TSPS No. 1:

System Testing

By K. A. HELLER, D. A. SCHMITT and R. M. TAYLOR
(Manuseript received August 17, 1970)

The resulls of system testing against a set of performance criteria in-
dicate the readiness of a new installation for service. In the first installation
of TSPS No. 1 at Morristown, N. J., system testing also had to accomplish
a design shakedown concurrent with final design and program debugging
efforts at the Holmdel laboratory test model. This article describes the
overall efforts and lest facilities involved in the initial shakedown.

I. INTRODUCTION

In a typical TSPS No. 1 installation, the Western Electric Com-
pany performs a series of installation tests which check out the equip-
ment as received from the factory and the equipment interconnection
cabling as installed in the field. Extensive use is made of manual buzz
through testing and X-ray programs.’ Then system tests are conducted
to demonstrate that the system is complete and operable. Initially
basic system functions related to handling a small call load are shaken
down. Then all system features are tested in the presence of the call
load background. Finally, continuous operation is imposed wherein
the system is allowed to run under typical environmental conditions
with call load boxes being used to simulate traffic. System performance
during continuous operation must satisfy a set of performance criteria
(described in Section III) to be acceptable for turnover to the Bell
System Operating Company. After turnover, operating company crafts-
men tie the new system into the existing Bell System plant, determine
that connecting offices function smoothly with it, run it continuously
in accordance with telephone company discipline, and for training
purposes perform all routine functions. On completion, the system is
cut, over into service.

The system tests applied at the first TSPS No. 1 installation at
Morristown, N. J., were more exhaustive than would be used for sub-

2711



2712 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

sequent installations since, in addition to demonstrating a complete
and operable installation, they also had to demonstrate an adequate
design. Also the performance criteria for turnover to be used in sub-
sequent installations had to be established on the basis of experience
gained with the system at Morristown. As a result, considerable engi-
neering judgment had to be exercised in deciding when to cut over
the first installation. The adequacy of the system’s performance to
give a commercial grade of service in spite of residual design and in-
stallation bugs had to be balanced against economic and service de-
mand pressures for an early cutover.

System testing in the first installation turns out to be an engineer-
ing feat. The planned tests reveal design hugs which necessitate soft-
ware and/or hardware changes. In addition, the effectiveness of the
tests devised for the newly designed system is not always predictable,
with the result that the tests themselves have to be revised. The time
and activity required to design and install corrective changes interferes
with further testing. Almost constant re-evaluation of test plans,
schedules, and status are necessary.

In the year prior to the Morristown TSPS No. 1 cutover, a total of
177 necessary hardware changes were installed. Most of these were
minor, involving only a few wire changes. Some, however, were major,
such as complete replacement of store frames, bus connectorization,
and several significant changes in the position subsystem equipment.
In the same year over 2000 trouble reports were issued that resulted
in software changes.

Software debugging and utility facilities (see Section 2.2.1) were
left in the Morristown system until three months before cutover. In
addition to providing debugging aids, these facilitated timely inser-
tion of program changes. After removal of the utility programs, special
generic recent change programs were used to implement program
changes. These had been provided to facilitate emergency changes in
working offices and proved useful for pre-cutover changes at Morris-
town. As program overwrites or changes accumulated in the program
memory, it became necessary to reassemble the programs to perma-
nently incorporate the changes and produce new issues of program
load tapes and listings. New program issues were loaded in the test
model at the Holmdel, N. J., location of Bell Laboratories, and after
initial shakedown were loaded at Morristown. Program reload and
recovery of the system to the operational state that existed prior to
the reload frequently took several days, particularly in the early

stages of system testing.



SYSTEM TESTING 2713

1.1 Program Administration

Because of the volume of program change activity, a program
change committee was formed about a year before the Morristown
cutover. As programs became debugged, they were “frozen,” and
thereafter changes could be made only with the change committee’s
approval. To insure tight control, the program “gource” card decks for
all frozen programs were turned over to a program support group
which had the responsibility thereafter for reassembling frozen pro-
grams to incorporate only approved changes and for producing new
program issues.

When the need for a program change became known, the program-
mer would originate a correction or program overwrite, which he
would prepare in the form of a punched card deck. By means of the
utility system he would insert the overwrite into the system’s memory
on a temporary basis for testing. If good, he would submit the over-
write deck, a correction report, and an alter deck to the change com-
mittee for approval. The alter deck was required for incorporating the
change in the next program reassembly. If approved, the overwrite
would be inserted into the system memory via the utility system on a
permanent basis. When a sufficient number of overwrites had ae-
cumulated, the new program issue was produced and loaded.

To minimize programmer effort and human error, the utility and
program assembly systems were designed so that overwrite and alter
decks could be identical in content and in addition could be in sym-
bolic format except for certain items that must be in absolute code
format for the overwrite deck.

Another useful programmer aid that was built into the assembler/
loader system is the ability to generate program listings that are con-
sistent with the state of the system’s memory as modified by over-
writes. Specifically, the instructions are listed as corrected by the
overwrites and in the sequence executed, but the address that appears
for each instruction is the absolute location of the instruction in
memory. This listing is particularly useful to the programmer while
overwritten programs reside in the system memory. Later, when the
programs are reassembled for a new issue, the instructions are re-
sequenced so that successive instructions occupy successive memory
locations.

1I. PROGRAM DEBUGGING

Debugging of the Stored Program Control-TSPS software package



2714 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

occurred in three stages, each of which required a different set of de-
bugging tools and techniques:

Stage 1—Strip or T-cart debugging
Stage 2—Utility debugging
Stage 3—Functional testing

Figure 1 shows when these three stages were employed and the fact
that they overlapped in time. At most times during the entire de-
bugging interval, the tools and techniques of all three stages were in
use. The transition from one stage to the next was not prearranged but
rather represented a natural evolution. Actually the three stages were
followed for each program. The fact that programs became available
for debugging at various times and underwent extensive changes at
times is the primary cause of the extensive overlap.

2.1 Strip or T-Cart Debugging

Strip debugging is the process of checking basic “strips” of program
instructions without testing the interconnections between the strips.
Such a test is normally conducted by setting up the initial conditions
required by the strip being tested, executing the strip, and then ob-
serving the terminal conditions,

~
EQUIPMENT INSTALLATION
—
X-RAY PROGRAM DEBUGGING AND EQUIPMENT TEST
HOLMDEL ! '
LAB | STRIP
TEST B —
MODEL
PROGRAM uTILITY
DEBUGGING
FUNCTIONAL TESTING
_—
~
SYSTEM TEST PLANNING
_—
r EQUIPMENT INSTALLATION
| |
FIRST
SITE- X-RAY AND EQUIPMENT TEST
MORRIS- | _
;ggg SYSTEM TESTING
'—..____
NO. 1

I [
PROGRAM CHANGE
COMMITTEE FORMED— 4
MARCH 1, 1968 TURNOVER CUTOVER
NOV. 9, 1968  JAN. 19, 1969

L 1 | 1 1 | J
1964 18965 1966 1967 1968 1969

Fig. 1—Test model and first site installation and test schedule.



SYSTEM TESTING 2715

Strip debugging was used to check the basic SPC-TSPS control
programs and the utility package which was later used for utility and
batch-mode debugging operations and functional testing. The only
debugging tool required for strip debugging is the test console (T-cart)
shown in Fig. 2. All initial conditions are established through the
T-cart instruction and data insertion keys. The instructions being
tested are then executed one at a time by successively operating the
cycle key. The results are observed on the various display lamps. It
is also possible to execute the instructions at normal machine speed
by operating the run key. For this case, the T-cart is equipped with
four hardware matchers which can be set up to stop the machine
when:

(1) a specified address is accessed for reading, for writing, or for
program execution;

(%) an address within or without a specified range is accessed for
reading, for writing, or for program execution; or

(%) 20 bits of data being written or read from temporary memory
match pre-specified data.

When the machine is stopped by one of the matchers, the results
of the program operation can be examined by reviewing the T-cart
display lamps.

Strip debugging enjoyed heavy use only during the very early part
of the debugging interval. As more programmers desired access to the
laboratory model, the obvious inefficiencies of the manual strip method
began to seriously retard progress. However, at later times during the
debugging interval programmers sometimes found it necessary to fall
back on the strip method. This was particularly true during the
testing of the processor and store fault recognition programs® which
were not as amenable to utility debugging.

2.2 Utility Debugging

In the utility debugging mode, the laboratory model is under con-
trol of the “utility program package.” This is a collection of pro-
grams that coordinate the execution of each debugging job. All com-
mands to the utility package are entered through a card reader which
is connected to the laboratory model through a special interface. All
output is directed to a high-speed printer, which is also specially inter-
faced to the laboratory model.

To use the utility debugging system, the programmer prepares ‘‘de-
bugging jobs,” in the form of punched-card decks. The card decks



THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

2716

1480 189 —E "I

#ﬁﬂtf«ua&if.va‘i ;
FRERRERRERIIEY




SYSTEM TESTING 2717

contain control or command eards which are read and executed by the
“utility program.” These commands establish initial conditions, gen-
erate printouts of specific registers and memory areas, and control the
execution of the instruction strip being tested. In other words, all of
the manual functions required for manual strip debugging are pre-
specified on punched eards and executed automatically at high speed.

Of prime importance to the utility mode are the matchers which
trigger execution of the various commands as prespecified in the
punched eard decks. The T-cart matchers can be used for this pur-
pose. To increase the number of available matchers and to avoid the
manual setup time for the T-cart matchers, twelve pseudo matchers
were provided as part of the utility system. The pseudo matchers per-
mit the programmer to specify the program address to match in his
debugging deck. The utility program changes the instruction at that
address to one which causes the processor to interrupt the normal
sequence of program instructions at A-level or the highest level inter-
rupt.? Whenever the program under test reaches that address an in-
terrupt occurs, control is transferred to the utility program, and the
required utility functions are executed. Then the original instruction
which had been saved by the utility program is executed and control
is transferred back to the system program.

Because the utility system enabled the programmers to completely
plan and specify their debugging jobs on punched eards, a batch mode
type of debugging operation was made possible.® In the batch mode
the programmers submitted their relatively short debugging jobs to
the laboratory support group in lieu of requesting machine time to run
their own jobs. The support group batched the submitted jobs and
ran them in rapid sequence, returning the results to the programmers
for analysis. This technique makes more efficient use of machine time
than if each individual programmer conducted his own debugging runs
and further permits a programmer to get several runs a day, which
might not otherwise be possible.

The batch mode technique was first tried on the No. 1 ESS ADF
(Arranged with Data Features) test model in New York City. Its
success there prompted its use in TSPS No. 1 where it also proved
to be successful.

For the more complex debugging runs requiring more time per run
or programmer presence at run time, the programmers would sign up
for machine time, which would be scheduled by the laboratory sup-
port group. Even for those cases where programmers signed up for



2718 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

machine time they still prepared their debugging runs and punched
their utility control cards in advance to take full advantage of the
utility system and maximize machine time utilization.

In the final analysis, maximum debugging efficiency (orders de-
bugged per unit time) is achieved only if the programmer uses the
machine to get the results of pre-planned debugging runs and does his
analyzation of results at his desk. Machine time is wasted when a
programmer signs up for a large block of time and then spends a large
part of the time analyzing results to plan the next step. The success
of the batch mode operation is largely attributed to the fact that it
overcomes loss of machine time due to analyzation activity by the
programmer while he is assigned exclusive use of the machine.

2.2.1 Utility Package

This section gives a detailed description of the functions provided
by the utility program package. The utility programs are loaded into
spare SPC memory areas and, where necessary, temporary linkages
are provided to the generic program software.

The utility package is divided into four main parts: (a) initializa-
tion, (b) command processor, (¢) administration, and (d) overwrite
control. Throughout the system debugging interval, these programs
underwent continual modification to improve their speed and power.
Many improvements were suggested and implemented as a direct re-
sult of debugging experience so that the final versions bore little
resemblance to the originals. The following paragraphs describe the
final versions.

2.2.1.1 Initialization Program. The utility initialization program acts
as a ‘‘system reset.”” That is, whenever the operator actuates the manual
interrupt (MINT) key on the T-cart, the initialization program restores
all hardware to service, clears all call memory, and removes all tem-
porary overwrites from the SPC-TSPS package. At the end of initializa-
tion the system is left in the idle mode (under utility control) awaiting
input from the card reader. In the batch-mode, the system is initialized
between each job.

Before the generic recovery programs were debugged, the utility ini-
tialization program was also used to initialize many generic tables and
software registers used by the generic programs. This feature was pro-
vided so that programmers would not have to include an excessive
number of standard initialization commands in their debugging decks.
As the generic program package became more reliable, these special



SYSTEM TESTING 2719

initialization routines were deleted from the utilities in deference to
the generic initialization or restart routines.*

2.2.1.2 Command Processing. The command processing routines in-
terpret the commands in the debugging deck and perform the specified
functions at match time. The major functions provided are: () memory
dump, (¢) transfer trace, (#%) initialization, (i) jumps, and (v) con-
ditional statements.

The dump function provides octal, binary, or decimal printouts of
specific memory areas when a match occurs. The addresses to be
dumped can be stated explicitly in the debugging deck, or the deck
can identify the location that contains the start address for the dump,
a feature known as indirect dumping. The trace function enables the
programmer to obtain a printout of the “from” and “to” addresses and
index register contents on each transfer instruction. Initialization
functions enable the programmer to initialize index registers and
memory contents to specific values before entering the test strip or
to change register and memory contents during the test. The jump
function is used primarily to enter the test strip initially and to re-
enter it (with different input data) when the end of the strip is
reached. Conditional functions provide selective control over the de-
bugging run by allowing the programmer to specify the conditions
under which other functions should be executed. For example, the pro-
grammer ean specify that when matcher 6 fires the tenth time, the
X register should be initialized to a value of 3 if the Y register is not
equal to zero.

2.2.1.3 Administraiion. Part of the utility package consists of ad-
ministrative routines which are used only by the Laboratory Support
Group. These routines provide for making tape copies of memory and
matching or reloading these tapes. Also, the administration routines
provide printouts of the size and location of patch and spare memory
areas. The Laboratory Support Group required these facilities in order
to maintain rigid control over the contents of memory in the laboratory
model.

2.2.1.4 Overwrite Control. The overwrite control routines allow pro-
gram changes to be inserted in a symbolic format. Thus the programmer
can concentrate on solving his problem rather than on manually trans-
lating his symbolic instructions into machine code. The overwrite
program also automatically allocates all spare memory required when
additional instructions are added to a program. Changes can be in-
serted either temporarily or permanently. Temporary overwrites are



2720 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

automatically removed by the initialization program, and are always
used on batch debugging jobs. Permanent overwrites are inserted only
by the Laboratory Support Group.

2.3 Functional Testing

The normal method of debugging is to first check several basie in-
struction strips and then to combine these into a larger strip and
check it, and so on. Eventually the strips become large enough that
they constitute a set of “functional packages,” such as the call con-
nections program. At this point utility debugging diminishes and the
functional test period begins.

A “functional” test differs from a “strip” test in that the initial and
terminal conditions for the functional test cannot be handled by the
utility package or the T-cart. For example, a functional test of the
call connections program involves the actual seizure of a trunk and
observance that the relays and network operated under control of the
program. This need to have “actual,” or realistie, conditions at the
time of the test meant that the programmer had to be present for the
test and that the test would take muech longer than the few minutes
normally allowed for a utility debugging run. Extensive use was still
made of the utility system, however, in conducting functional tests.

Figure 3 summarizes the program debugging progress in orders de-
bugged, using the three stages of debugging technology described. Dur-
ing the functional test period, the number of orders debugged per unit
time was less because more sophisticated and time-consuming tests
were needed to isolate the remaining problems,

III. SYSTEM TESTING

Many individual tests are performed on the various units and pro-
grams that constitute a complete system such as TSPS No. 1, but
system testing properly refers only to those tests that treat the system
as an entity and where the stimuli and measurements are made at the
system ports. The prineiple results from this type of testing are the
measurements made to ensure that an acceptable system performance
objective is met.

Planning for this testing sequence began during late 1966, as shown
in Fig. 1, and continued throughout the testing interval until the
machine was turned over to the operating company in late 1968. Dur-
ing the early stages of the test planning for TSPS No. 1 it was decided
to shakedown first only those features required to allow the system



SYSTEM TESTING 2721

10

ESTIMATED
PROGRAM SIZE ™~

®
T

S DEBUGGED

INSTRUCTIONS { x 10%)
W\
T

I T T T N Y |
1769

B i ——

L UTILIT
-
L FUNCTIONAL

Fig. 3—Debugging progress curves.

to handle a simple call load as generated by load boxes. All subsequent
testing could then take place with the system continuing to process
traffic, and any interference with the systems ability to process calls
would immediately point out design conflicts so that corrective action
could be taken.

The eall load background environment was the closest possible
practical approach to the machine’s normal real world environment.
It was not intended that the testing done during this interval be done
in the presence of an overload or even a full load condition, but rather
that the system be continually exercised at a reasonable level of call
load activity. As the testing progressed, the type of calls generated for
the background were expanded to include as many variations as the
available test equipment would allow.

In order to implement this test plan, two hardware test sets were
developed:

The Automatic Local Toll Simulator Set (Fig. 4) was developed
to interconnect with the TSPS incoming trunks at the main cross-
connection frame terminations. This “load box” provides for the



2722 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

@

i i

j - '*“-;:’o-li.\(--s

-

Fig. 4—Automatic local-toll simulator set.

origination and termination of calls® through the system. It generates
any type of call that the system can process and verifies each system
response to the external stimuli offered. Sufficient sets were provided
for Morristown to allow the generation of approximately 4000 calls
per hour of all types.

The Automatic Operator Simulator Set (Fig. 5) was developed
to interconnect with the 100B Traffic Service Position. It electrically
detects the various lamp displays and generates an appropriate
operator’s keying response, allowing the system to complete processing
of the call. This set processes any type of call that can be connected
to a position.

As shown in Fig. 6, these sets were connected external to the TSPS
No. 1 system—i.e., they did not become a part of the system or change
its operating chara.cterlstms in any way.

The test sets made possible the continual call loading of the system
over the relatively long period of time during which the other opera-
tional, maintenance, and administrative tests were performed. They
also provided data for one of the key system performance measure-
ments; the Call Failure Rate.

During the test planning phase the call processing and administra-
tive tests were written in detailed step-by-step form, and the main-



SYSTEM TESTING 2723

Fig. 5—Automatic operator simulator set.

tenance tests were adapted from the individual programmer’s func-
tional tests. In total, there were 345 individual tests or test items that
formed the system test specification for the Morristown office and a
selected sub-set has been produced in the form of Western Electrie
Company Installation Handbook Sections for the system testing of
later offices. Since the installation at Morristown was used to prove-in
the system design, the overall system testing performed was consid-

ALTSS
AUTOMATIC
LOCAL TOLL

SIMULATOR SET

FROM | TRAFFIC SERVICE TO
LOCAL POSITION SYSTEM TOLL
OFFICE TRUNK OFFICE

[

TRAFFIC SERVICE
POSITION SYSTEM
NO. 1
BASIC SYSTEM

100B AO0SS
POSITION AUTOMATIC OPERATOR
SIMULATOR SET

Fig. 6—Connection of ALTSS and AOSS to system.



2724 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

erably more detailed and intensive than is required for later installa-
tions.

As the testing progressed, the machine was brought under call back-
ground load in late March of 1968, and this background was increased
to include all call types by April. It should not be assumed that the
machine was under continual call loading from this time until cutover.
The call background was provided to enable the detection of program
and hardware interaction problems, and as these were detected, various
hardware and software techniques (utilities, etc.) were used to isolate
and assist in the required solutions. Continual hardware and software
changes were implemented during this interval, and entirely new
programs were added to the system as they became available. When
large changes were made, application of a sub-set of the detailed
call processing and administrative tests, observation of the call failure
rate and maintenance TTY output were instrumental in determining
the goodness of the system following the change.

Throughout most of this interval the primary tool for locating and
clearing software problems was the utility program package, described
in Section 2.2.1. It quickly became apparent that the use of the
utilities was incompatible with the call background due to the con-
sumption of real time by the utility program. The output of the
utility program is normally via the high-speed printer, and this work is
done on an A-level interrupt basis. While in A-level and printing the
utility results, so much time is used that the system is blinded to

400
345 -
300
MORRISTOWN MORRISTOWN
0 TURNOVER CUTOVER
2 NOV.9,1968  JAN.19,1969
E
200
=
n
w
s
100
Illl\]illllll‘lltlI‘!ilj_lilllllilll‘Illl

I |

T e 25 7 21 4 18 Z 16301327 11 25 8 22 5 19 3 17 31 14 28 12 26 9 23
san| Fee | mar |aeriL| may | dune [ ooy | auc | sept | ocT | nwov | pEC |aAN
WEEK ENDING 1968

Fig. 7—System test items completed.



SYSTEM TESTING 2725

external stimuli and the eall processing function is affected. FEarly in
the testing interval, this interference could be tolerated, but later in
many cases the eall background was required to develop the problem,
and beeause of this conflict, the data dump store and hardware transfer
trace were provided in place of the utility package (see Section IV).

All during the testing interval, progress was marked by various
indicators, including the Call Failure Rate, Test Items Completed
(see Fig. 7), hours of simplex or duplex operation, hours of call load-
ing, various maintenance printouts from the teletypewriter in the
Maintenance Center, and the number of outstanding trouble reports.
As turnover approached, the important measurements were the call
failure rate, and the numbers of maintenance interrupts,> audit
messages,* peripheral unit failures,> position subsystem failures?® and
outstanding trouble reports. As these items approached a reasonable
level, turnover to the Telephone Company took place and a new
stage of testing was begun.

TFollowing turnover, the New Jersey Bell Telephone Company per-
formed tests on the machine, including the handling of live (non-
simulated) test call traffic through the system while performing many
maintenance and administrative routine operations. As was to be
expected, this testing turned up problems that had not or could not
have been detected previously. An intensive effort was required to clear
these problems before cutover.

In spite of a few known residual design problems, the Morristown
TSPS No. 1 system was cut over into service on January 19, 1969, and

TasrLe I—TSPS No. 1—PERFORMANCE CRITERIA MEASURED OVER
A 48-Hour PERIOD

Requirements for Requirements
Morristown after 5/1/70
Call Non-Completion Rate* =059 0.39,
Audit Errors = 250/day 50
Maintenance Interrupts
Software =< 3/day 1
Hardware < 10/day 4
System Recovery Phases
MNA, MJA =< 2/day 0
SIA, SIB =0 0
Store Errors =< 2/day 2
SPC Faults < 10/day 5
Peripheral Unit Faults = 20/day 10
Position Subsystem Faults < 10/day/group 10

* Includes an allowance for test equipment irregularities.



2726 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

has provided a satisfactory grade of service ever since. As expected,
customer usage of the system revealed design problems that had not
been detected by earlier testing. A concerted effort had to be applied
in the first few weeks after cutover to clear these problems.

Based upon Morristown system experience, the performance criteria
were established for all new systems. These are summarized in Table I.
Basically the performance criteria establish an upper limit for the
number of unexplainable trouble or fault indicating events. If a
particular threshold is exceeded but the excess can be attributed to a
source external to the TSPS No. 1 system or can be attributed to
an explainable procedural error, the system performance is considered
acceptable.

IV. FIELD SUPPORT AND HARDWARE MONITORING FACILITIES

As one might expect, no reasonable amount of design shakedown
or system testing can guarantee a trouble-free design for a system as
complex as TSPS No. 1. The combinations of key actions which the
TSPS operator can generate individually and in concert with the other
operators served by the system are practically unlimited. As a result,
a field support operation that continues until design problems no
longer interfere with field operation must be provided. To effectively
support the field, tools for obtaining the right kind of data to allow
design trouble analysis must be provided, and the tools must not
interfere with basic system operation.

4.1 Dump Store and Transfer Trace

The two most vital sets of data required in a stored program control
system to isolate design problems are the state of the system’s mem-
ory at the time of the interesting event—the time the problem or
trouble manifests itself~——and the program sequence leading to the
interesting event. To satisfy this need, the data dump store* and hard-
ware transfer trace were developed. The dump store is an autonomous
facility that continuously monitors the state of the ecall or transient

* The data dump store concept originated with the No. 1 ESS development. For
TSPS No. 1 a specially modified PBT store or store pair is connected to one of the
store buses to monitor all processor writes to the unprotected memory in the sys-
tem stores. Since the unprotected memory area is assigned to various 16ths of
the systems stores® each 16th of the dump store memory is equipped with
special switches that permit specifying the system store name code and 16th
that is to be monitored by each 16th of the dump store memory. Also, in a write-
only mode the dump store can be made to accept writes at a rate faster than a
gystem store in a normal read/write mode. As a result, the dump store can accept
all store writes at the system write rate.



SYSTEM TESTING 2727

data stored in memory. The transfer trace continuously records in its
autonomous memory the FROM and TO addresses of the last 80
transfer instructions executed by the program system. At the time of
an interesting event, both the dump store and transfer trace are
“frozen” with their present contents. Later the stored information is
extracted for offline analysis and both devices are reset to record data
for the next interesting event. An offline program was developed to
organize and format the data to ease the job of interpretation and
manual analysis.

The interesting event is detected by setting program address
matchers to fire, thereby freezing the dump store and transfer trace.
As a result the state of the system with the trouble condition present
is preserved in the monitoring devices without in any way interfering
with system operation or recovery.

Information gathered from the dump store and transfer trace has
been instrumental in solving most post cutover design problems in
the TSPS No. 1 system. In the first 20 weeks following the Morristown
cutover about 100 dump store tapes and transfer traces were processed.
In most cases they contained sufficient information to permit complete
problem solution or they narrowed the scope of the problem consider-
ably. In the latter case, the program address matchers were reset to
fire at program locations which could provide more data in the nar-
rowed problem area. This is the significant advantage of using pro-
gram address matchers as interesting event detectors.

Because the original 80 transfer capacity transfer trace was so
effective, an improved version has been developed which provides
for storing the last 600 FROM/TO transfer addresses or the last 100
transfer addresses plus the contents of the processor index registers at
the time of each transfer.

V. EPILOGUE

System testing requires a thorough understanding of all the func-
tional and maintenance requirements of the system and requires early
and careful planning. The people who are going to be the system
testers should be identified early to allow them to broaden their
knowledge to be effective as system testers. Test plans should be made
early enough to insure that test facilities like the load boxes and dump
stores are available when needed. System testers should have a rea-
sonable understanding of existing systems of time-proven design that
are going to interconnect with the newly designed system. There is



2728 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1970

always the tendency to place fault on the new system when intercon-
nection problems develop. Experience has shown that the interconnect-
ing system is often at fault and the troubles are revealed because the
new system has more sophisticated maintenance features or is less
tolerant of equipment that only marginally complies with specified
operating criteria. Everyone concerned with system testing must main-
tain an unbiased position.

Finally it should be recognized that exhaustive system testing for
design shakedown does not end with the first installation. Whenever a
new system feature is added or system capability is exploited for the
first, time in the field, design shakedown testing must be performed.
For example, the second TSPS No. 1 site at Miami was the first to
employ multiple remote position subsystems and the third site at
Houston was the first that is large enough to permit testing to deter-
mine if the system has sufficient real-time capacity to handle design
limit trafic loads. Also shakedown testing must be performed to
debug growth procedures for adding equipment to a working office
whenever equipment of a particular type is added for the first time.
Design shakedown testing ends only after all system features and
capabilities have been fully exploited in the field and the system is
capable of smooth field operation requiring a minimum of manual
intervention and maintenance. This is achieved only through con-
tinued diligent field support.

REFEREN CES

1. Haugh, G., Tsiang, S. H., and Zimmerman, L., “System Testing of the No. 1
El;:ctronic Switching System,” BS.TJ., 43, No. § (September 1964), pp.
2575-2592.

2. Durney, G. R., Kettler, H. W., Prell, E. M., Riddell, G., and Rohn, W, B,,
“TSPS No. 1: Stored Program Control No. 1A” B.STJ,, this issue, pp.
2445-2507.

3. Barney, D. R., Giloth, P. K., and Kienzle, H. G., “No. 1 ESS ADF: System
Testing and Early Field Operation Hxperience,” B.S.T.J., this issue, pp.
2975-3004.

4. Kettley, A. W., Pasternak, E. J., and Sikorsky, M. F., “TSPS No. 1: Opera-
tional Programs,” B.S.T.J., this issue, pp. 2625-2683.

5. Jaeger, R. J., Jr., and Joel, A. E,, Jr.,, “TSPS No. 1: System Organization and
Objectives,” B.S.T.J., this issue, pp. 2417-2443.

6. Baker, W. A., Culp, G. A, Kinder, G. W., and Myers, F. H., “TSPS No. 1:
Stored Program Conirol No. 1A Store,” B.S.T.J,, this issue, pp. 2509-2560.



