P is the power flowing per unit length (in y-direction) in the z-direction.

The odd TE modes have been listed in Ref. 1 (together with the even
TE modes). Since we are limiting the discussion of TE modes to sym-
metrical tapers excited by an even mode we will not need the odd TE
modes in this paper.

2.2 TM Modes
With the restriction imposed by equation (1) the only nonvanishing
components of the TM modes are H, ,
i oH,
we dz '
, OH
B =12 (18)

we 0T

E, = a7
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We have no occasion to use the odd guided TM modes, therefore only
the even guided modes will be listed.

2.2.1 Bven Guided Modes
H, = A, coskx for |x|§d}_
H, = Ag"* cosxde” " for |z |2=d

The amplitude constant is related to the power P carried by the mode

(19)

T (20)
1 FHE

The constants x and 8 are related to 8, by equations (7a) and (7b).
The eigenvalue 8, of the even guided TM modes is obtained as a solution
of the eigenvalue equation

tan xd = n* K'l (21)
A few numerical values for 3, are shown in Table I. The power orthogo-
nality of the guided TM modes can be expressed by

P, =B [y i de=2 [ B2 du. (22)

w Jy € Ba Jo
2.2.2 Fven Radiation Modes
= <
H, = B, cos oz |z | = d} ©23)
H,, — Oﬂeiplzl + Cg:e—i'plzl ]x | é d
with p and v given by equations (12) and (13) and with

C, = %B,(cas od + 1% % sin crd)e*""'. (24)
The amplitude B, is given by
2weP i
B, = pf = . (25)
2 2 2 o .2
1«13(11 p cos od + o sin a'd)[
2.2.3 Odd Radiation Modes
H, = B,sin ox for |z | =d
(26)
H, = T {Cueiplzl + C:e—ipm} for |Z | >d

|z |



278 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1970

with
Co = 3By "‘"’(s‘m od — =3 cos ad) (27)
n p
and
2weP !
B, = pJ = 2 l ’ (28)
l'frﬁ(nzpz sin® od + 1% cos” U'd)f

The power orthogonality of the radiation modes is expressed as

®1
Poo o(p — o) = = [ 2 H.(, 0BG, o) da. (29)

All the modes are orthogonal among each other. The amount of power
P carried by each mode is normalized to the same value. The actual
power carried by the field is determined by the expansion coefficients.

III. TE MODE RADIATION LOSS

Prior to discussing the radiation losses of a waveguide taper we
calculate the losses of an abrupt step in the dielectric slab waveguide.
We limit our investigation to the case that only the lowest order guided
mode of each type exists. These modes do not experience a cut-off and
can exist on waveguides with vanishingly small thickness. The steps
are considered to be sufficiently small to keep the guide dimensions below
the point where a second guided TE or TM mode becomes possible.

The geometry of the step is shown in Fig. 2. The loss problem is
solved by assuming that one guided (TE or TM) mode is incident on
the step. The discontinuity in the waveguide causes a reflected mode
as well as forward and backward traveling radiation modes to occur.
The unknown amplitudes of these modes are determined by requiring

REGION 1 x REGION 2
! 2d,
I
Y
2d
/ 1 7 z
Z 'r
I

Fig. 2 — Abrupt step in a dielectric slab waveguide.
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that the transverse field components are continuous at the step. For
TE modes we get the following equations:

B + 0B + [ 0B () dp
: (30)

=cE" + f q.(p)E" (p) dp,
0

B + o + [ a.H () dp
: (31

= oHY + f () H (o) dp.

The superseripts 7, r and ¢ indicate incident, reflected and transmitted
waves. The field components whose p dependence is explicitly shown are
radiation modes, the other field components belong to guided modes.

There are two ways to compute the radiation losses. We can calculate
the coefficients ¢, and @, of the transmitted and reflected guided mode
and caleulate the radiated power loss from

=il -lal (32
or we can caleculate the coefficients g, and g, and obtain the radiation
losses from

AP _ [ g S
[ e rlass [ 10 rbas 33)

Both methods should, of course, lead to the same result.

It is impossible to obtain exact solutions of equations (30) and (31);
a comparison of both methods (32) and (33) allows an estimate of the
validity of the approximations that are used to solve these equations.

We obtain approximate solutions by the following argument. Since
all modes of the same waveguide section are orthogonal we can use the
orthogonality of the modes to isolate ¢, on the right hand side of equa-
tions (30) and (31). We get for TE modes from (30)

e = P14 a) f EPE®" dy (34a)
wuP °

and from equation (31)

o=250—a) [ BB (34b)
wuP o
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The coefficient g, was neglected. For large steps the radiation is
seattered predominantly in forward direction so that ¢, is indeed small.
If the step height is small the fields E{" and E!” (o) become more nearly
orthogonal so that ¢, again does not contribute very much to equations
(34a) and (34b). The propagation constant 8, belongs to the guided
mode on the waveguide to the right of the step while 8, belongs to the
guided mode to the left of the step. Because of the different waveguide
size these propagation constants are not the same.
Equations (34a) and (34b) allow the determination of ¢, and a,

_ 23162 _1_ = i) e

“ =B+ ﬁzw.quu BSE, dw, (35)
_ 61 — Bz_

% =8 T8 (36)

The integral can be evaluated with the help of equation (5) so that we
obtain

4:(“2 - l)ﬂlﬁ2k2 €OS kp dy

e
[(ﬁ] d, + %) (ﬁz d; + '%)] (.31 + .32)2()81 - Bz)(“? + 'Y:)

[ys cOS ky dy — ky SiN Ky dy + (y1 — 72) COS K, die” " 7], (37)
The determination of ¢, and g, is not quite as simple. The functions
E!"(p) and E{" (p) belong to different waveguides and are not orthog-
onal. For large steps with predominantly forward scattering ¢, may
again be negligible but this is certainly not true for small steps. We
would need different approximations for large and small steps. T'o avoid
this difficulty we consider only small steps and construct large steps
and waveguide tapers as a succession of small steps. For infinitesimal
steps the modes E.” and E{* are very nearly orthonormal and reflected
guided modes can be neglected. Using the orthogonality of the modes
we obtain

¢ =

q:(p) = 3(8, + B (38)
and
q.(p) = 3(Bo — B (39)
with
1 P mn®
I = wp._P . EES (p) da. (40)

The expression I does not depend on the sign of 8, we therefore obtain



DIELECTRIC TAPER LOSS 281

¢.(p) from ¢,(p) by reversing the sign of the propagation constant §
of the radiation mode. We may drop the subscript » and ¢ and obtain
after integration

gp) = —@* — DI’
p cos xd cos od Ad

.("f)*(ﬁo - ﬁ)[l B (.80 d + %)(pz cos® od + ¢ sin® a-d)]% (

1]
0

41)

The difference Ad = d; — d, is assumed to be small. Because of the
relation between ¢,(p) and g.(p) We can write equation (33) more simply

-AFP = | la* mdﬁ. (42)
—k P

IV. APPLICATION TO TAPERS

Equation (41) ean immediately be extended to apply to symmetrical
waveguide distortions of arbitrary shape. We assume that the shape of
the waveguide wall is deseribed by the function f(z) as shown in Fig. 3.
We can then write

_ 4
Ad = 7 dz. (43)

The amplitude g(p) was calculated for a small step at z = 0. Locating
the step at z the guided wave arrives there with the phase e %" instead
of with phase zero as assumed in equation (41). The radiation mode was
also referred to z = 0. Referring it to a step at z adds the phase factor
¢"®* to equation (41) because the amplitude B of the radiation mode
enters equation (41) with its complex conjugate value. A step at =
would be deseribed by an expression like (41) with an additional phase
factor

e—-‘(ﬁu—ﬁ)z. (44)
€X
‘l' 4 ’,—f‘ (z) afia
v
é{dl/ ,mﬁz// 07—
) Z = L ?
1

Tig. 3— A symmetrical wall distortion (symmetrical taper) of a dielectric slab
waveguide.
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It must be assumed that 8, (but not 8) is a function of z if the guide

thickness is changing.
The total radiation loss of a section of waveguide (for example a

taper) of length I is given by equation (42) with
ap) =~ — DI

L p COS kd COS o—de—i(ﬁo—ﬂ)z QI
dz
| i dz.
e 'B)[W 161 (,30 d + %0)(,02 cos® od + o sin’ Jd):l
0
(45)

Except for the restriction to symmetrical waveguides, equation (45)
describes the same problem as treated in Ref. 1. In fact, we can obtain
equation (57) of Ref. 1 by a partial integration. The formulation of
Ref. 1 applies to the case that the thickness of the waveguide at z = 0
and z = L is very nearly the same. The function f(z) deviates so little
from the half thickness d of the perfect waveguide that 3, , x and v can
be assumed to be independent of d. With these assumptions, we obtain
as a result of a partial integration

a(p) = (n® — 1)k*p cos xd cos ade(B) % (46)
il:w | 8| (,60 d + gf)(pz cos® od + o sin® a'd)]
with
o®) = [ @ de. @7
o

The agreement with equation (57), Ref. 1, is perfect if we keep in mind
that the functions describing the upper and lower side of the waveguide
are now identical except for a minus sign and that the funection f(z) — d
of Ref. 1 is now redefined and replaced by f(z).

The fact that equation (45) is identical to the theory of Ref. 1 proves
the validity of our method of continuous steps.

4.1 TM Mode Radiation Loss

The radiation losses of the lowest order guided TM mode at a sym-
metrical step in the dielectric slab waveguide can be calculated from
equations (30) and (31) by changing the subscript z to ¥ and y to x.

The ¢, coefficient for the lowest order (dominant) even TM mode is

21,1,

=T+ I (48)

Ce
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and the a, coefficient is

_ [1 - Iz
AR A 49
with
J = (?’L:— 1B, (;OS Ko sz ) 4 172 i
: (.82 - ﬁz}(“ﬁ + 'Ym 2]02 n’k?
l LIBI.B2(’6 j_nz,yz +'Yx )(Bz -|—ﬂ2 5+ 7 dz)
1
Ak sin kg, de — v2(c] + B3) cosk, do
+ ['Yz(n2k2 + ,33 - .Bf) - n271k2]3_hm_d') cos x; d}, (50)
and
[, = (n22 — 1)52 COS Kg (zz - 4172 :
(B — BN+ ) ] n’k’
’ i ’ 13162(6 i Z’Yf +v.d ])(ﬁ In z_yz + v.d )J
. {Kl(kz + 16? - .63) sink, d; — n ‘Yz k* cos K1 ds
+ nz[(‘}’z — vk + 'Yl(ﬁg - B?)]e_“(dl_d’) cos k; d;} - (51)

The corresponding expression for the TE modes, equation (37) is
apparently considerably simpler.

The expression for the radiation loss of TM modes on a dielectric
waveguide of arbitraty sha,pe is obtained from

B [ et o Lo 112 s -2)

with the coeflicient of the even radiation modes
7.(p) =

L (n* — Dpy (8.8 cos ad + yo sin ad) cos Kde_i(ﬁ“_ﬂjt(g—'i — %’:)

- - dz
° 208, — 3){1rﬁo |8 ( ik % + w’) (Jf,rs2 cos” od + g;sin? crd)}1
| (53)
and the coefficient for the odd radiation modes
q(p) =
(= Dpy (B8 sin od — yo cos ad) cos kde” "‘ﬂ“—'s”’(%i + %) N

1
E

° 2(8, — .8){77.60 | B | ( ik 2 5+ 'Yd)(n p sin’ Gd+ 2 cos G'd)}
(54)
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The restriction to symmetrical waveguides was dropped so that equa-
tions (52) through (54) hold for waveguides of arbitrary shapes as
shown in Fig. 4. A comparison of equations (53) and (45) shows im-
mediately how equation (45) could be generalized to an arbitrary wave-
guide shape. Corresponding expressions for the odd TE radiation modes
could immediately be constructed by a comparison of equation (61),
Ref. 1, with equation (54). The function 4(z) describes the shape of the
dieleetric slab waveguide at the lower air-dielectric interface. The theory
of dielectric slab waveguides with rough wall, as presented in Ref. 1,
was limited to TE modes. The same procedure which lead from equations
(45) to (46) allows us to derive the TM-mode radiation loss equations for
waveguides with rough walls.

(n® — 1)py'(8,8 cos od + vo sin ¢d) cos Kd[qa(ﬁ) — ¥(B)]

2.(p) = T 3
Zz{mﬁg | 8| (,6 o + 'yd)(n p° cos’ od + ,,sm ad)}
(565)

and
(n* — 1)py*(8,8 sin od — yo cos ad) cos kd[e(8) + ¥(8)]

27,2 2
21’{11-80 | 8| (ﬁ +k % + 'yd)(n p?sin® od + < i cos® ad)}
(56)

2lp) =

The Fourier component ¢(8) is given by equation (47). The correspond-
ing Fourier eomponent ¢(8) follows from equation (47) by replacing
f(z) with h(z).

V. NUMERICAL RESULTS

The radiation losses caused by a symmetrical step with the ratio
dy/d, = 0.5 for n = 1.01 are shown in Fig. 5. The solid curves are
obtained from equation (42) with the help of equations (45) and (53)

x
f ~—Tf(z)

Vi :

A
h(z)~"

Fig. 4 — An asymmetrical wall distortion of the slab waveguide.



DIELECTRIC TAPER LOSS 285

0.10

0.80 —

0.06

\qm
0.04 \ 4

o
2 e
. 3

ol

Y

0.02 =2 A
\ __s | TE
—_—
0
0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
kd,

Tig. 5— TE and TM mode losses caused by a step in the slab waveguide. Solid
line caleulated from (42), (52) dotted line calculated from (32). n = 1.01, da/dy
5.

by approximating the step with a steep linear taper of length L/d, = 1.
For very short tapers, the radiation loss is independent of the length of
the taper. The dotted curves were obtained from equations (32) and
(37) for TE modes and equations (48) through (51) for TM modes. The
agreement between the results obtained by the two different methods is
quite good. It is also apparent that TE modes and TM modes suffer very
nearly the same losses in this case. It is surprising how low the radiation
losses are in the region of kd, = 11. Both modes pass this considerable
step with a power loss of less than 1 percent. For kd, > 20 the larger
portion of the waveguide can support more than one guided mode. This
is the reason why the loss curves were not extended past this point. Both
the TE as well as TM modes show minimum loss values for particular
values of kd, suggesting the possibility of optimizing waveguide steps.

Fig. 6 shows the radiation losses of the even, lowest order TE and TM
mode for a step on a single mode waveguide with n = 1.432. The TE
and TM mode losses are quite different for this waveguide with high
dielectric constant. The fact that for TE as well as TM modes there is
an increasing discrepancy between the two methods of calculation for
increasing values of kd, with the dotted curve for the TM modes even
becoming negative, may indicate that the solid curves are more reliable.
For small values of kd, the agreement between the two methods becomes
quite good. The losses of the TM mode are generally higher than the
TE mode loss. However, even in this case the TE mode loss can be
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Fig. 6 —Same as Fig. 5. n — 1432,

made approximately 1 percent while the TM mode loss can be as low
as 2 percent if the step is used at its optimum point of operation. For
kd, > 3 the larger waveguide section ceases to be single mode.

The dependence of the TE-mode radiation losses on the ratio of the
width d,/d, of the guide on either side of the step is shown in Fig. 7.
This curve was computed from equations (32), (36) and (37). The
dielectric constant of the waveguide material was chosen as n = 1.01

0.10 \ ‘

0.08

0.02

~ o
J =~

—— ]

) o1 02 03 04 05 06 07 08 03 1.0
dz/d

Fig. 7 —Step loss of TE mode as a function of the ratio do/dr. n = 1.01, kd,
=100.
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and kd, = 10 was used. It is apparent that the radiation losses increase
rapidly as dy/d, — 0.

So far we have discussed the radiation losses of abrupt steps. The
reduction of the TM-mode losses as the step is changed into a taper is
seen in Fig. 8. This figure was calculated from equations (52) and (53)
for a ratio of du/d, = 0.5 of the straight guide sections that are con-
nected by a symmetrical linear taper. It is apparent that the linear
taper needs to be quite long before a substantial improvement of the
radiation loss is obtained. The actual length of an effective taper need
not be very large. The length of the taper is represented in Fig. 8 as the
ratio of its actual length to the half width d, of the thicker waveguide
section. Extrapolating the result of Fig. 8 to a value of L/d, = 100
appears to lead to a loss reduction to approximately 1/10 of the loss
of the abrupt step. With A = 1u we find that kd, = 1 corresponds to
d, = 0.16 u so that I./d, = 100 corresponds to L = 16 p.

It appears that there are more effective shapes than linear tapers.
Equations (45), (53) and (54) show that the loss of a taper is essentially
determined by two factors, the magnitude of the derivatives df/dz and
dh/dz and the value of B, — 8. Rapid oscillations of the function
exp [(8, — B)z] cause the value of the integral to be small. The largest
value of 8 is 8 = k. The worst value appearing in the argument of the
exponential function is, therefore, 3, — k. The propagation constant of
the guided mode depends on the width of the waveguide and is therefore
a function of z. The optimum taper, that is intended to connect two

0.10
oo \\
c.06l— | - ‘\ I
E ; \
P \
0.04——f— - - .
0.02t———— + !
0 |
(o] 5 10 15 20 25 30 35 40

L/d,

Fig. 8— TM mode radiation loss as a function of the length L of the taper.
n = 1432, kd, = 10, d=/d, = 05.
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different waveguides in a given length, would attempt to use larger
values of df/dz and dh/dz on the wide part of the taper where 8, — k
is still larger and provide smaller values of these derivatives on its
narrow part where 8, — k is smaller. A linear taper radiates more on its
narrower portion where the field is less tightly guided. An optimum
taper would attempt to distribute the radiation loss uniformly over the

length of the taper.

VI. RANDOM WALL DISTORTION

In Ref. 1 we computed the losses of the lowest order guided TE
mode that is caused by random distortions of one of the two waveguide
walls. For the sake of completeness we include here the corresponding
formula for TM modes which can be immediately obtained from the
theory presented in Ref. 1 and our present equations (55) and (56). The
ensemble average of the relative power loss of the lowest order even TM
mode (caused by the distortion of one wall by a random process whose
correlation function is a simple exponential function, equation (85) of
Ref. 1) with r.m.s. deviation 4 and correlation length B is given by

<£> _ ANWL@ — 1) [* p cos’ ko d
P /. N 2wBB, —k [ 2 _1_]': nik? :l
B — 8 + B 163 ¥ nzﬂyz + vd

J (8,8 cos ad + yo sin od)® | (8,8 sin od — yo cos ad)ﬂl
- 0_2 + 0_2 dﬁ .
1'.'1',2,02 cos” o + 2 sin® ed  n’p°sin’ od + e cos’ crdJ,

(57)

The radiation loss that is obtained from this equation is shown in Figs.
9 and 10, by the solid lines. The dotted curves are reproduced from
Ref. 1 and give the loss of the TE mode for comparison. The curves
labeled AP~/AP* show the ratio of backward to forward scattered
power. The conclusion to be drawn from these curves is that the TM
mode losses caused by small random wall perturbation are very nearly
the same as for TE modes. Neither type of mode seems to offer a distinct
advantage.

The radiation losses of slab waveguides with random wall distortions
are representative of the losses of round waveguides with similar wall
distortions. However, the radiation losses of slab waveguide tapers are
considerably lower than those of round waveguides. (A discussion of
round waveguides will be published.)
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Fig. 9— Comparison of TM loss (solid line) and TE loss (dotted line) caused
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Fig. 10 — Same as Fig. 9.n = 101, kd = 80.
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VII. CONCLUSION

We have derived radiation loss formulae for the dominant mode
dielectric slab waveguide. The losses for steps and tapers in the wave-
guide were caleulated for TE as well as TM modes. The theory of radia-
tion losses for random wall imperfections, that was developed earlier for
TE modes, was extended to TM modes.

The radiation losses of abrupt steps with a 2:1 ratio were found to
be surprisingly low (a few percent). The advantage of gradual linear
tapers over abrupt steps becomes appreciable only if the taper is much
longer than the width of the slab.

The losses of steps and tapers of the slab waveguide are exceptionally
low. Dielectric waveguides with round and rectangular cross sections
have considerably highest losses. However, the method of describing
waveguide distortions as successions of abrupt steps is applicable to
all dielectric waveguides and simplifies their treatment considerably.
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