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This paper reports on [urther results concerning nonlinear equations
of the form F(x) + Ax = B, in which F(-) is a “diagonal nonlinear
mapping”’ of real Kuclidean n-space E" into itself, A is a real n X n
matrixz, and B 1s an element of E". Such equations play a ceniral role in
the dc analysis of transistor networks, the computation of the transient
response of transistor networks, and the numerical solution of certain
nonlinear partial-differential equations.

Here a nonunigueness result, which focuses attention on a simple special
property of transistor-type nonlinearities, is proved; this result shows that
under certain conditions the equation F(x) + Ax = B has al least two
solutions for some B & I". The result proves thal some earlier conditions
for the existence of a unique solution cannot be improved by taking into
account more information concerning the monlinearities, and therefore
makes more clear that the set of matrices denoted in earlier work by P,
plays a very basic role in the theory of nonlinear transistor networks. In
addition, some material concerned with the convergence of algorithms for
computing the solution of the equation F(x) + Ax = B 1s presented, and
some theorems are proved which provide more of a theoretical basis for the
efficient computation of the transient response of transistor networks. In
particular, the following propoesition is proved.

If the dc equations of a certain general type of transistor network possess
at most one solution for all B &€ E" for “the original set of o’s as well as
for an arbitrary set of not-larger o's”, then the nonlinear equations en-
countered at each time step in the use of certain implicit numerical inte-
gration algorithms possess a unique solution for all values of the step size,
and hence then for all step-size values it is possible to carry out the algo-
rithms.

* The material of this paper was presented at the Advanced Study Institute on

Network Theory (sponsored by the N.A.T.0.; Knokke, Belgium; September 1-12,
1969).
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. INTRODUCTION AND DISCUSSION OF RESULTS
References 1 and 2 present some results concerning the equation
F(z) + Az = B, (1)

in which, with n an arbitrary positive integer, 4 is a real n X n matrix,
B is an element of real Euclidean n-space E", and F(-) is a mapping of
E" into E" defined by the condition that* forall z=(z, , 22, *** , Z.) e

ET,
F(LE) = [fl(xl)J fz(x2): e 1.fn(xn)]“ (2)

with each f,(-) a strictly monotone increasing mapping of E' into itself.
Equation (1) plays a central role in the de analysis of transistor net-
works,** the transient analysis of transistor networks (see Section 1.4),
and the numerical solution of certain nonlinear partial differential
equations.

In Ref. 1 it is proved that there exists a unique solution z of equation
(1) for each strictly monotone increasing mapping F(-) of E" onto E”
(that is, for each set of strictly monotone increasing mappings f.(-) of
E* onto itself) and each B € E" if and only if A is a member of the set
P, of real n X n matrices with all prineipal minors nonnegative. It is also
proved in Ref. 1 that equation (1) possesses a unique solution z for
each continuous monotone nondecreasing mapping F(-) of E" into E”
(that is, for each set of continuous monotone nondecreasing mappings
of E' into E") and each B & E" if A belongs to the set P of all real
n X n matrices with all principal minors positivef. A direct modification
of the existence proof given in Ref. 1, as indicated in Ref. 2, shows that
equation (1) possesses a unique solution for each strictly monotone
increasing mapping F(-) of E” onto (a, , 81) X (a2 ,82) X -+ X (@, Bx)
with each a; and 8; elements of the extended real line' (real line) such
that @; < B; and each B & E" if (and only if) A & P, and det A # 0.
Some network theoretic implications of these and related results are
discussed in Refs. 1 and 2, where the matter of determining whether or
not A € P, or A € P is considered in some detail.

* Throughout the paper the superscript tr denotes transpose.

** See Ref. 1 for a derivation of the equation within the context of the transistor
dc-analysis problem.

 There are some interesting applications of this result in the study of numerical
methods for solving certain nonlinear partial-differential equations, in which A4
has nonpositive off-diagonal terms and is irreducibly diagonally dominant.3

t The numbers a¢ and g: are members of the extended real line if —e0 = a4
= owand —w0 = Bi = .
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This paper presents a proof of a nonuniqueness result. The proof
focuses attention on a simple special property of transistor-type non-
linearities. The result shows that under certain conditions equation (1)
has at least two solutions for some B & E". In addition, the paper
presents some material concerned with the convergence of algorithms
for computing the solution of equation (1) and proves some theorems
which provide more of a theoretical basis for the efficient computation
of the transient response of transistor networks. The remaining portion
of Section I is concerned with a detailed discussion of the results and
their significance.

1.1 An Application of the Nonuniqueness Theorem

The standard Ebers-Moll transistor model, which is widely used,
gives rise to funetions f;(-) which, while continuous and strictly mono-
tone increasing, are mappings of E' onto open semi-infinite intervals.
For such f;(-), the results stated above assert that the equation (1)
possesses at most one solution x for each B & E*if A € P, ;and if
A € P, and det A # 0, then equation (1) possesses a solution for each
B € E". Since, as indicated in Ref. 1, 4 = T7'G with T a nonsingular
matrix which takes into account the forward and reverse transistor a’s,
and @ is the short circuit conductance matrix of the linear portion of
the network, the condition that det A not vanish is equivalent to the
rather weak assumption that the linear portion of the network possess
an open-circuit resistance matrix.

It is natural to ask whether the use of more-detailed information
concerning the nonlinearities of the transistor model would enable us
to make assertions concerning the existence of a unique solution of
equation (1) for all B € E" under weaker assumptions on A. In particu-
lar, can the condition that 4 belong to P, be relaxed? The first result
proved in this paper, Theorem 1 of Section II, shows that if the f.(-) are
exponential nonlinearities of the type associated with the Ebers—Moll
model, then the condition that 4 belong to P, cannot be replaced by
a weaker condition. More explicitly, in Section IT a set F; of mappings
of E" into E" is defined, and 5 contains all of the mappings F(-) that
correspond to Ebers—Moll type f,(-)’s. It is proved there that if 4 & Py,
then for any F(-) € Fp , there is a B & E” such that equation (1)
possesses at least two solutions. In faet, it is proved that if A €& P,
and if & is an arbitrary positive number, then for any F(-) & 55, there
is a B € E" such that equation (1) possesses two solutions such that
the distance in E" between the two solutions is 8.

Thus Theorem 1 together with the earlier results mentioned above
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concerning existence of solutions show that the set of matrices P, plays
a quite fundamental role in the theory of nonlinear transistor networks.

1.2 An Algorithm for Computing the Solution of Equation (1)

Several results which assert that A € P, under certain conditions on
the transistor «’s and the short-cireuit conductance matrix of the linear
portion of the network are proved in Refs. 1 and 2. In particular,
Ref. 1 proves that A € P, and hence that A € P, ,if 4 = P7'Q with P

and Q real n X n matrices such that forallj = 1,2, --- ,n
Dii > Z: |p:; | and gy > z,; | ges |.*

Theorem 2 of Section IT shows that a relatively simple and entirely
constructive algorithm can be used to generate a sequence 2'”, z‘*, - -
of elements of E" that converges to the unique solution of (1) if A =
P~'Q with P and Q as defined above and each f;(-) is a continuous (but
not necessarily differentiable) monotone nondecreasing mapping of

E' into E'.**

1.3 Palais’ Theorem, Existence of Solutions of Equation (1), and Algo-
rithms for Computing the Solution of Equation (1)

Reference 1 gives two existence proofs concerning equation (1). One
proof, the more basic of the two, is based on first principles and em-
ploys an inductive argument in which, with % an arbitrary positive
integer less than n, the existence proposition is assumed to be true with
n replaced by & and it is proved that then the proposition is true with n
replaced by (& -+ 1). The second proof uses a theorem of R. 8. Palais
and requires that the f,(-) be continuously differentiable throughout E.
More explicitly, Palais’ theorem® asserts that if R(-) is a continuously
differentiable mapping of E™ into itself with values R(g) for ¢ € E",
then R(-) is a diffeomorphism’ of E™ onto itself if and only if

(2) det J, # 0 for all ¢ € E", in which J, is the Jacobian matrix of
R(-) with respect to ¢, and
@) [|R@ || — = as|[g][— .M

* It is proved also that A € P, if 4 = P7Q with pj; > 2w | pi; land gj; =
Tiwi|qijlforallj ) . .

** A related result given in Ref. 4 is not directly applicable here because of assump-
tions made in Ref. 4 concerning the existence and boundedness of a certain Jacobian
matrix.

t See Ref. 5 and the appendix of Ref. 6.

t A diffeomorphism of E" onto itself is a continuously differentiable mapping of
E" into E® which possesses a continuously differentiable inverse.

tt Here || - || denotes any norm on E"
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And the second proof of Ref. 1 shows that, with
R(g) = F(9) + Aq

for all ¢ € E", the two conditions (z) and (:7) are met when A € P, and
each f,(+) is a continuously differentiable strictly-monotone-increasing
function which maps E' onto E' and whose slope is positive through-
out E'.* _

There are some problems which arise in connection with, for example,
the numerical solution of certain nonlinear partial-differential equations**
in which one encounters an equation of the form (1) with A & P, and
det A # 0, but with functions f;(-) which, while continuously differ-
entiable, are monotone nondecreasing (rather than strictly monotone
increasing) mappings of E' into E'. We can prove that even in such
cases equation (1) possesses a unique solution for each B & E" as follows.
Here the Jacobian matrix of F(q)+Aq exists and is of the form D(g)+A4
in which D(g) is a diagonal matrix with nonnegative diagonal elements.
Since A € P, and det A # 0, we have® det [D(q) + A] 5 0 for all
¢ € E". An immediate application of Theorem 3 of Section II shows
that || F(g) 4+ Aq || = « as|| ¢ || — ».f Therefore, by Palais’ theorem,
F(z) + Ax = B possesses a unique solution for each B.

Theorem 3 is of use not only in connection with the proof given in
the preceding paragraph; it also plays a key role in showing that there
is an algorithm which generates a sequence of elements of E"2'”, 2, - - -
that converges to the unique solution of F(z) + Az = B whenever each
f:(+) is twice continuously differentiable on E* and the conditions on 4
and F(-) of the preceding paragraph are satisfied.?

More generally, if R(-) is any twice-differentiable mapping of E"
into itself such that conditions (7) and (i2) of Palais’ theorem are
satisfied, then, with R™'(-) the continuously-differentiable inverse of
R(-), z = R7'(6) satisfies R(x) = 0 in which 8 is the zero element of E",
and there are steepest decent as well as Newton-type algorithms each of

* The reasons that two proofs were presented in Ref. 1, with the second proof
a proof of a somewhat weaker result, are that the arguments needed for the appli-
cation of Palais’ theorem had already been developed in Ref. 1 and used for
other purposes there, and it was felt desirable to indicate an alternative approach
to essentially the same problem.

** The writer is indebted to J. McKenna and E. Wasserstrom for bringing this
fact to his attention.

t More explicitly, Theorem 3 shows that there is a vector C' € E”such that
| F(g) + Aq + C[f-» = as ||g|] = =, which is equivalent to the statement
concerning TT F(q) + Aq || made above.

* The differentiability assumption here is introduced as a matter of convenience,
imd is certainly satisfied when the f:(-) are Ebers—Moll exponential-type non-
inearities.
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which generates a sequence in £ that converges to 2. To show this, let’
f(y) = R(y) ||* for all y € E" in which || - || denotes the usual Euclidean
norm (that is, the square-root of the sum of squares). Since condition (z)
of Palais’ theorem is satisfied, the gradient V{ of f(-) satisfies (V{)(y)
# 0 unless f(y) = 0,* and since condition (#7) of Palais’ theorem is satis-
fied the set S = {y € E" : f(y) < (=} is bounded for any z'” € E".
Therefore we may appeal to, for example, the theorem of page 43 of Ref.
7 according to which for any z*” & E", for any member of a certain class
of mappings ¢(-) of S into £, and for suitably chosen constants v, ,
Y1, -+, the sequence ¥, 2, - - - defined by

a*Y = g g 'YA-‘P(-T'(H) forall k=0

belongs to S and is such that || R(z™ || — 0 as k — «. However, since
R7'(+) exists and is continuous,’ it follows from

2 = R'RE™)] forall =0

)

and the fact that R(z"™) — ¢ as & — =, that lim,_, = exists and

lim 2 = R™(8),

k=00
. . Gy 1
which means that ¢ = lim,_, =*.
1.4 Transient Response of Transistor-Diode Networks and Implicit Nu-
merical-Integration Formulas

At this point we briefly consider some aspects of the manner in which
the previous material bears on the important problem of providing
more of a theoretical basis for numerically integrating the ordinary
differential equations which govern the transient response of nonlinear
transistor networks. Although we consider explicitly only networks con-
taining transistors, diodes, and resistors, the material to be presented
can be extended to take into account other types of elements as well.
In addition, we shall focus attention on the use of linear multipoint
integration formulas of closed (that is, of implicit) type, since such

* Here we have used the fact that (Vf)(y) = 2J,"R(y) for all y € E»7

t By Palais’ theorem R(-) is a diffeomorphism of E" onto itself.

+ The material of the second part of Section 1.3 was motivated by previous
recent work of the writer’s colleague A. Gersho who made the observation that the
convergence of an algorithm for the solution of equation (1) could be shown by
combining results of Ref. 1 with the approaches described by Goldstein.” (See the
November 1969 B.S.T.J. Brief by A. Gersho.)



NONLINEAR EQUATIONS 101

formulas are of considerable use in connection with the typically “stiff
systems’’ of differential equations encountered.

A very large class of networks containing resistors, transistors, and
diodes modeled in a standard manner is governed by the equation®

f{—? F TR W] + (T + GR)GC™ W) = B, (=0 (3)

where, assuming that there are ¢ diodes and p transistors,

@O T=1,T.®&T.PH---PT,, the direct sum of the identity
matrix of order ¢ and p 2 X 2 matrices T, in which

ro- | 1 el

a1

with0 < & < 1and 0 < o < 1fork =1,2,---,p.

(i) R=R, PR PR, P --- @ R,, the direct sum of a diagonal
matrix R, = diag (r, , 1, , -+ , 1) withr, 2 Ofork =1,2, --- , ¢
and p 2 X 2 matrices £, in which forallk = 1,2, -+ | p

P J’rim _|_ ?‘:’M ?_t('kl 1
P = - .
]\ b r® 4 T,(,HJ
with ri = 0, 7" = 0, and r;*’ = 0. (The matrix R takes into account
the presence of bulk resistance in series with the diodes and the emitter,
base, and collector leads of the transistors.)

(73z) ¢/ is the short-circuit conductance matrix associated with the
resistors of the network. (It does not take into account the bulk re-
sistances of the semiconductor devices.)

(iv) F(-) is a mapping of E“"** into E“*** defined by the condition
that

F(x)y = [fi(x), f2(r2), --- s fapra(@apea)]”

for all x € E®'? with each f,(-) a continuously differentiable strictly-
monotone increasing mapping of 1! into .

(v) C7'(-) is the inverse of the mapping C(-), of &'
defined by

Clx) = diag (¢, 62, *++ , Ot + diag (1, , 75, Topr ) I1(2)

Zpta)

into itself,

for all x € E“*"® with each ¢; and each 7; a positive constant.
(wi) B(f) is a (2p + g¢)-vector which takes into account the voltage
and current generators present in the network, and
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(vi2) w is related to » the veector of junction voltages of the semi-
conductor devices through C(v) = u for all v € E®**9,
Equation (3) is equivalent to*

u + f(u! t) = B(ZTHIH t

v
=

4)
in which of course
flu, t) = TFIC'(w)] + (I + GR)7'GC™"(w) — B(1) (5)

and 8z, is the zero vector of order (2p + g).
It is well known that certain specializations of the general multi-

point formula®'*°

Ynir = 2 Glnmi + D biffac (6)

k=0 k=—1
in which
Gnek = —flYn-r, (n — k)h] )

can be used as a basis for computing the solution of equation (4).
Here h, a positive number, is the step size, the a, and the b, are real
numbers, and of course y, is the approximation to u(nh) for n = 1.

In the literature dealing with formulas of the type (6) in connection
with systems of equations of the type (4), information concerning the
loeation of the eigenvalues of the Jacobian matrix J, of f(u, t) with
respect to u plays an important role in determining whether or not a
given formula will be (in some suitable sense) stable. In particular, an
assumption often made is that all of the eigenvalues of J, lie in the
strict right-half plane for all £ = 0 and all w. For f(u, f) given by equa-
tion (5), we have

= T diag {c,- + .,T_j;[g,-(u,-)]}

_ . 1
e O
+ (4 GR)7G ding c; + 7ifilgiw;)] ®
in whichforj = 1,2, -+, (2p + ¢) ¢:(u;) is the j** component of C"*(u).
Thus here J, is a matrix of the form
TD, + (I + GR)™'GD, )

where D, and D, are diagonal matrices with positive diagonal elements.

* Ref. 8 shows that if B(-) is a eontinuous mapping of [0, <« ) into B¢+, then for
initial condition u® & E¢»*0 there exists a unique continuous (2p +q)— vector-
ued function u(-) such that #(0) = u® and (3) is satisfied for all ¢ > 0.
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A simple result concerning equation (9), Theorem 4 of Section II,
asserts that if there exists a diagonal matrix D with positive diagonal
elements such that*

(4) DT is strongly column-sum dominant, and
(%) DI + GR)™'G is weakly column-sum dominant,

then for all diagonal matrices D, and D, with positive diagonal ele-
ments, all eigenvalues of (9) lie in the strict right-half plane. This con-
dition on T, G, and R is often satisfied.

The subelass of numerical integration formulas (6) defined by the
condition that b_, > 0 are of considerable use'"'*"** in applications
involving the typically “stiff systems” of differential equations en-
countered in the analysis of nonlinear transistor networks. With b, > 0,
Yns1 18 defined zmplicitly through

Ynsr + RO (Yasr s (n + Dh) = Z Wl + R Z bkgn‘k
k=0 k=0

in which the right side depends on ¥, only for k & {0, 1,2, --- , 1},
and for f(u, t) given by equation (5), we have

Ynsr + B0 (TFIC (yui)] + (I + GR)'GC ' (yn)} = ¢ (10)

in which
Gn = 2 QYues + b 2 biffuce + hb_,B[(n + )R]
k=0 k=0

Obviously, the numerical integration formula (10) makes sense only
if there exists for each n a y,., € E**? such that equation (10) is
satisfied.

Let 2,01 = C '(Yns1) for each n. Then equation (10) possesses a
unique solution ¥,,, if and only if there exists a unique z,,, € E®*"*?
such that

C(2pe1) + hb_o[TF(z,.,) + T + GR) 'Gxpis) = ¢n - (11)
Since C(z,,1) = €¥pyy + 7F(x,.,), in which
c = dlag (Cl 2 Cay = :c2p+u)
and

T = diag (Tl y T2, "0, T2p+a):

* The terms “strongly-column-sum dominant” and “weakly-column-sum domi-
nant” are reasonably standard. However they are defined in Section II.
i See Ref, 8 for examples.
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equation (11) is equivalent to
[r + kb, TVF (x0) + [c + hboy(I + GR)'Glan, = ¢ . (12)

The matrices » and ¢ are both diagonal with positive diagonal ele-
ments. Thus it is clear that for all positive &

det [z 4 hb_,T] # 0

and
det [¢ + hb_,(I + GR)'G] # 0.*

For all sufficiently small positive A
[r 4+ hb_,T] '[e + hb_,(I + GR)'G] € P, .t

Consequently'’ for all sufficiently small & > 0, equation (12) possesses
a unique solution for each ¢, .* However, our interest in equation (12)
is primarily in connection with “large-#"" algorithms.

Suppose that det ¢ 0 and that T~'G & P, for all possible combi-
nations of &, and a; (0 < a, < 1,0 < a, < 1) for each transistor (see
Ref. 1 for examples). Then, according to Theorem 6 of Section II,
for any particular 7" and R

[+ 4+ hb_,TT'[c + hb_,(I + GR)™'G] € P,

for all ~ > 0, and hence equation (10) possesses a unique solution
Yns1 for all positive values of A.

An important and general proposition concerning (10) is as follows.
Suppose that

I+ GR)YT'GI € P, (13)

) )

are replaced
k)
,

and that condition (13) is satisfied whenever o/ and o}
with positive constants 6*’ and 8!, respectively, such that 6* = «
and 6 < ¥ fork = 1,2, -- -, p. In other words, assuming that F(-)
is as defined in this section and that F(-) € F$**? (see Definition 1 of
Section 2.1), suppose that the de equation

Fl) + T7'[(I + GR) 'Glx =

possesses at most one solution x for each B € E“*® for “the original
set, of o’s as well as for an arbitrary set of nof-larger «’s.”” Then an

* Here we have used the fact that (I + GR)™G is positive semidefinite.

T See Section 1.2.

Tt See Section 1.3,

* Alternatively, this conelusion could have heen obtained by applying the con-
traction-mapping fixed-point principle to (10}, in view of the fact t?mt each of the
elements of JI,‘ is bounded on v € Evt and { € [0, = ).
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immediate application of Theorem 5 of Section II shows that
[r + kb, T '[e + hb_,(I + GR)™'G] € P,

for all & > 0, and hence that equation (10) possesses a unique solution
yn+1 fOI‘ all h > 0 ﬂnd ﬂll q" E E(i’peq].

I1. THEOREMS, PROOFS, AND SOME DISCUSSION

Throughout this section,

(7) nis an arbitrary positive integer,
(#) P, denotes the set of all real n X n matrices M such that all
principal minors of } are nonnegative,

(#4%) real Euclidean n-space is denoted by E°, and @ is the zero
element of E",

(&) v'" denotes the transpose of the row vectorv = (v, 05, -+, v,),

@) || v || denotes (2 2., v3)"* for allv € E",

(v?) if D is a real diagonal matrix, then D > 0 (D = 0) means that
the diagonal elements of D) are positive (nonnegative),

(vii) I, denotes the identity matrix of order ¢, and I denotes the
identity matrix of order determined by the context in which the symbol
is used, and

(viz7) we shall say that a real n X n matrix M is strongly (weakly)
column-sum dominant if and only if forj = 1,2, --- , n

miy > (2) 20 | m |

i#]

2.1 Definition 1

For each positive integer n, let 5} denote that collection of mappings
of E™ into itself defined by: F € F; if and only if there exist for j =
1,2, ---, n, continuous functions f;(-) mapping E' into E" such that
for each x = (.?.'1 yLay 0 11'-n)” - En: F(.’E) = [fl(xl)} f2(x2)! T !fn(‘rn) "!
and

(1) (i_ﬂf )[L(a +8) — [i(@)] =0
(i7) ?E‘p )[f:’(a +8) — fila)] = +=
forall@ >0andallj=1,2, ---, n.

2.2 Theorem 1

Let F € 5, let A be a real n X n matrixz such that A & P, , and let
8 be a posttive constant. Then there exist B € E", x € E", and y € E"
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such that
(@) F(z) + Az = B,
(i) F(y) + Ay = B,
and
(41) [z —yll =8

2.3 Proof of Theorem 1

Since A €& P, , there exists® a real diagonal matrix D > 0 such that
det (D + A) = 0. Thus there exists a 2* € E" such that || z* || = &
and (D + A)z* = 6.

Since F € 57, there exists a x € E" such that
li(x) — fi(@; — %) = a4 d;
forallj = 1,2, --+ , n in which d; is the j* diagonal element of D. Let
B = F(z) + Az,
and let y = x — z*. Then A(x — y) = Az* = —Dz*, and
F(x) — Fly) + Alx —y) = 6. O

2.4 Remarks Concerning Theorem 1

If, as in the ease of standard transistor models,
filw) = ™ — 1
or
i) = 1 — e
with A; > 0, we have, respectively,
fila+8) = f;(a) = €7 — 1)
or
fila + B) — fil@) = e (1 — ™)

and it is clear that for either type of function conditions (z) and (%)
of Definition 1 are satisfied.

In Ref. 1 it is proved that if F(-) € 9 the set of all F(-) of the form
(2) with each f;(-) a strictly monotone increasing mapping of E' into
E', and if A € P, , then equation (1) possesses at most one solution.
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Thus, using Theorem 1, we see that for each F(-) € M M T there
exists at most one solution of F(z) + Az = B for each B € E" if and
only if A € P, . Similarly, with 917, the set of all F(-) of the form (2)
with each f;(-) a strictly monotone increasing mapping of E' onto
(@; , B;) with each «; and §8; such that — e = a; < 8; = «,if F(-) €
N, M F5 and det A # 0, then there exists a unique solution = of
F(z) + Az = B for each B € E"if and only if A € P, . (The “if” part
of this statement is proved in Ref. 2.) A parallel development can be
carried out for equations of the form AF(z) 4+ © = B with 4 a real
n X n matrix, F(-) € M, M F;, and B € E". More explicitly, we can
prove that if F(-) € 9, M Fy , then there exists a unique solution = of
AF(z) + x = Bforeach B & E"if andonlyif 4 € P,.

There may be a temptation to conjecture that whenever F(-) € 9 M
s and A & P, then the equation F(x) 4+ Az = B does not possess a
solution for some B & E". The conjecture is false. In fact, with n = 2,
fi(x) = €%, fa(x2) = €™, and

4 [0 1]
1 0
we have a situation in which (it is easy to show that) there exists a
solution for all B € E*. Of course here for some choices of B the solution
is not unique.
2.5 Theorem 2

Let P and @Q denote real n X n matrices such that

Pii > E|P-‘:‘| and g¢;; > Elq“‘|

g iEf
forallj =1,2,+«+ ,n.Forj=1,2, -+, nletf;(-) denote a continuous
monotone nondecreasing (but not necessarily differentiable) mapping of
E" into itself, and let F(x) = [f,(x)), f2(x2), -+ , fa(z)]¥* for all z € E™.
Then for each R & E", there exists a unique x & E" such that

PF(z) + Qx = R,
and, for any y, € E", x is the limit of the sequence x'”, 2, - - - defined by

y(n) = DPF(x(n)) + Dax(n)
y(n+l) + (P - DP)F(I(n)) + (Q — Du)z(a) _ R

for n = 0, @n which Dp and D, are diagonal matrices whose diagonal
elements cotncide with those of P and Q, respectively.
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2.6 Proof of Theorem 2
Since the continuous mapping [DsF(-) 4 Dg] of E" into E" possesses
an inverse [D-F(-) + Dg]™", the equation
PF(z) + Qz = R

possesses a unique solution z if and only if y = DpF(x) + Dgx is the
unique solution of
y + PFI(D.F(-) + Do) 7'yl + QU(D-F(-) + Do)yl = R

in which P = (P — Dp) and § = (Q — Dy).

Therefore, by Banach’s contraction-mapping fixed-point theorem,
it suffices to show that with the metric p(y, 2) = 2., | ¥i — 2: |, the
operator H defined by

H(y) = PF[(DPF(') + Dq)ily] + Q[(DPF(‘) + Da)_ly]

for all y € E", is a contraction mapping of E" into itself. We show this
as follows. Let ¥y € E" and z € E". Using the fact that

a = dQ:‘[(dPifi(') + daf)_lﬂ-’] + dpifi[(dpif; (+) + doi)_lﬂ’]

for all real @ and all j = 1,2, --- , n, in whieh dp; and dg; is the j*®
diagonal element of D, and Dy , respectively, it is a simple matter to
verify that for all j:

f:'[(dmfi(') + dai)_lyi] - f;[(dPifi(') + dﬂ)’)_lzi]

7; _
= da; + dnis (y; 2;),

and

-1 -1 l
(dpifi(-) + don) 'ys — (dpifi(+) + dai) 2 = T dor (y; — 2))

in whichr; = 1ify; = z; , and, if y; # 2; ,

- filldeifi() + dm)_ly;] — [illdeif:(-) + dﬂi)_]zi].
! (dpif;i(-) + do;) 'Yy — (deifi(4) + dai)_lz:‘

Thus
H(y) — HE)

~ . i = 1. 1
= P diag {m}(y —2) + @ diag {m}(y — 2)
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in which r; = 0. Therefore
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p(H(y), H(z)) = max (M)p(y, 2)

do; + dpr;

in which oq; = Doivy | qii | and ap; = > ivi | Dy | Since aq; < dg;
and ap; < dp; for all j, there exists a positive constant 8 <1 such that

(oai T ‘Tﬂi""r') <
m?k (du;' + dprid T 8
forallv;, =2 0. O

2.7 Theorem 3

If A € Pyand det A # 0, if foreach j = 1,2, ---

tinuous mapping of E' into itself such that
f;(x;) = 0 forall x;
or
fi(x;) >0 foralz; >c¢

and
fix;) <0 forallz; < —e

for some ¢ = 0, then, with F(z) = [fi(x:), f2(x2), -

z € K

, n:f;(+) is a con-

-y fu(@)]tr for all

| Fl@) + Az || = = as ||z|[— =.

2.8 Proof of Theorem 8
We note that

| Fz) + Az || = = as [[z]— =

if and only if

| A7 F@) + 2]l — = as [[z]|— .

With M = A7, let
MF(z) + x = q.

(14)

Since A € P, , we have M € P, ." Since M & P, , we have' for any

y&E L' andy # 6
y(My), = 0

for some index k such that , # 0.
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Suppose that F(z) # 6. Then there exists an index k&, such that
fr.@e ) [MF ()], 2 0
with f;, (z,,) # 0. Thus, using (14),

fo. @) IMF @)k, + fr (@e)Te, = fo, @),

and

fro@e )2, = fi, (e,) g, -

Either z,, &€ [—¢, ¢] or not. If not, then f;, (z;,)x:, > 0 and |z, | S
| i, |- Therefore for some index k, , | z., | < 8, 2 max (¢, | g, |), whether
or not F(z) = 6.

Let M*” denote the matrix obtained from M by deleting the k,
row and column, and let M (;,, denote the &, column of M with the &,
entry removed. Similarly, let zu4,) , g, and F.,,(zq,,) denote the
(n — 1)-vectors obtained from z, ¢, and F(z), respectively, by removing
the k, entry. Then

M™F @) + Zan = qao — Manfe (@)

Since M*? & P, , we can repeat the argument given above. Thus
there exists an index k, , different from k, , such that

|.’E;,, l =4 4 max (c, | Qiks ka) D

in which

| Gk, by | = MMAX I [qun — ﬂf(mfk.(-’”k.)]t,

lzk, |58,
and [, is the index of the component of z(,,, that corresponds to the k,
component of z. By continuing in this manner we can determine positive
constants &, , 8, , +++ , &, depending only on ¢, #, M, and ¢ such that,
with § = max; {5},

|z; | =6 forall j=1,2,---,n
and each §; depends on ¢ such that for any positive constant «, there
exists a constant B;(a) with the property that 8, < B;(a) provided that

|| ¢ || = a. Therefore for any o > 0 there is a 8(a) such that || z || = 8(«)
whenever || ¢ || £ a, which implies that || g || = < as||z|| — «. O

2.9 Theorem 4

Let P and € denote real n X n mairices with P strongly column-sum
dominant. Suppose that there exists a real diagonal matriz D > 0 such
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that DP is strongly column-sum dominant and DQ is weakly column-sum
dominant. Then for all real diagonal mairices D, > 0 and D, >0, all
eigenvalues of (PD, + QD,) lie in the strict (that is, open) right-half
plane.

2.10 Proof of Theorem 4

Since the strict right-half plane contains all of the eigenvalues of P,
there exists choices of D, > 0 and D, > 0 such that every eigenvalue
of (PD, + QD,) lies in the strict right-half plane. Thus it suffices to
show that (PD, + QD,) does not possess an eigenvalue on the boundary
of the complex plane for all D, > 0 and all D, > 0. In other words, it
suffices to show that (with ¢ = (—1)%)

PD, + QD, + il (15)

is nonsingular for all D, > 0, all D, > 0, and all real constants w.
Suppose that (15) is singular for some « and some D, > 0 and some
D, > 0. Then (DPD, + DQD; + iwD) is singular. But DPD, is
strongly column-sum dominant and D@D, is weakly column-sum
dominant. Thus M = (DPD, + D@QD,) is strongly column-sum domi-
nant, and, since
| my; + ded; | > Z'mn“
for all j, in which d; is the j* diagonal element of D, it follows that
det (M + iwD) # 0, which is a contradiction. O

2.11 Definition 2

With g and p nonnegative integers such that (p + ¢) > 0, let 3 de-
note the set of all matrices M such that M = I, @ M, D M. D ---
@ M, with

(k)
M, = ( 1~
‘L P }k) 1
and
0< «® <1
0< =P <1
forallk =1,2,---,p*

* As suggested, if ¢ = 0, then 3/ =M, P M. D --- @ My, while if p = 0,
then M = I,.
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2.12 Definition 3

With ¢ and p nonnegative integers such that (p + ¢
denote the set of all matrices M such that M=I, @ D

@ M, with
1 )
= &
B
and
0 < 6(‘:) < a(k)
0 <8 = a
forallk =1,2, ---, p*

2.13 Theorem 5

Let T & 3, let H be a real matrix of order (2p +

that M'H € P, for all M € 3(a). Then
(T + D)) '(H + D,) € Py
for all diagonal matrices D, = 0 and D, = 0
2.14 Proof of Theorem &
Suppose that for some D, = 0 and D, = 0
(T + D)'(H + Do) & Po .

Then there exists® a diagonal matrix D > 0 such that

(T+ D) "(H+Dy) +D
is singular. It follows that
H4+ A+ TD
is singular, in which A = D, + D,D. Since
A+ TD = M(A + D)
in which M & 3(a), it follows that
H + M(A + D)

is singular, and therefore that

> 0, let 3(0:)
1(-9 M, ®--

q), and suppose

* As suggested, if ¢ =0, then M =M, P M.P --- @ M,, while if p =0,

then M = I,.
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M7H 4 (A + D)

is singular, which is a contradiction since' M'H € Pyand (A + D) isa
diagonal matrix with positive diagonal elements. O

2.15 Theorem 6
Let M7'G € P, for all M € 3, and let det G # 0. Let R be as defined
in Section 1.4. Then forany T € 3
(T4 D)'[(I +GR)'G + D] Py

for all diagonal matrices D, = 0 and D, = 0.

2.16 Proof of Theorem 6

Since det G # 0 and M 7'G € P, for all M & 3, it follows (see the
proof of Theorem 7 of Ref. 2) that

MY+ GR)'GE P,
for all M & 3.
Suppose that for some T' & 7 and some D, = 0 and D, = 0

(T +D)7'[(I + GR)Y'G+ D] & Py .
Then, following the proof of Theorem 5, we would have
det (M™'I + GR)Y'G +(A+ D)} =0

for some M & 3 and some diagonal matrix (A + D) with positive
diagonal elements, which is a contradiction. [
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