Rain Attenuation and Radio
Path Design

By C. L. RUTHROFF

(Manuseript received August 12, 1969)

This paper describes the application of the rain attenuation theory of
Ryde and Ryde to the design of Radio Systems. It shows that an upper
bound on the outage time due to rain attenuation can be computed from a
measured point rain rate distribution. The paper also describes a suitable
rain gauge.

I. INTRODUCTION

Heavy rainfall on a radio path absorbs and scatters power transmitted
at frequencies above 10 GHz and causes large fading of received signals.
At 20 GHz, for example, the attenuation due to a uniform rain rate of
100 mm/hr is about 10 dB/km. Rain attenuation is so severe at these
frequencies that for some applications transmission paths must be re-
stricted to a few kilometers or less rather than the tens of kilometers
common at lower frequencies. Since the cost of a radio system increases
with the number of repeaters it is important to use the longest path
allowed by the transmission objectives. This path length can be deter-
mined accurately only if the fading outage due to rain attenuation can
be predicted.

Bussey estimated fading statistics on a microwave path from point
rain rate data.' He used the rain attenuation theory of Ryde and
Ryde® * to convert rain statisties to fading statistics and since 1950 his
results have been used in the design of radio systems.” However, as
operating frequencies increase and path lengths get shorter, increased
precision of fading estimates is required for optimum radio system
design.

Over the years a number of experiments have been performed in
which attenuation was measured on a path at specific times and com-
pared with values computed from rain rates measured by rain gauges
spaced along the path near ground level. Here too, the theory of Ryde
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and Ryde was used. In general there is wide disagreement between com-
puted and measured values. Also, Medhurst questions the validity of
the application of the theory to a practical rainfall situation.’ Since
the theory was derived for uniform rain the question is a good one—
rain on a mierowave path is seldom uniform.

In this paper the theory of attenuation by uniform rain is applied to
the practical rainfall situation. The radio path is defined as the volume
of the first Fresnel zone and the rain attenuation is assumed proportional
to the number of raindrops in this path volume. Of course, this expres-
tion reduces to that of Ryde and Ryde when the rain is uniform.

Rain rate is a vector which can be written as the produect of a rain
density and the velocity of raindrops. Rain density is proportional to
the number of raindrops per unit volume.

Since rain rate is a vector the expression for attenuation in terms of
rain density in the path volume can be transformed by the divergence
theorem into an expression for attenuation as a function of the rain rate
on the surface of the path volume. From this formulation the following
results emerge:

(7) A natural definition of rain rate which is appropriate to the radio
situation.

(#%) A time interval, T, , exists during which no significant fade ean
oceur. T, is determined by the path length, the frequency of operation
and the speed of raindrops.

(797) A rain gauge is described which is suitable for measuring rain
rate in accordance with the definition mentioned in (z).

By applying these results, an upper bound on the outage time due to
rain attenuation is derived. The bound can be computed from a meas-
ured point rain rate distribution using the results of uniform rain
theory. The bound can be made tight by the proper choice of rain rate
integration time interval. A method of estimating this interval from
measured path loss distributions is given.

II. GENERAL CONSIDERATIONS

2.1 The Radio Path

The radio link consists of two narrow-beam antennas pointing directly
at each other over a distance of a few hundred to a few thousand meters.
The space, or volume, of the path is taken to be the first Fresnel zone.”
This means that only the energy confined to that volume contributes
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significantly to the total energy collected by the receiving antenna.

The first Fresnel zone is a long, thin, prolate ellipsoid of revolution.
For a path of length L at wavelength }, it has a major axis L and equal
minor axes (A\L)! and is terminated at the ends by the antennas. The
radio path is defined as the volume enclosed by the first Fresnel zone
and the two antennas. Figure 1 is a sketch of the path. When we speak
of rain falling on the path we mean rain falling through this volume.

2.2 Rain Rate as a Vector

A theory of rain attenuation has been formulated by Ryde and
Ryde,*™* and others, and a good account of it is given by Medhurst.’®
The attenuation in a radio path depends upon the number and size of
the raindrops and not explicitly upon their speed or direction. But the
quantity usually measured is rain rate and it does depend on the speed
and direction of the raindrops. Since rain rate is the product of a density
and a veloeity, it can be interpreted as a vector.

Let there be a uniform distribution of N, drops of water per cubic
centimeter in the space between two antennas. The drops are spherical
with diameter D and velocity vp . The fraction of volume oceupied by
water is defined as the rain density

pp = gND D, (n

Rain density is a dimensionless, real, nonnegative quantity. The rain
rate for drops with diameter D and velocity v, is

R.D = pDU;J .

The direction of the rain rate is the direction of travel of the drops.

ANTENNA ANTENNA

Iig. 1 — Radio path.
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The vector expression for rain rate is, therefore,
Rp = po¥s, (2)

where a boldface letter denotes a vector quantity.
In general a rain storm has drops of many diameters and the total
rain rate is a summation over the drop diameters present.

R = ; PoVD- (3)

2.3 Attenuation and Rain Density

For a rain consisting of uniformly distributed drops with diameter D
the attenuation of radio waves with wavelength X is®

NN

Attenuation = 4.343
27

A, X 10°dB/km )

where A is a function of the drop diameter, the wavelength, and the
dielectric constant of water. Substituting from (1) the attenuation is

ap = k(\, D)Lpp dB, 6))
where
2
k(h, D) = 3 X 4.343 222 5 107,
=D

The result in (5) is extended to the case of nonuniform spatial distri-
bution of raindrops by replacing the uniform rain density in (5) with
the average rain density in the radio path. The path attenuation is
therefore assumed to be

an(f) = kQ\, D)%fff po(@, 9, 2; ) AV dB. ©)

This expression reduces to (5) for uniform rain density.

There are neither sinks nor sources of rain in the radio path so, for
constant drop diameter D, the hydrodynamic equation of continuity
which applies is®

a
V (po¥p) + % = 0,

where the time and space variables have been omitted for convenience.
Substitution into (6) gives
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da;ft) k(\, D) = fff[ V- (po¥p)] AV

and transforming to a surface integral by the divergence theorem’ we get

denll) _
wll) _ 1, D)If — pu¥p-ddl, @)

where the integral is over the surface enclosing the volume V.

Expression (7) relates point rain rate to path attenuation. The vector
differential dé¢ has a magnitude equal to the differential area of the
surface S, is normal to it and directed outward. Consider a small area
on the surface S. The rain rate at this point is ppv, ; the component of
this rain rate which is normal to the surface and directed into the path
volume is —p,v,-dd/| dé |. The integral over the surface S is the in-
crease in water density on the path in unit time which causes an increase
in attenuation.

Let the surface S enclosing the radio path volume V be described by
orthogonal parametric curves on the surface.'’ A point P(z, y, 2) on the
surface can be written P(u, v) where,

(L) .
r = —5—SsSmnu cos v
2
L
y =5 cosu
(AL)*
2 c51[1 u ‘4]_11 v.

With this transformation, and substituting R, from (2), (7) becomes

dap(t)

0 _ ook [ [R5 0] ds, (7a)

where ds is the transformed vector surface differential. Integrating both
sides over time T and dividing by T results in the following equation.

ol =l gy, py L [N Ryt or ] foas,

(8)

where the unit vector r is defined by Rp(w, v; t) = Rp(u, v; t)r.
The left side of (8) is an approximation to the rate of change of
attenuation since, by definition,
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dan(t) _ 1:  len(t + T) — an(®)]

di T—a T

Whether attenuation or rain rate is measured, the measuring instrument
has some time constant, or integration time, T'. Since, in a microwave
system, an outage of a millisecond may be significant, an important
question arises—can we be sure that the measurement will give us all
the important data? In other words does an integration time T', exist
such that for T < T, , (8) is a good approximation to (7a)? The ex-
istence of T, is justified by the following physical argument.

Tor t < t, let there be no rain on the path. At ¢ = ¢, let the rain rate
at every point on the surface S be B, = pyv, and be directed inward in
the direction of the shortest line from the surface to the path axis. In
order that a substantial fade occur, the rain will have to travel a sub-
stantial fraction of the shortest distance from the path surface to the
path axis. The average of this distance is (AL)*/3 and the average time
required for the rain to reach the axis is (AL)'/3v, . An integration time
T, <« (AL)}/3v, is therefore sufficient since substantial fades will not
oceur in times less than this. If 7' is chosen small enough, say T' = T, ,
(8) is a good approximation to (7a), and can be written

dagt(t) ~ k(\, D) LT/_ fL {— [;Dj: o Rp(u, v; O)r dt]}-dS. 9

The quantity in brackets is the rain rate at the point (u, v) averaged
over time T, and defines a suitable rain rate measurement. A rain gauge
which measures rain rate in accordance with this definition is deseribed
in the Appendix. If the rain rate is known at every point on the surface
of the radio path the time derivative of attenuation can be computed
from (9).

Sinece rain rate cannot be measured at all points on the surface of the
path we consider what can be done with a more reasonable experiment—
one or more rain gauges near the ground in the vicinity of the path.
No satisfactory theoretical expression has been derived for computing
attenuation from rain rate measurements made near the ground in the
vicinity of the path. And the wide disagreement between computed
and measured attenuations in experiments of this type described in the
literature support the conclusion that the empirical expressions used
are also unsatisfactory.® Also, the requirements of the sampling theorem
must be met if the attenuation is to be computed from sampled rain
rates.!* Visual observation of rainfall reveals a spatial structure so fine
that an unreasonably close spacing of rain gauges would be required to
meet these requirements.
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III. POINT RAIN RATE AND PATH ATTENUATION DISTRIBUTIONS

3.1 I'mportant Assumptions

Fortunately, the attenuation as a function of time is not required
for the design of radio links; for radio link design the fraction of time
that the path attenuation exceeds the fading margin is the important
parameter. Thus, we need only a suitable statistic of path attenuation
which can be related to a similar statistic of rain rate at ground level
in the vieinity of the path. In this section a point rain rate distribution
funection is defined and related to the path attenuation distribution
funetion.

Let the rain rate be R(u, v; t) on the surface S of the path. At some
point near the path—on the ground beneath the path, for example—a
rain gauge measures a sequence of rain rates given by

Lo+ (n+1)T

ROKz 1) =75 " [-R@yznoMa o
where k is a unit vector normal to the collecting surface of the rain
gauge and z, y, z are the space coordinates of the rain gauge. Suppose
that rain rate measurements have been made for a very long time. The
data available is a large number of rain rates R,(T, k, z, ¥, z), one for
each interval T. The data is organized by choosing a rain rate R, and
computing the fraction of intervals 7' for which the rain gauge recorded
rates less than R, . This fraction is denoted by

PIR(T, k, z,y,2) = R,, (11)

and is a point rain rate distribution funetion; it is a function of R, , the
integration time 7', the location of the rain gauge, and the pointing di-
rection k. The optimum direction for k is expected to be vertically up-
ward in many regions; in any case, the rain gauge must be pointed in the
direction k such that for the high rain rates of interest, that is, for
k,>R,,

P[Rn(T: k: T, Y, Z) § RD] é P[Rn(T: l; x, Y, Z) g Ro];

where 1 is any unit vector.

For the radio systems of interest, the rain rate, R,, , may be chosen
at least one order of magnitude greater than the mean rain rate. In
this country the mean rain rate is on the order of 0.1 mm/hr whereas a
reasonable value of R,, may be 10 mm/hr.

Let the radio path be divided into a large number, 7, of volume
elements such that the rain rate is uniform in each element. The average
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rain rate on the path is

R...(t) = }1 iR.-(:c.- VUi 2 1), (12)

i=1

In integral form this is written

Ro) =+ [[[ R v,z 0 a7, (12a)

Two assumptions are made:
() In a region containing the radio path the point rain rate dis-
tribution funection is independent of position and (11) can be written

PIR(T, Kk, z,y,2) < R,] = P[R(T) £ R,]. (13)

(#7) For the rain rates of interest, that is, for B, > R, , and for
integration time T, the distribution function of the average rain rate
on the path is greater than, or equal to, the point rain rate distribution
function.

P[R,,.(t, T) £ R.] 2 P[R.(T) = R.], (14)

where,
1 t+ 7T
R, 1) =5 [ R d.

The first assumption is that the point rain rate distribution function
is the same whether it is measured below the path, on the path, or
near the path. It does not mean that the rain rate at any time ¢ is the
same everywhere in the region—an essential distinetion. The assumption
does not mean that rain rate is a stationary random process in either
the wide sense or the strict sense. In statistical language it means that
the rain rate can be considered a first order stationary process over a
small interval.'® The second assumption reflects Bussey’s observation
that high rain rates extend over smaller areas than do lower rain rates.

3.2 A Bound on the Path Attenuation Distribution

If the speed of the raindrops does not change while in the radio path,
the attenuation can be written in terms of rain rate. From (6),

ap(f) = M—};LQL? f[f Rp(z,y,z; ) dV. (15)

Let the rain have the Laws and Parsons distribution of drop diam-
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eters. Then
Ro(z,y,21) = Rz, y, 2 0)pp, (16)
where pp is the fraction of water in the rain consisting of drops of

diameter D. Substituting into (15) and using the definition (12a) the
expression for attenuation is

ap(t) = ko‘ D)I poR...(1). 17
The total attenuation is
al) = LR.() D20y, (1)

The quantity represented by the summation has been computed by
Ryde and Ryde and by Medhurst for the Laws and Parsons drop
diameter distribution and for the terminal velocities of water drops in
still air.®

In Section 2.3 we showed that negligible changes oceur in «(f) in a
time T = T, . Thus, (18) can be written

al) ~ oty ) = LR, ) B2y, (19)

where
olt, ) = L f a(l) dL.
The path attenuation for a uniform rain rate R, is, from (18),

k(\, D
a, = LR, ; '(Tﬁ)Pn . (20)

D

The desired bound can be found by substituting from (19) and (20)
into (14).

Pla(t) = a.)] 2 P[R.(T.) = R,]. (1)

This bound says that if the measured point rain rate distribution is
converted to an attenuation distribution by (20), the outage time
predicted is greater than, or equal to, the outage time that occurs on
the path. The application of this bound is illustrated in Section V.

1IV. EXPERIMENTAL DETERMINATION OF INTEGRATION TIME

It was shown in Section 2.3 that if the rain rate integration time T'
is short enough no significant fades will be missed; specifically if T =
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T, <« (\L)}/3v, , it is small enough. This determination of T, is based
on considerations as to what could happen on a path. Fades may occur
slowly compared with T, so it is worthwhile to determine whether a
larger integration time may be practical.

Suppose that path attenuation and point rain rates have been meas-
ured with an integration time 7' < T, . Then the distributions com-
puted from the measurements will satisfy the inequality (21) which
can be written

Pla, T) £ «) =2 PIR(T) = R), T=T.. (22)

Now, from (14), this inequality holds for any T' and since T' = T, all
fading of significance is included.

Let the attenuation distribution be computed from the path loss
measurements for integration times of 7', 27, 3T, -+ , as long as the
distribution remains substantially unchanged. The point rain rate
distributions computed for the same integration times are such that
the inequality holds and

P{a(tx mT) = av] = P[Rn(mT) = Ro]: (23)

forallm = 1,2, 3, --- . Now suppose that Pla(t, mT) < a,] remains
substantially unchanged for all integers m up to M. Then all of the
corresponding rain rate distributions result in valid upper bounds on
outage time as shown by (23); one of these will be the least upper
bound.

From experiments of this kind, practical values of integration time
can be determined. It is expected (but not proven) that the integration
time which results in the least upper bound will be the largest value
for which the attenuation distribution remains unchanged, that is, MT.

V. DISCUSSION

Experimental rain rate distributions which meet the requirements
of this theory are not available. For this reason a careful experimental
verification eannot be made now. There is reason for optimism, however.
The upper bound on outage time computed from Bussey’s' one-minute
point rain rate distribution is remarkably close to the one-minute
attenuation distributions reported by Semplak and Turrin.’*** These
distributions are shown in Fig. 2. Semplak and Turrin also report that
the attenuation distribution remains unchanged for shorter integration
times.™

The simplest application of this theory to the design of a radio path
requires only a point rain rate distribution measured as described in
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Fig. 2— Comparison of computed and measured attenuation distributions for
one minute integration time.

Section III. In this case the rain rate integration time is computed
from the frequency, the path length, and the maximum raindrop veloe-
ity. This measured point rain rate distribution can be converted to
an upper bound on attenuation outage time by use of expressions
(20) and (21). The upper bound obtained this way is not necessarily
the least upper bound whereas the least upper bound is required for
optimum radio system design. The least upper bound can be computed
from the point rain rate distribution if the corresponding optimum rain
rate integration time is known; the optimum rain rate integration time
can be determined from a path attenuation experiment as described
in Section IV.

It is important, then, to determine the optimum integration times
in those regions of the country where radio systems above 10 GHz may
be used. The optimum integration time is a function of wavelength,
path length, and the climate in which the path is located. A few path
loss measurements, located in different eclimatic regions, would yield
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valuable results. In these experiments attenuation distributions would
be measured as functions of path length and wavelength, and optimum
integration times computed from this data and the measured point rain
rate distributions. It may be, for instance, that the optimum integration
times are about the same everywhere; if so, the path loss experiments
would show it and, thereafter, only point rain rate measurements
would be required.

The accuracy with which the least upper bound predicts the outage
time on a radio path cannot be stated precisely until further experi-
mental data is available. It may be anticipated, however, that the
accuracy will decrease as the path length increases. For example, if
the path is long compared with the dimensions of thunderstorms, the
least upper bound prediction will probably be pessimistic, especially
for large fades. On the other hand, for paths shorter than the dimensions
of thunderstorms the least upper bound prediction may be accurate.

A rain gauge, from which the rain rate in each fixed integration
interval can be determined, is suitable for the determination of the
point rain rate distribution function defined in Section III. Morgan
has built and deseribed such a rain gauge recently, and another rain
gauge proposed for this purpose is deseribed in the Appendi 18

No attempt has been made to include the effects, on attenuation, of
raindrop distortion, temperature, radio wave polarization, and so on,
in this theory.
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APPENDIX

An Instrument for Measuring Point Rain Rales

The instrument described measures rain rates in accordance with
the definition of (9). Figure 3 illustrates the basic element in the rain
rate instrument—a depth gauge consisting of a funnel, a cylindrical
capacitor, and a shutter for draining the capacitor. The funnel is exposed
to the rain for a specified time T and then covered. The rain which
passed through the collecting area of the funnel drains into the cylin-
drical capacitor and forms a column of water as shown. The dielectric
constant of water increases the capacitance—the greater the height of
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FUNNEL

b °
’ TO MEASURING CIRCUIT

——CYLINDRICAL CAPACITOR
(METAL PLATES)

DIELECTRIC-” ~~ —MOVABLE SHUTTER
FOR DRAINING
CAPACITOR

Fig. 3 — Capacitor depth gauge.

the water column, the greater the capacitance. When the funnel has
completely drained, the capacitance (and hence the volume of water)
is measured.

There are two features of importance about this depth gauge.

(z) The interval of exposure, or integration time, can be determined
precisely by careful operation of the shield over the funnel, and is not
dependent on the rain rate.

(72) The time allowed to drain the funnel and measure the capacitance
is independent of the exposure interval 7. Sufficient time can be allowed
to drain the funnel and stabilize the water column prior to measuring
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the capacitor. This eliminates fluctuations due to the random behavior
of water flow on the surface of the funnel.

When the shield is over the depth gauge no rain is collected. The
complete rain gauge consists of a number of depth gauges arranged as
shown in Fig. 4. In this illustration, ten depth gauges are shown, with
number 2 in position to collect rain. When the interval ends, the shield
rotates, covering depth gauge number 2 and exposing number 3.

A rotating shutter for draining the depth gauge capacitors is shown
in Fig. 4B. The shutter is fixed to a common shaft with the funnel
shield of Fig. 4A. The operating sequence is as follows. There are ten
time intervals of length 7 in a single rotation of the shaft. With the
aid of Fig. 3 the following sequence can be seen to oceur.

Time Interval Status of Depth Gauge
Number #2

1 Collecting Water Draining Capacitor
2 Draining Funnel Collecting Water
3 T Draining Funnel
4
: T
6 |
7 W
8 Measure Capacitance |
9 Draining Capacitor Measure Capacitance

10 Draining Capacitor Draining Capacitor

The rain shield steps rapidly from gauge to gauge. There is always
one gauge collecting rain; one measurement is made in each time in-
terval T'. If the measurement starts at time ¢, and the rain gauge points

~ROTATING SHUTTER
/" FOR DRAINING DEPTH

10 , | GUAGE CAPACITORS,
_~DEPTH GAUGE NO. 3 AND 4 DRAINING
NO.2 EXPOSED
TO RAIN

CAPACITCR
CONN_FOCTIONS

MEASURING
CIRCUIT

T —ROTATING
SHIELD

(@) (b)

Fig. 4(a) Top view of rainrate gauge. (b) Section of rainrate gauge.
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vertieally upward, the output of the instrument is a sequence of meas-
urements

tot(n+1) 7

Ri(t2,9.9 =5 [ R() dt.

e+nT
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