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This paper considers the application of a digital compuler and discrele
Fourier transform (DFT) techniques to the measurement of signals known
to comprise only single-frequency tones. We discuss the use of weighting
functions to improve the effective selectivity of a measurement system thai
estimales the frequencies and levels of tones from the coefficients of their
DFT. We present three classes of weighting functions which may be used
to improve the inherent accuracy of such a system. The form of the wetghting
functions was chosen to minimize the amount of computer memory required,
without using too much compuler time. Several formulas are derived for
estimating the frequency and level of a tone from its DFT coefficients. We
chose the formulas to minimize compulation time.

Stmulation results indicate that, through the use of a proper weighting
function, a DFT measurement system that uses 512 samples taken at a
sampling frequency of 7040 Hz can be designed so that the mazimum error
in the frequency estimates of two tones near 1000 Hz and separated by
approximately 50 Hz is about 0.03 Hz. The corresponding maximum error
in the level estimate is on the order of 0.03 dB.

[. INTRODUCTION

There have been numerous articles, in recent years, dealing with the
use of the discrete Fourier transform (DFT) in the area of spectrum
analysis. Much of this interest was motivated by the availability of a
computational algorithm that facilitates the rapid computation of
DFT coefficients by a digital computer. The algorithm is, of course, the
fast Fourier transform (FFT).

We are concerned with the problem of applying DFT techniques to
the measurement of the levels and frequencies of single-frequency tones,
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Fig. 1— A DFT measurement system.

particularly tones from a data set during a test. Figure 1 shows the
system we have in mind. A band-limited received signal, known to
comprise one or more single-frequency tones, is periodically sampled by
an A-D converter. A total of N samples are taken and the DFT co-
efficients are computed from the samples. The computer determines
which of the DFT coefficients are “large”, indicating the approximate
frequencies of the received tones, and then proceeds to compute accurate
estimates of the frequencies and levels. Methods for achieving the first
part of the procedure are well known. This paper is devoted to a con-
sideration of how best to go about the last step in the process, the ac-
curate estimation of the frequencies and levels of the received tones.

In data set testing, the tone measurement system would be used
occasionally during a test and would have to consume a minimum
amount of real time. Thus we have directed our attention toward estima-
tion methods that use simple formulas and require a minimum amount
of computer memory.

Our attention is confined to the problem of leakage, its reduction by
smoothing (windowing) functions, and the development of formulas
which extract tone levels and frequencies from the list of DFT coeffi-
cients. We don’t discuss the important, but secondary, problems of
round-off errors and other noise sources.

II. REVIEW OF DISCRETE FOURIER TRANSFORM

The definition and properties of the discrete Fourier transform are
discussed in Refs. 1 and 2. The following review is to refresh the reader’s
memory and establish the notation that we will use later.

2.1 Definition of Discrete Fourier Transform

Consider an ordered set of numbers {X,} wheren =0, 1, 2, ---,
N — 1. Following Cochran, and others,’ we define the discrete Fourier
transform (DFT) of the set {X,] to be another set of numbers, {Ax},
with

N-1

Ag = D> X, eV all integer K. (1)

n=0



DISCRETE FOURIER TRANSFORM 199
The inverse transformation is

N-1
X, = %E Agd?™ p=0,1,2,--- ,N — 1. )
(=0

2.2 Useful Properties

Several properties of the DFT are utilized in later parts of this paper.
The important properties are recorded in this section for future ref-
erence. Reference 2 provides a more complete list. Derivations are
included only for results that may not be well known.

From equation (1) it is obvious that if the X, are real, then

A_r = AY  (* denotes conjugate), (3)
AK+N = AK ] (4)
and
AN—-K = A_K = A;- (5)
2.2.1 Convoluiion
Let
N-1 \
BK — E Xne—ﬂrnK/N (6)
n=0
and
N=-1 X
C}t = Z Yﬂg—:anK}N, (7)
n=0
then
N-1 ) 1 N-1
A4, = Z X, Ve = N ZBEC,,._K . (8)

n=0 K=0

In other words, if {Bx| and {Cx} are the DFT of {X,.} and [Y,},
respectively, then the DFT of {X,Y.,} is given by equation (8).
2.2.2 Power

It can easily be shown, for X, and Ay defined by equations (1) and
(2), that

]_ N-1 * N-1
*A_TKZ;,AKAK: ;X: (9)

If the X, are samples of some function, f(£); that is, if X = f*(nT/N),
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then
m %S xz = [ a

if the integral exists. Thus, for large N,

T T N—-
fu PO a3 X (10)
Hence, from equation (9),
L[ a2 et (1)

2.3 Relationship to Fourier Transform

The DFT of samples of a signal has a simple relationship to the
regular Fourier transform of the signal. It is instructive to examine this

relationship.

Let g(t) be an arbitrary function, zero for { < 0 and ¢ > T and con-
tinuous over 0 < ¢ < T. The function is allowed to be discontinuous
att = 0and at ¢ = T. Assume that g(0+) and g(T —) exist.

A well-known application of the Poisson sum formula gives*

10040 + 100) + 5 o(i2) = & 3 oZ2Y) a2

where

G) = f " 0™ dt. (13)

Adopting a notation similar to that of Papoulis," we define the “#’
operation by

G*(w) = % > Gl — Ku,), (14)
where
w, = 2aN/T. (15)
Then equation (12) can be rearranged to give
;ﬂ g( ) = G*O) + HgO+) — o(T-)), (16)

where ¢(0) is taken to equal g(0-).

t The recent article by Bergland touches upon this subject and also contains
an extensive list of references.?
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Let h(t) be any function of the sort used above for g(f) with the ad-
ditional property: A(0) = h(04).
Let s(f) be the signal to be analyzed and define

10) = sOR(). (17)
Let g(t) = f(t)e”'"" and define
N-1
A(w) — 'Z;j(?_\g:)e—fnm?/fv. (18)
Then from equation (16) and the definition in equation (14) we have
A(w) = F*(w) + 3[f0+) — f(T—)e7"), (19)
where
Flo) = f i d. (20)
0
If X, = f(nT/N) then the A defined by equation (1) are given by
2rK
ax = 4(%): @)

Thus the DFT of the set {f(nT/N)} are points along the curve described
by equation (19). These points are 1/T Hz apart.

Observe that at w = 2xK/T the term in brackets in equation (19)
becomes %[f(0+) — f(T—)] which is independent of K and vanishes

if f(04+) = f(T—).

2.4 Weighling Functions

If the DFT is to be taken of the set {s(nT/N)} for n = 0 through
N — 1, then A(t) must be a function whose value is unity at ¢t = 2T/N;

n=20,1, -+, N — 1. The function with this property that is usually
taken to be h(f) is the function hr(f);
1, 0=t<T;
he(t) = { = (22)
0, otherwise.

Other weighting functions, k(f), are often formed by multiplying hr(f)
by a nontime-limited function. Weighting functions play a very im-
portant role in systems that use the DFT. The following paragraphs
attempt to develop and present some of the pertinent theory.
From equation (19) we see the role that F*(w) plays in 4 (w). Since
() = s(Oh(),
F(w) = S(w)*H(w), (23)
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where the * denotes convolution and S(w) and H(w) are the Fourier
transforms of s(t) and A(t). It can be shown that, subject to the usual
convergence constraints,

F* () = [S()*H(@)]* = S(w)*H" (w). (24)

Thus H(w), or equivalently H*{(w), plays a central role in the DFT of
(weighted) samples of s(t). From the development that led to equations
(19) and (21), we see that, if A(0+) = A(T—), the DFT of samples
of h(f) is a set of points taken along the periodic curve desecribed by
H*(w). It follows, therefore, that the values of A(nT/N) can be obtained

from

) - Y E e e

K=0

Also,
H'(w) = 2 h(T;V—T)e“""“’T’" — h(0H)[1 — e 7). (26)

Weighting in the time domain is actually done at the points ¢ =
aT/N;n=0,1,2, -, N — 1. For every set of weights to be applied
at these points there exists a continuous function with the same values
at the indicated time points. Thus there is no loss of generality due to
discussing weighting in terms of weighting functions, A(¢), that are
continuous over (0, T') and zero outside that interval. We have to re-
member, however, that if the set {A(nT/N)} is specified, h(f) is not
unique. Thus, if H*(w) is given, h(nT/N) is given by equation (25), but
h(t) and H (v) are not uniquely defined.

There is apparently some confusion in the literature about whether
H(w) or H*(w) is called a weighting function (or windowing function).
Blackman and Tukey,’ for example, discuss i(f) and H(w), but when
Helms® writes about weighting with a Dolph-Chebychev function, he
is evidently referring to H*(w). More will be said about this later.
Bingham, and others, in writing about data windows (See Reference 7,
Part VII) mean A(Z).

Observe that H”(w) is always periodic with period w, , while H (w)
is not periodic. (If it were, H” (w) would not converge properly.) Gen-
erally the H* (w) that one uses will have a prominent main lobe about

= Kw, (K is any integer, including zero) and many side lobes. For
our purposes it is important to obtain a narrow main lobe and low-
amplitude side lobes.

The class of H"(w) with the minimum main-lobe width for a given



DISCRETE FOURIER TRANSFORM 203

side-lobe amplitude is known as the (discrete) Dolph-Chebyshev weight-
ing functions.® A convenient form, similar to the one given by Helms,"
but changed to describe the result of weighting by sample values that
peak at T/2 and are adjusted to cover approximately unit area as later
weighting functions will do, is the following:

H*(@) = 2 /™ cos [N cos™ (z0 cos %)] @7
where the side-lobe amplitude, 1/R, is related to Z, by
R = cosh (N cosh™'Z,) (28)

and N is the same as used in equation (1).

The class of H(w) with the minimum main-lobe width for a given
side-lobe amplitude is known as the continuous Dolph-Chebyshev
funetions,” which are unrealizable. The Taylor approximations to the
continuous Dolph-Chebyshev functions® "' are realizable, however, and
provide almost the same main lobe width for a given maximum side-lobe
amplitude.

The problem of choosing “good’’ shapes for H*(w) can be approached
by treating H* (w) or by treating H («). Most of the well-known weighting
functions are discussed in terms of H(w) or A(Z).

2.6 A Generalization

If A(Z) is a function that is zero for ¢ < T, and ¢ > T, then it can be
shown (sampling theorem) that H(w) is given by

Hiw) = Te '™ sin (T/2) 3 QTCf
TR — —

2

(29)

and

7C, = H(%) (30)

Thus the specification of a weighting function is equivalent to the
specification of the constants, C, .

III. SELECTED WEIGHTING FUNCTIONS

3.1 Leakage and Aliasing

Leakage will be used here to refer to the problem of the values of
A(w) due to cos (wot + 8,) interferring with the values of A(w) at some



204 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1970

other frequency, say «,, where the response due to cos (w,f + 6,) Is
to be examined. Leakage, in our system, is minimized by the use of
weighting functions.

Aliasing refers to the fact that in a sampled-data system tones with
frequencies above w,/2 cannot be distinguished from tones with fre-
quencies less than w,/2. In our system aliasing is avoided by the use
of the low-pass filter (I'ig. 1).

3.2 Convolution of Weighting Functions

The object of weighting is to produce the DFT of a weighted set of
samples of the signal undergoing measurement, s(¢). Thus we seek to
compute

N-1

A = Y s(at)hlnt,)e >, forall K; (31)

n=0

where {, = T/N. A convenient way of doing the weighting is to first
compute

=
-

B = X slat)e ™", (32)

n

for0 = K < N — 1. Then if the set |H,.},

]
=]

N-1 ©
H, = 3 hint)e ™" = H"(i’;,—m) : (33)

n=0

is stored in the computer, the Ax can be computed from equation (8).

3.3 A Special Class of Weighting Functions

The amount of computer memory required to store the set {H.,|
will be small if A({) is a function such that H,, = 0 for M < |m | < N/2
and M is a relatively small number. The H(w) corresponding to this class
can be expressed by a particular form of equation (29):

iy s < C
H(w) = Te ™ sin X D to (34)

n=—M — nmw

where
X = oT/2 (35)

and M << N/2. We have restricted our attention to the results that can
be obtained with this class of weighting funections.

Most of the well-known weighting functions, such as Hanning,’
Hamming,® and Taylor'®'" are in the class defined by equation (34).
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The discrete Dolph-Chebychev and the Kaiser-Bessel'” weighting
functions, however, are not.

The right side of equation (34) can be written over a common de-
nominator to obtain the form

_;xsin X P(X)
X M
H (X2 . n27|'2)

H(w) = Te , (36)

where P(X) is, in general, a complex polynomial in X. We will restrict
our attention to H(w) with real C, and C, = 1. In which case C_, =
C, and, if D, = 2C,, we have

A
h(t) = h,.(:)[l + > D, cos (Q—g’%‘)] (37)
Equation (34) becomes
Cix s 1 d DX
8 — iX Bl __Znr .
H(w) = Te " sin X[X + Z} b n%z] (38)

In the next few sections we will discuss three classes of weighting
functions with the form of equations (37) and (38). They were chosen
to provide two extreme cases of weighting and an intermediate example.
Many other weighting functions in the class defined by equations (37)
and (38) exist; the ones examined below provide sufficient data for our
purposes.

3.4 Class I Weighting Functions

We first consider the class of weighting functions that provides the
best possible reduction in | H(w) | for large w. Let this class be known
as Class L

The only part of equation (36) that can be adjusted is the polynomial,
P(X). Thus we must choose the coefficients, D, , to minimize | P(X) |
for large X. This is done by forcing P(X) to be a constant. The constant
term in P(X), from equation (34), is

P0) = (—1)M=*Y(1r)* (39)

Hence, the desired class of weighting functions has the form, from
equation (36),

_ixsin X (=DM )*
X 0 :
I X — n'?

n=1

Hylw) = Te (40)
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We denote the coefficients, D, , of this class of weighting functions
as Di(M, n), making the dependence upon M explicit. From equations
(36), (38), and (40) the D;(M, n) are given by

M2 NZ(V2 — p2.2
DM, m) = lim SR WYX = ), (41)
e x [ x* - KW
K=1

Evaluation of the limit and some simplification gives

2(—1)"(M 1) B T M4+1-—K
G —wrarami = 20 =% - @

We denote the weighting functions that use equation (41) as ha(f).
Then from equation (37)

DM, n) =

ha(t) = hT(t)[l + 3 DA, m) cos 2—”;“] (43)

n=1

This can easily be shown to be the same as

Fig. 2 — Spectra of the Class I weighting functions.
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A v 2
) = ho 2L i (o4). (44)

Thus the Class I weighting functions are deseribed by equations (40)
and (44). The so-called hanning weighting® is equivalent to &, (f). Larsen
and Singleton'® used &,(t), h.(t), and others.

Fig. 2 shows the shape of (1/7)e’“™*H y(w) for M up to 4. In Fig. 3
we have plotted the normalized transmission of Hy(w) (that is,
20 Logi, (Hu(w)/T|). Several of the hx(t) are shown in Fig. 4 and
some values of D;(M, n) have been tabulated in Table I.

3.5 Class II Weighting Functions (Taylor)

Class I weighting functions provide the minimum high-order side-
lobe amplitude in H(w) that is possible with a given value of M. We
now turn to the class that gives the minimum main-lobe width, at the
expense of higher side-lobe amplitude.

The so-called continuous Dolph-Tchebycheff weighting functions®

g = 2
)
s|- i\
I r -
_— LAY
1',':.\1
-80— '# -‘ ‘I \\
L W
|."-."' \
S \
AN R
Ir 1
=100+ L e
I
I-/.“.\‘i
-120 l | [ I
0 2 4 6 8 10
ol
27

Fig. 3 — Normalized loss of the Class I weighting functions.
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4
_--—M=4
_-—M=3
3 _-M=z2
_-M=1
rd
> /
< 2
-
=
0 | |
0 0.2 0.4 0.6 0.8 1.0
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Fig. 4 — Time response of the Class I weighting functions.

provide the minimum main-lobe width in H(w), consistent with a
specified maximum side-lobe amplitude, but they are unrealizable
funetions. The Taylor'® approximation to the Dolph—Tchebycheff func-
tions provides almost the same main-lobe width and side lobes that have
the specified maximum amplitude near the main lobe and then gradu-
ally decrease as « increases.

The Taylor functions have the form given by equations (37) and
(38) with the D, dependent upon M and the maximum side-lobe ampli-
tude, 1/R. We will denote the D, coefficients of Taylor weighting by
Dy (R, M, n), making the dependence upon R explicit. After adapting
Taylor's equations to our situation, the D,’s are given by

M (n/a)Q
{11 - )

Du(R, M,n) = =% m . , (45)
n
1 - 6]
K#n
where
R = cosh (m\) (46)
and
o _ M+ 1) (47

TN+
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TasLe I —VaLugs or D;(M, n) For M up 10 4

n
M 1 2 3 4
1 —1 — — —
2 —4/3 1/3 - —
3 —3/2 3/5 —1/10 —
4 —8/5 4/5 —8/35 1/35

Solving equation (46) for M gives
\ = }r In(R+ VE — 1. (48)

We will refer to the Taylor functions described by equations (45)
through (48) as Class II weighting functions and denote them by
ky (R, t) and K, (w). References 10 and 11 give a further discussion of
Taylor functions. Taylor weighting functions have the property that,
if M is too small, the D's given by equations (45) will define an H(w)
whose first few side lobes have the amplitude given by equation (46),
but some of the higher-order side lobes will have much higher ampli-
tudes. Thus, for each value of desired side-lobe level, 1/R, there is a
minimum value of M that will give good side-lobe suppression.

Some minimum values of M that give good side-lobe control are
listed in Table II.

Figures 5 and 6 show the shapes of a Class II weighting function with
M = 7 and B = 10°. This particular weighting function will be ex-
amined below when simulation results are compared. It will be shown
there that this weighting function is useful when the received tone
frequencies are very closely spaced.

3.6 Class 111 Weighting Functions
The third class of weighting functions has been chosen to have, to a

TaBLE II—MiniMmuM VALuEs oF M ror Goop SipE-LoBeE CoNTROL

20 logwe R (db) M
36

42
48
54
60
66

O =1 U W
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I

0 2 4 6
oT

2T

Fig. 5 — Normalized loss of the Class IT weighting functions.

large extent, the desirable properties of both Class I and Class II
weighting functions. That is, Class III weighting provides better reso-
lution than Class I weighting for tones with a “small” frequency
separation. Moreover, they also provide better resolution than Class II
weighting of tones with a ‘“large” frequency separation.

We will identify the Class IIT weighting functions by g, (f) and
G (w), where g, (t) <> Gy (w). The D, coefficients for this class will be
denoted by Dy (M, n). The first member of the class is chosen as dis-

0 | ] ] ]
0 0.2 0.4 0.6 0.8 1.0

X
T

Fig. 6 — Time response of the Class II weighting functions; M = 7, R = 1000.
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cussed below and the other members are obtained by operations on the
first.

In order to have the high-order side lobes of G (w) fall off at least
as 1/w® we must have g,(0+) = gu(T—) = 0. In terms of the D,
values this means that

M
14 Z} D(M,n) = 0. (49)
With this restriction, of course, g,(t) is the same as the Class I weighting
function, A,(f). Thus the distinguishing properties of Class III weighting
are determined by g.(t).

We chose the coefficients of g.(t) so that the loss of G»(w) reached 60
dB with as small a value of w as possible with the side lobes of G,(w)
never exceeding —60 dB, subject to equation (49). The D, values for
this condition are:

DIII(Z; 1) = ‘—1.19685, D111(2, 2) = (.19685.

The g,(t) thus defined is almost the same as Blackman’s® proposed
function, Q,(f).

The rest of the members of the Class III functions are defined in a
manner similar to that used by Helms® for the synthesis of digital
filters. We define

(& = har—2(1)g2(1)
P T T3 D@, 1) D@L — 2,1) + § Din(2,2) DM — 2,2)

M>2 (50

The normalization in equation (50) puts gy () in the form of equation
(37).

The Class III functions just defined have high-order side lobes, in
Gy (), that decrease as w ™. This contrasts with w™**" for Class I
weighting and with ™" for Class IT weighting. Thus, Class III weighting
functions provide slightly narrower main-lobe width than Class I at the
expense of slightly higher side lobes.

Some values of D;(M, n) are tabulated in Table ITI.

In Fig. 7 we have plotted the normalized spectra (that is,
(1/T)e' TG4 (w)) of some Class IIT weighting functions. Fig. 8 illus-
trates the normalized loss provided by G'x(w) for values of M up to 4.
It is interesting to note, from Iig. 7, that G;(w) reaches —50 dB before
any of the others, just as H;(v) did in Fig. 3. In Fig. 9 we have plotted
gu(t) for values of M up to 4.
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TasLE III—VaALUEs oF Dy (M, n) FOR M UP TO 4

n
M 1 2 3 4
2 —1.19685 .19685 — -
3 —1.43596 .497537 —.0615762 —
4 —1.566272 725448 — .180645 .0179211

IV. RESPONSE TO A COSINE WAVE

We are interested in measuring the frequencies and levels of signals
that comprise several sine waves. In view of this and the linearity of the
DFT it is eonvenient to examine the properties of the DFT of samples
of cos (wet + 6).

4.1 Basic Formulas

Let
s(t) = cos (wet + 6) (51)
f(t) = ho(t) cos (wet + 0). (52)
1.0
081
_—-M=2
/,'M:3
_ p~M=4
2 o8l
s
U]
o
© o4l
—|=
0.2
o] | 1
[¢] 1 2 3 4
wT

2w

Fig. 7 — Spectra of the Class ITI weighting functions.
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and
Hew) = [ hets™™ a (5)
or, in the usual notation,
Hr(w) «— hT(t). (54)
Then
F*(w) = 3" Hi(o — wo) + 3¢ "Hi(w + wo) (55)

and from equation (19)
A(w) = 3¢’ Hi(w — wo) + 3¢ "Hi(w + w)
+ Lcos 6 — cos (w,T + B)e 7. (56)
With hr(t) as defined by equation (22)

— —jwT/2 Sin (mT/2).
It is possible to put equation (57) in equation (56) and evaluate the

indicated summations. The same answer can, however, be found more
easily from equation (18). With equation (52) in equation (18) we have

(67)

N-1
Aw) = 3 cos (‘“—“’”’T + e) minur/m (58)
n=0
or
-1 . N-1 .
A(cu) % E —i{w—wo)nT/N + %e—:ﬂ Ze—le+mo)nT/N. (59)
=0 n=0

Both sums in equation (59) are finite geometric series. Thus after re-
arrangement we obtain

1N sin Nz 10N ny 8in Ny
Aw) = el o U —~ (60)
where
_ (w — wg)T
=N 1)
and
- £"’+_"J£_ (62)

2N
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The formulation given by equation (56) is important from a con-
ceptual point of view while that of equation (60) is useful for numerical
evaluations.

The evaulation of equation (60) when either z or y is zero requires an
examination of limits, which can be done by inspection.

4.2 General A(w)

The use of one of the weighting functions defined by equations (34),
(37), and (38) gives rise to an A (w) different from the one caleulated in
equation (60). The more generalized form of A (w) is given by

iz—nx/N)

M
Afw) = 2% ™ sinNz D, C.————
n=—M . nmw
st ( N)
. . M
+ L% ™M sin Ny D, C,—F—-
a=—M . (’l _ ?E)
sin N

All of the simulations, to be discussed below, used this A(w), in
equation (21), to compute A values.

i({y—nx/N)

(63)

4.3 Approvimations

We will make use of several approximations in the next section. The
important ones are established here. In this section hr(f) is assumed to
be the weighting function and w is in the range 0 < w < w,/2.

Consider equation (19). If | F(w — ,) | is small for I # 0; then

A@) = F) + 304 — JT—)"] (64)

where
t, = T/N. (65)

Thus, from equation (21),
ez Lr(%e) 1o - ooy, (66)

Next consider equations (56) and (57). | Hr(w) | is ‘large” only
near @ = 0. Thus we obtain another approximation, used when s(t) =
cos (wet + 6),

F(w) ~ %" Hp(w — wo). (67)
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From equation (57) we then obtain

1_ 7 ~ ﬁ 0 —iltw—wer 12y S [(w — WO)T/2}_
T =7y et o — w)T/2] (68)
Thus,
“in (Kw,T B cﬂ) ‘
N 2N 2
Ar | = — 5 69
| K| 2 ' (Kw,T _ I’-B_Q_T) ‘ ( )
2N 2
or, because,
Ko, T
oN Kr, (70)
N | S (K’T - 902_1’) ‘
| A | =2 B ol (71)
(ke —) |

From equation (71) we see that, apart from the error in the approxi-
mations, one should be able to accurately estimate the frequency and
magnitude of a cosine wave from the A values for K near w,T'/2r.

The main lobe of a sin X/X curve reaches zero at X = ==m. Thus the
main lobe of the curve, of which the Ax are points, reaches zero at
@ = wy & 2x/T or, since w,/N = 27/T, at

w = w, - m,/N.

The main lobe is just wide enough to contain two 4 ; values (estimators),
except if w, equals some multiple of w,/N. It will be shown later that
two Ak values will be enough to estimate the parameters of a cosine
wave.

V. FREQUENCY AND LEVEL ESTIMATION

In the preceding sections we have developed methods of computing
the DI'T coefficients of a known input (for simulations) and have dis-
cussed three classes of weighting functions to improve the effective
selectivity of the DFT process. Our final task, which is undertaken in
this section, is to determine accurate ways of processing the DFT
coefficients to extract the frequencies and magnitudes present in the
sampled signal.

The methods are to be useful when the real-time demands upon the
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computer are important. Thus all of the methods were chosen to have
simple formulas which the computer can be programmed to evaluate
when it is making a measurement.

The equations we have examined fall into two classes: those that use
only two estimators to calculate the frequency and level of a cosine
wave and those that use many. The following paragraphs derive the
most promising of these equations. The next section will present the
accuracies that the various equations can achieve. We start with a
formula that makes use of many estimators.

5.1 Method 1

The derivation of this method is somewhat involved, so we first
explain the motivation behind it.
Suppose one has an f(¢) that is known to be given by

f(t) = B cos wqt, (72)

and one wants to determine w, and B from operations on f(f). One way
to determine B is from

lim & fT P dt = lim = fTBﬂ/z i
1o T J, @ LmTl,

T—o0

= B*/2 (73)
thus,
1 T
B* = 2 lim f () dt. (74)
T—o T 0
The derivative of f(¢) is
f'({) = — Buw, sin wgt (75)
and
. J-_ ’ ’ 2 _ p2 2
lim 7 [ 0@ de = By (76)

Thus w, can be determined from

R T
2 liggffo (0 dt
wy =

o : 7
13;1”?[0 FOF dt

The above result is the motivation for the following derivation.
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Assume
s(f) = B cos (wot + 0) (78)
and
f(&) = h(t)B cos (wot + ) (79)
where h(f) is one of the weighting functions, given by

h() = [1 + 5D, cos (2’””)] ha(d). (80)

n=1

Let the estimators, A , be given by equation (31).

Define
Po =l [ (O at (81)
and
— lim L f (0] (82)

T—x

Expansion of equation (79) gives

) = Bhr(t){cos (wot + 6)

M

-+ % 3 D,[cos (wot — naw,t + 6) + cos (wol + nawat + 3)]} (83)

n=1

where

w, = 2m/T. (84)

From equations (81) and (83)

1}2
P, = {1 +3 . Z D } (85)
Calculation of P; from equation (83) yields, assuming nw, # w,,
w M 712 am2
Pl= wu+2"° + 25 (86)
n=1 n=1

Combining equations (85) and (86) gives
- 2
2 2
. P, w, E n°D,
o= - (87
2+ > D

n=]
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The next step is to compute P,/P, from the DFT of f(¢). Using the
approximation

f(t) ~ h‘T(t) EE 4 iKwat (88)

k=—N/2

which can be rearranged to give

f(t) ~ ha(t) {An + 2 % [Re (Ag) cos Ku,t — Im (Ag) sin Kw,,t]}

(89)
From equation (89)
N/2
P, & {A* +2 3 | Ak l“} (90)
and
1 N/2
P"N-’A—r22|AK|2K”wf. (91)
1
Thus,
N/2
P 2 Z K2 l A
17; f;d 72 92)

+ZIAKR

We use equation (92) in equation (87) to obtain the final result.
Denote the estimated w, by &, . Then

| e

dp = wh 7 — Uy (93)
AL+ D | Ak j
E=1
where
M
> n*D:
Uy = " —5— (94)

2+ > Di
n=1
By D, we mean, of course, D;(M, n), Dyi(R, M, n) or Dii(M, n). Thus
Method 1 is applicable to all three classes of weighting functions. Some
values for U are tabulated in Table IV.
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TasLe IV—VaALuEss oF Uy anNDp Vy,

Class I Weighting

M Un Vi

0 0 .0

1 .333333 .75

2 .571429 972222
3 .818182 1.155

4 1.06667 1.31327

Class II Weighting
(M =17, R = 1000)

U; = .357071, V, = .769710
Class IIT Weighting

M Uxr Var

2 .45732 .8678
3 .715523 1.07833
4 .968949 1.25033

The way to use equation (93), when more than one tone is present
in s(t), is to use only the estimators, Ax , for K & w,/w, to calculate
each &, . The simulations below will show that this technique gives
accurate results.

5.1.1 Estimation of Level

From equations (85) and (90), we obtain the way to estimate B.
N/2

1 A§+2E|AK12
S K=1

2 —_—
B = NG Vi (95)
where
M
Vie=%+3%2 D). (96)
n=1

Some values of V, are tabulated in Table IV. Observe that if only
the basic weighting, hr(¢), is used, then U, and V), become zero and
1, respectively.

5.2 Method 2

The preceding formulas for estimating the frequenecy and level of a
cosine wave from its DIF'T use more than two estimators. The next few
paragraphs establish formulas that require only two estimators. The
formulas apply only to the Class I weighting functions, h(f).



DISCRETE FOURIER TRANSFORM 221

We start by recalling the approximations given by equations (64)
and (67). With H y(w) substituted for Hr(v) in equation (67) we have

1 .
o i awlw — wg). 97)

From equation (40)

o _ M 2M | 2
H(ZX) = p oS X CL0D (98)
H (XE 2 2)
n=1

where X = oT/2. If s(t) = B cos (w,t + ) then, from equations (97) and
(98),

| A@) |~ | -y B s 99)
T H{ v+ n)
where
v = (w — w)/w, . (100)

Suppose the largest! estimator is A ; and its largest immediate neighbor
A, .0f course m — [ = £1. Define

a=m—1=+L (101)
Let
a = | A, | (102)
and
— A ] = Aol (103)
Define
u=:ﬁ— D —1/2 <u < 1/2. (104)

a

Then from equation (99)

a ~ (" B —;i“"‘ (105)
m II w+m

T By largest we mean | A1 | > | Ag | for K & [,
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and
a s (=1 BN sl — o) (106)
r [] @+n—a
n=—AM
since & = =+1, equation (106) is the same as
—(—yroryp B s (107)
» I @+n
n=—M-—a
Division of equation (105) by equation (107) gives
ﬁN_u—a(M-l-l)_
o> w4 ol ol (108)
Define
a(M + 1) — aM
= 109
t a + a ( )
then from equation (108) an estimate of u is
'ﬁc = ai; . (110)

Hence, the estimate of «, is given by
G = w,( + 4). (111)
From equation (105) the estimate of B is
M
al2ar(—1)M H @ —n)
_ n=—M
NOI[)snxd (112)

where 1 is defined by equation (110).
Another version of equation (112), better for machine computation, is

- e 11 - G) a1y

n=1

Method 2 with M = 0 is essentially the same as was derived by
Penhune and Martin'* to solve a radar problem.

5.3 Method 3

The simplicity of the estimation equations of Method 2 led us to
extend this method to include any elass of weighting functions described,
in general form, by equations (37) and (38). We will refer to this more
general method as Method 3.
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From equations (109) and (110) we see that if a Class I weighting
funection is used, one way to obtain an estimate of « is to use the function

u _ Ca; — Da,
v Ea, + a,

in equation (110). There are three degrees of freedom in the bilinear
form and we chose to express them in the manner shown in equation
(114).

Method 3 is simply the application of equation (114) to other classes
of weighting functions. We obtained values for the coefficients in equa-
tion (114), for several weighting functions by:

(114)

(i) Computing @, and a,, using equations (21), (63), (102), and
(103), with ® = 0 and many values for w, near o, /4.
(ii) Computing the corresponding values of % from equation (104).
(iii) Choosing values for €, D, and E such that equation (114) gave
a good fit to the data computed in the first two steps. It turns out that
the curve described by equation (114) is satisfactory if it fits the com-
puted data exactly at ©w = 0, %, and 1.

In this manner we obtained the following coefficient values:

Class II weighting, M = 7, B = 1000;
C = 1.96339, D = 1.01643, E = 0.893534.

Class III weighting, M = 2; C = 2.56919,
D = 15374, E = 1.06345. For M = 3;
C = 3.6020, D = 2.5862, E = 1.0317.

Using an approximation similar to equation (71), but extended to
include weighting functions described by equation (38), we obtain an
estimate for B,

B _ 1271'(11 E
N sin ('rml)[u— + Z

Method 3 can be used with weighting functions specified only in
terms of H" (w) as well as those given in terms of H(w).

D, ] (115)

u; — n’

VI. COMPARISON OF ACCURACIES

In the preceding paragraphs we have derived several formulas that
produce estimates of w, and B from A values (estimators). We now
turn to a comparison of these formulas on the basis of accuracy. The
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aceuracies we will compare do not include any possible computation or
nonlinearity errors or other accuracy limitations that may be present
in a DFT analysis system. Our aceuracy comparisons include only the
effects of leakage.

The estimators used in the simulations were generated by using the
function A(w), described by equation (63), in equation (21). This is
equivalent to applying the weighting by multiplication in the time do-
main or by convolution in the frequency domain. The use of equation
(63) in simulations greatly reduces computation time. All of the simula-
tions used N = 512 and f, = N/T = 7040 Hz.

All of the estimation methods presented above use approximations.
In this section we shall demonstrate just how good the approximations
are.

Consider the case where a tone of frequency f, , angle 8, , and ampli-
tude B, is being measured while another tone, at frequency f,, angle
8, , and level B, , is also being received. The presence of f, will affect the
accuracy of any estimate one makes of f, or B, (due to leakage). The
size of the errors in the estimates of f, and B, will depend upon which
formula (method) is used and upon the values of f, , By, 8y, {1, By,
and 6,. The combination of parameters that causes one method to
give the worst estimates will, in general, not be the combination that
causes another method to be at its worst. Thus it is difficult to compare
methods.

We have compared the three methods on the basis of the worst
estimates each will make when 6, and f, are eonfined to a specified
range of values (for example, 990 =< f, = 1003.75 Hz and 0 = 6, = 360
degrees) and B, , B,, f,, and 8, are fixed (for example, B, = B, = 1
and 8, = 0 degrees).

Notice that if f, is equal to some multiple of 1/7" then its A will be
very small except for K near 7'f, . Thus such an f, cannot cause much
error in any of the three methods of estimation of f,, which use Ag
values. For this reason we have fixed f, at a value that is an odd multiple
of 37.

Tables V and VI illustrate how inaccurate frequency and level esti-

TaBLE V—PooresT ESTIMATES WITH INTERFERENCE SEPARATION IN
THE RANGE 55 + 6.88 Hz, No SpEciAL WEIGHTING

Method Frequency Error, Hz Magnitude Error, dB
1t 6.82 .596
2 7.37 .580

t Method 1 using only six estimators, those from [ — 2« to | 4+ 3a.
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TaBLE VI—PooOREST ESTIMATES WITH INTERFERENCE SEPARATION IN
THE RANGE 178.96 =+ 6.88 Hz, No SpEciaL WEIGHTING

Method Frequency Error, Hz Magnitude Error, dB
1t 3.08 .0628
2 3.75 .165

7 Method 1 using only six estimators.

mates are when no special weighting (M = 0) is used. The interfering
tones corresponding to the simulations described in Tables V and VI
were located at 1051.88 and 1175.63 Hz respectively. The frequency
and magnitude error entries in these, and subsequent, tables give
absolute values only.

The simulation results presented in Tables VII and VIII indicate that
substantial improvement in the accuracy of frequency and magnitude
estimates can be achieved when weighting is used. The data in Table
VII shows that when the two tones are separated by a “small”’ frequency
difference accurate frequency and level estimates can be obtained by
using Method 3 with Class II or Class III weighting. Table VIII in-
dicates that as the frequency separation increases Method 2 with Class I
weighting is better. The accuracy of estimates made on closely spaced
tones can, of course, always be improved by increasing N and T' while
keeping the ratio N/T constant.

It is interesting to note from Figs. 3 and 8 that, for a given value of

TaBLE VII—PooresT ESTIMATES WITH INTERFERENCE SEPARATION IN
THE RANGE 55 + 6.88 Hz

Class I Weighting

Method M Frequency Error, Hz Magnitude Error, dB
1 1 .89 11
1 2 3.32 .47
1 3 6.16 .96
2 1 .513 12
2 2 .104 11
2 3 409 .5
Class IT Weighting, R = 1000
Method M Frequency Error, Hz Magnitude Error, dB
1 7 1.14 L120
3 7 .0651 9.35E-3
Class ITI Weighting
Method M Frequency Error, Hz Magnitude Error, dB
1 2 2.11 .225
1 3 5.12 .821
3 2 .034 .026
3 3 .149 .0655
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TABLE VIII—PooREsT EsTIMATES WITH INTERERENCE SEPARATION IN
THE RANGE 178.96 + 6.88 Hz

Class I Weighting

Method M Frequency Error, Hz Magnitude Error, dB
1 1 1.67E-3 2.79E4
1 2 3.98E-4 5.25E-5
1 3 4 .55E-2 4.70E-3
2 1 5.73E-3 1.42E-3
2 2 1.47E-4 2.19E-5
2 3 2.13E-5 1.55E-6
Class IT Weighting, R = 1000
Method M Frequency Error, Hz Magnitude Error, dB
1 7 5.56E-3 2.05E-5
3 7 8.09E-2 1.07E-2
Class ITT Weighting
Method M Frequency Error, Hz Magnitude Error, dB
1 2 9.10E-5 1.19E-5
1 3 1.85E-2 1.90E-3
3 2 3.35E-3 3.24E-3
3 3 5.94E-4 9.62E-6

M, there is not a great deal of difference between the weighting con-
tributed by H y(w) or G (w). However, from Table VII it is obvious that
the use of G3(w), when the tones are close together, will yield much more
accurate estimates than Class I weighting.

In equation (101) the “pointer”, @, was defined. The value of a is
used by the system to determine whether the frequency being measured
is above or below the frequency of the largest estimator, 4, . Our
simulation studies showed that under certain circumstances «, as
calculated by equation (101) will point in the wrong direction. In
general this happens when the contributions to 4,-, and A4,,, due to
the interference is equal to or greater than the difference in the con-
tributions to the same estimators due to the tone being measured. Thus
if | A,y | & | A141 |, & small difference in their magnitudes can change
a. In our simulations this effect only caused trouble when f, and f, were
separated by less than half the width of the main lobe of the weighting
function, H (e).

Since we have fixed B, = B, = 1 in the simulations we have ignored
the adverse effects of “large’” level differences on the accuracies of the
various methods. Leakage from an interfering tone with a high level,
relative to the tone of interest, would certainly tend to reduce the
accuracy provided by any of the three methods, no matter which weight-
ing is used.
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VII. CONCLUSIONS

The discrete-tone measurement system we have been discussing is
particularly well suited to systems that involve eomputer-controlled test-
ing or measurement, provided the real time needed for the computations
is available. Two advantages are:

(i) The only interface hardware is the A-D converter (with its
lowpass filter).

(ii) The system is capable of measuring many received frequencies
and levels during the same computation time.

For a given number of samples taken at a given sampling rate, the
accuracy of the system can be significantly improved through the use
of some type of weighting function. We have examined three classes of
such smoothing functions and have developed formulas which permit
the extraction of received signal frequencies and levels from the DFT
coeflicients. The results of system simulations, presented in Tables V
through VIII, show that the inherent aceuracy of the deseribed system
can, through the proper use of weighting functions and estimation
methods, be made satisfactory for many applications.

With Method 2 considered to be a special case of Method 3, the tables
show that the best estimation method, for all of the weighting functions
examined, is Method 3.

The tables also show that there is no “best’”” weighting function. The
weighting to be used for any particular application should be selected
only after a consideration of the expected tone frequencies, the relative
levels, the measurement accuracy desired, and the desired value for N.
The sampling frequency, N/T, should be more than twice the highest
frequency to be measured.

It is interesting to observe that the Taylor (Class II) weighting func-
tion used in the simulation is, for the situations simulated, not signifi-
cantly better than the Class III weighting, G,(f), which is essentially
that proposed by Blackman.’ There may be other situations, however,
when the nearly optimum main-lobe width of the Taylor functions is
useful.

If the system could tolerate the relatively large amount of computer
memory required, then the discrete Dolph—Chebychev functions de-
scribed by equation (27) could provide some advantages.
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