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This paper concerns approzimation in the Chebyshev, or minimax
sense such that (i) a minimax approximation implies a maximum number
of zero error points separated by equal error extrema, and (it) the approz-
tmaling function can be so formulated that the disposable parameters
are all the coefficients in a polynomial, which may however be part of a
more complicaled function the rest of which is prescribed. Weighted minimaz
polynomial approximations can be included, by mulliplying the approz-
imaled and approzimating functions by the weight factor. Analytic methods
are described which yield approximately equal error extrema. They are
sufficienily simple so that they may sometimes compete with currently
used ilerative numerical methods, especially when the degree of the dis-
posable polynomial is large. Their most probable utility concerns explora-
tions of available accuracies over wide ranges of design paramelers such
as degree of disposable polynomial, inlerval of approximation, and coef-
ficients in prescribed parts of the approximating function.

1. INTRODUCTION

This paper concerns approximation in the Chebyshev sense, over a
prescribed interval z, < = = z, of a continuous real variable z. As
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defined, an approximation in the Chebyshev sense is a minimax approx-
imation—one in which the maximum error is as small as is possible
within given constraints on the approximating function. Minimax
approximations in which errors are weighted by a prescribed function
of the independent variable can also be treated as Chebyshev approx-
imations, by multiplying the approximated and approximating functions
by the weight function.

Frequently, but not always, approximation in the Chebyshev sense
implies an error of the “‘equal ripple” sort illustrated in Fig. 1—that is,
a sequence of equal positive and negative extrema with monotonic
variations in between. General necessary and sufficient conditions for
this are not known. However, the following conditions are sufficient:
the p disposable parameters of the approximating function are to be
such that the approximation error can be made zero at p arbitrary
points within the approximating interval. Referring to Fig. 1, the
arbitrary error points divide the approximation interval into p + 1
segments. There is to be a particular division such that the error function
achieves its maximum magnitude p + 1 times—at the two edges of
the approximation interval and once within each of the p — 1 interior
segments. There are to be no other local extrema within the approx-
imation interval. Generally, shrinking any one of the p + 1 segments
(by bringing two zero error points closer together or one closer to an
edge of the approximation interval) tends to reduce the corresponding
error extremum. Conditions are to be such that all the p + 1 equal
extrema can be reduced simultaneously only by shrinking all the
p + 1 segments, which is impossible without shrinking the given approx-
imation interval. These conditions are encountered in many practical
problems and are assumed here. Thus we are concerned only with equal
ripple approximations like Fig. 1.

Exactly equal ripple approximations have long been known for a
very few special cases (which have been useful for example in filter
design). Iterative numerical methods have been developed for the
solution of various more general problems and are deseribed in text-
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Fig. 1 — An equal ripple error function (p zeros; p + 1 segments; p - 1 extrema).
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books such as Ref. 1. In contrast, this paper describes analytical pro-
cedures which yield error extrema of approximately equal amplitude.
Their full range of validity has not been determined. However, they
are clearly appropriate for a substantial, although poorly defined class
of problems. It is characterized further later.

Useful applications are likely to concern equal ripple problems which
have not been solved exactly by analysis and which involve so many
disposable parameters that iterative numerical solutions are likely to
be more costly. The most useful applications probably concern prelim-
inary explorations over primary design parameters (such as intervals
of approximation, magnitudes of errors, and degrees of approximating
funetions) before numerical refinement of specific designs. Accordingly,
this paper emphasizes relatively simple means for approximating equal
ripples and says little about more complicated higher order approx-
imations.

The procedures apply only to approximating functions characterized
as follows. The disposable parameters must be all the coefficients in a
polynomial (which may have been obtained, however, by some sort of
transformation on the original independent variable and/or the approx-
imating function). This is referred to as the disposable polynomial.
On the other hand, the disposable polynomial may be only a part of a
more general approximating function the rest of which is prescribed
in advance (for example, the numerator of a rational fraction with a
prescribed denominator). Weighted as well as unweighted minimax
approximations are included. For some problems, closed form formulas
are obtained for approximate error size as functions of the degree of
the disposable polynomial, usable for degrees of any size. For other
problems, the error size is related to an eigenvalue of a certain matrix
equation, but the order of the matrix may be small even though the
degree of the disposable polynomial is arbitrarily large.

A primary concern here is the distinction between simple truncation
of infinite series of Chebyshev polynomials and approximation in the
Chebyshev or minimax sense. The functions which we are to approx-
imate can be expanded into infinite series of Chebyshev polynomials.
Approximations with polynomials of degree n can be obtained by
simply truncating the infinite series after the terms of degree n. How-
ever, simple truncation does not usually give an approximation of the
minimax sort. A polynomial of degree n which approximates the given
function in the minimax manner can be represented as a linear combi-
nation of Chebyshev polynomials, but the coefficients are usually
different from those in the truncated infinite series.

One way to approach approximation in the Chebyshev sense is to
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start with the truncated series of Chebyshev polynomials. Then cor-
rections to the coefficients are determined, to obtain equal ripple error
functions. Such a procedure has been used before, for example in Refs.
2 through 4, and is used here. Departures from the previous work
known to the author include simple approximations to ideal solutions
formulated for more general approximating functions and for weighted
as well as unweighted minimax approximations, as opposed to more
rigorous analyses of more restricted problems.

Sometimes truncation of an infinite series of Chebyshev polynomials
yields an approximately equal ripple error function without further
adjustment of the coefficients. The procedures for adjusting the coef-
ficients, described herein, sometimes also give an initial insight into
whether or not adjustments are needed.

It is interesting to note that some 35 years ago a conference was
held in the office of T. C. Fry, at Bell Telephone Laboratories, to
consider some filter patents offered for sale by W. Cauer. One of the
patents disclosed Cauer’s equal ripple image impedance and transfer
funetions, which soon became famous among circuit theorists, but did
not include proofs or derivations. At the conference, S. A. Schelkunoff
asserted a very simple principle which enabled him to confirm and
interpret Cauer’s formulas. However, it did not explain how Cauer
might have derived or discovered the formulas. The principle applies
also to more general equal ripple approximations. It does not, by
itself, solve the approximation problem, but it does furnish a starting
point from which to develop procedures which do. We call it Schelkunoff’s
principle.

Section IT describes Schelkunoff’s principle. Section III solves two
problems for which exactly equal ripple solutions are easily found.
Section IV develops general procedures, whereby approximate so-
lutions can be obtained for a large class of problems. Section V further
clarifies the general procedures by means of examples.

Various aspects of the procedures described here bear some relation
to other work. Section VI notes some of these relationships. Finally,
Section VII reviews and summarizes the general conclusions, including
a comment on the possibility of generalizations to disposable rational
fractions.

II. SCHELKUNOFF'S PRINCIPLE

Consider first a function T,(z) proportional to a Chebyshev poly-
nomial, defined by
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T.(x) = 3&5} cos (n cos ' ). (1)

It is illustrated in Fig. 2a, for n = 4. It may be regarded as an “equal
ripple” approximation to zero, over the interval —1 = = = +1, by
a polynomial of degree n in which the coefficient of 2" is required to
be K, . Let

r = cos g. (2)

Substitution in equation (1) gives

T.(x) = T.(p) = 21"(-"1 Cos ne. (3)

The new function is illustrated in Fig. 2b, again for n = 4. Note that =
is periodic in ¢ with period 27 and T.(¢) is periodic in ¢ with period
27 /n. Thus there are n periods of T',(¢) in each period of .

Stated with a little more detail, we have this situation: The original
funetion T,(z) has “equal ripples” in the sense of equal extrema. How-
ever, the extrema are not uniformly spaced and hence the ripples
differ as to width. The periodie transformation from = to ¢ has two
important properties. As ¢ increases, x sweeps back and forth across
the approximation interval, —1 = z = +1. In each interval in which
z varies monotonically from =41 to 1 the ¢ scale is a distortion of the
x scale such that the ripples of T,(¢) are uniformly spaced and are

Fig. 2 — Tllustrating Schelkunoff’s principle.
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also otherwise identical. The ripples could not be made identical by
any distortion of the z scale alone if T.(x) had unequal maxima or
unequal minima. This is a special case of Schelkunoff’s principle.

More generally, let E(z) be a function of x with the following prop-
erties over an interval 2, £ 2 < z; : The function E(z) is real and single
valued; there are a number of local maxima, all equal; there are a
number of local minima, all equal; the equal extrema for the interval
include the end points E(z,), E(z,) (at which dE/dx need not =0).*
Then Schelkunoff’s principle asserts the existence of a transformation

x = I'(e) (4)

with the following properties: The original variable 2 is periodic in the
new variable ¢; as ¢ increases @ sweeps back and forth over the given
interval @, < z < =z, , monotonically each way once each period; the
periodic function

E(p) = E[T(y)] (5)

has a number of periods in each period of z, equal to one less than the
number of extrema of E(z) in the given interval of & (including the end
points). In applications to approximation in the Chebyshev sense,
E(z) and E(¢) represent the equal ripple error, as functions of x and .

The transformation @ = T'(¢) clearly is not unique, for there are
obvious transformations on ¢ itself which retain the desired character
of E(g). For example, ¢ can be replaced by ¢ + ¢(¢), where g(e) is
periodic with the same period as E(¢) and is such that ¢ + (o) is
monotonic in ¢. When E(x) is continous (in the given interval of x),
a particular ¢ + g(¢) will make #£() sinusoidal.

We do not attempt a very general, rigorous proof of Schelkunoff’s
principle; we merely use it as a guide to a strategy for solving minimax
problems. However, a demonstration of the principle for a specific
class of problems will be implicit in what follows, for we shall find
transformations which do in faet change our equal ripple errors into
sinusoidal errors.

In later sections we will again use the transformatlon (2), or a gen-
eralization for end points other than 2 = =1. Usually, however, it
will not be a Schellcunoff transformation. We will use it to transform
the disposable polynomial in x into a finite Fourier series in ¢. The coef-

* Problems ean be found such that minimax approximations have equal ex-
trema which do not include both end points. Then the number of local extrema
for the approximation interval is abnormally large when the end points are
counted. Such problems are not considered here.
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ficients of the Fourier series are to be chosen in such a way that the
overall approximation is approximately sinusoidal on a distortion of
the ¢ scale. Similar strategies have been used before, for example in
Refs. 2 through 4.

Means for determining the distortion of the ¢ scale and the adjustment
of the Fourier coefficients are introduced by means of two examples in
the next section.

II1. TWO GENERALIZATIONS OF CHEBYSHEY POLYNOMIALS

The two problems described below are solved exactly. The form of
the solutions suggests approximate solutions to more general problems.

3.1 A Rational Function Generalization of Chebyshev Polynomials

Consider the following generalization of Chebyshev polynomials: Let

To®) = 5 ®)
in which P(z) is a polynomial of degree n and D(z) is a polynomial of
degree < n. Suppose D(z) is preseribed in advance and P(z) is to be
chosen in such a way that Tp.(z) has equal ripples like those of a
Chebyshev polynomial in the interval —1 < o = +1. More speeif-
ically, require that Tp,(x) = =1 at n — 1 local extrema within the
interval —1 < 2 = +1 and at the end points * = =+1. Real zeros of
D(z) are to be excluded from the interval —1 = » = +1. The con-
ditions on the extrema insure that all # of the zeros of P(z) will be in
the interval.

Let ¢ be defined again by equation (2) and note that the real axis
in the ¢ plane corresponds to the real interval —1 £ & = +11n the
2 plane. If cos ¢ is written in terms of exponentials, the polynomial
P(z) can be related to ¢ by

P@) = PE*) + P’ (7)

in which P(-) is a polynomial of the same degree, n, as P(-). Given the
coefficients of P(-) it is a simple matter to compute the coefficients of
P(-). We shall consider our problem solved when we have found the
coeflicients of P(-) required for our equal ripple conditions.

It is convenient to relate the prescribed denominator D(x) to ¢ in
the following slightly different way:

D(x) = D('*) D %)
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in which D(-) is a polynomial of the same degree, < n, as D(-). If
D(:) and D(-) are written in factored form there is a one to one corre-
spondence between factors. Thus if (z, — z) is a factor of D(z) and
(1 — v,e'%) a corresponding factor of D(e'?),

To — T = Ml — 7)1 — v,6°%) ©)

in which M, is a constant scale factor.
By equation (2), ¢’ = =41 at 2 = =1, and hence

T, 1= M (1 & ~,)° (10)

Given z,, two solutions for v, are easily obtained, for which |+, | is
respectively < 1 and > 1. (Exclusion of zeros z, of D(z) from the real
interval —1 = z = -1 removes the possibility of |v,| = 1.) We need
the solution for which [ v, | < 1, for reasons which will soon be apparent.
From equation (11), with the sign of the square root chosen for | v, | < 1,

1—v, |z, —1] |::L‘,,—1j|}
1+%u[a:g+1]’ Re | 71| >0 an
The secale factor M, need not concern us at this time.

The function Tp,(z) can now be mapped into a function Tp.(¢) in
terms of equations (7) and (8).

P +Pe) (12)
D(e'*) D™ '%)
By Schelkunoff’s principle, our requirements on the extrema of Tp.(z)
imply that T'p.(¢) has the following special form
PeE*) + PE™)
D('") DE ") '

— ilnp+f(e)] —ilne+f(p)]
= 3" + 3¢ . (13)

TD'n(x) = T.Dn((p)

TD‘I‘I(¢) =

The variable ¢ + (1/n)f(e) is a distortion of the ¢ seale for Schelkunoff’s
principle, for which f(e) is to be periodic in ¢ with period 27 and ¢ +
(1/m)f(e) is to vary monotonically with ¢.

Given f(¢) one can easily find P(e'?) by equation (13). The problem
is to find an f(y) for which P(-) is a polynomial of degree n. From
equation (13)

P{E'®) + P %) = Jl 3" Due’?) Dole") } (14)

+ %e—i[nw-t‘f(v)l Dﬂ(g:‘p) Dﬂ(e—l'p)

If P(e*?) is to have no terms in ¢ with ¢ > n, ¢'’**’ needs to cancel
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out D,(e**). This suggests
GU(P) — D(e—V'AP) (15)
D)
(and note that this does make f(¢) real when ¢ is real). Substitution
in equation (14) gives

P(E'?) + P(e*%) = 3™ D) + 3 ™° D*(e'"). (16)

Expanding the right side gives a polynomial in ¢'?. When polynomial
D(-) is of degree < n (as assumed) there will be no powers of e'¢ out-
side the range —n to +n. Collecting positive powers (and half the
constant term) gives P(e’).

The function f(¢) determined by equation (15) is periodic in ¢ with
period 27 provided the zeros of D(\) lie outside the unit circle in the
A plane, which is assumed by equation (11). It is easily shown that the
same condition makes ¢ + (1/7)f(¢) monotone in ¢. Once P(-) is known
it is a simple matter to find P(z) by means of equations (2) and (7).
It is probably simplest to omit the seale factor M, of equation (10) in
the initial formulation. This does not affect the ratio in equation (15),
but only the scale factor of the polynomial P(z), which can be corrected
later on [for example to meet the condition Tp,(1) = 1].

Obvious generalizations of the problem include the following: For
extrema A =+ J (instead 0 == 1) use

F(z) = A & JTp.(z). (17)
In a more general interval of z, say z, < = < x, , replace equation (2) by

ﬂl'.t.‘l‘-”l?a Ty —
e L

s cos @ (18)

and change equation (10) to
T, — 2y = M,(1 —v.)°, =z —a=M1+7).  (19)

The funection F(z) defined by equation (17) has long been used by
filter theorists, but previous derivations have been quite different.’
The form of equation (16) suggests a similar solution to the problem
described below.

3.2 An Irrational Generalization of Chebyshev Polynomials

Now let
P(x)

Tl = Sy

(20)
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in which P(z) is again a polynomial of degree n but S(z) is a poly-
nomial of degree < 2n. Suppose S(z) is prescribed and that Ts.(z) is
to meet the same conditions as to extrema as Tp,.(z) in the previous
subsection. In place of equation (8), we can now use

S(@) = 8('*)SE %)
to determine a polynomial S(-). We can then replace equation (15) by

oo - [27]

and then equation (16) by
P@E'®) 4+ Ple™'%) = %™*8(e™"%) + " S(E™). (22)

This makes P(-) again a polynomial of degree n. Note that Ts.(z)
cannot be used in place of Ty, in equation (17), with A # 0, without
changing the polynomial character of the numerator.

1V. GENERAL FORMULATIONS

This section shows how a large class of minimax approximations can
be approximated by generalizing the manipulations described above.
In Section V, we clarify the general procedures further by providing
examples.

4.1 Unweighted Minimax A pproximations
Let

P(z) = F(z) + (), T, =T = (23)

in which P(z) is a disposable polynomial of degree n, F(x) is a given
function to be approximated by P(z) in the interval z, £ z = z,, and
¢(z) is the error in the approximation. For what P(z) is e(x) smallest in
the minimax sense? We assume that the minimax e(z) has the equal
ripple form (Fig. 1) and we seek only approximations to equal ripples.
We also restrict the class of applicable functions by certain further
assumptions which can best be introduced a little later.

As before, let  and ¢ be related by equation (18), sothatz, = z = =,
maps into real ¢, and replace P(x) by

P@x) = PE'*) + P ). (24)

If P(-) is again a polynomial of degree 7, it is uniquely determined by
P(-) [and z,, =, in equation (18)]. Now, however, we find it expedient

A
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to permit P(z) to include negative powers of z, up to z™". Thus, in
equation (24),

PE'®) = D Per. (25)
This P(-) is not uniquely determined by P(-). However, P(-) 7s uniquely
determined by P(-), and it is still a polynomial of degree n. We solve
the approximation problem by finding a suitable P(-), from which
P(-) can be easily determined.

We require that the mapping from 2 to ¢ maps F(z) into a function
of ¢ with a convergent T'ourier series. This amounts to requiring that
F(z) can be expanded into a convergent series of Chebyshev poly-
nomials (defined to fit the given interval of approximation). Because
equation (18) is even in ¢, the Fourier series has only cosine terms.
Then, replacing cosines by sums of exponentials,

F(z) = F('*) + F{e**)
w (26)
Fe'") = Z C.e*

in which the series expansion of '(e'?) converges when ¢ is real.
The desired equal ripple error can he written

e(@) = ecos[(n + Do + f(e)] (27)

in which f(¢) is again periodic in ¢ and represents the distortion of the
¢ scale per Schelkunoff’s principle. In an equivalent exponential form

e(z) = E('*) + E('%)

E(eua) — :%Eil(n+l)p+!(¢:)l. (28)

The exponent i(n + 1)¢, instead of 7ne as in the previous section,
reflects the following ecircumstances: If the Chebyshev polynomial
series corresponding to equation (26) is truncated after the polynomial
of degree n, the first omitted polynomial is of degree n + 1. If all the
other omitted polynomials have sufficiently small coefficients, the
truncation error will approximate E(z) of equation (23) with f(¢) = 0.
Note also that a disposable polynomial of degree n hasn <4 1 disposable
coefficients. These are an example of the p disposable parameters in
the more general deseription of equal ripple errors in Section L.

Using equations (24), (26) and (28) in equation (23) gives

P(e'*) + Pe'?) = F(e'*) + F(e ) + E(*) + B ). (29
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We arbitrarily equate the terms in exp (+7¢) separately, so that
P(e’®) = F(e'*) + E('*). (30)

If equation (30) is satisfied at all real ¢ so is the corresponding equation
in exp (—1iyp). Thus a solution of equation (30) is a solution of equation
(29). But the converse is not necessarily true. Frequently, an exactly
equal ripple approximation corresponds to a solution of equation (29)
which is not a solution of equation (30). However, we will find that
approximations with approximately equal ripples can frequently be
derived from equation (30), and in a much simpler way.

In equation (30), expand P(-), F(-), E(-) per equations (24), (26)
and (28). The result can be rearranged as follows:

2n+1

5 G =
A=1

G:\=Pn+1—)\_cn+1—?\: 7\§n+17\§n—|—1,

-}
if(e) o,
e’ " 4+ Z Criran€ p:
A=0

B |

=Pn+1—1r n+1<?\£2n+1‘ (31)

In this equation, C,:14 is fixed by equation (26) but P,,;- is a dis-
posable parameter in equation (25). Thus we seek an e and exp [if(¢)]
with the following properties: First, (e/2) exp [if(¢)] is to be expandable
in terms of positive and negative powers of exp (ip). Second, the coef-
ficients of positive powers are to cancel the corresponding coefficients
C..142 in equation (31). Third, the coefficients of negative powers are
to be such that, with an appropriate ¢, |exp [if (¢)]] = 1 when ¢ is real,
so that f(¢) is real and the error extrema are equal per equation (27).
Sometimes it turns out that there are no negative powers beyond
—(2n + 1). Then the left side of equation (31) can be adjusted to match
the right side. In many other problems, approximately equal error
extrema can be obtained by simply ignoring terms in negative powers
beyond —(2n + 1).

Now consider the class of functions F(-) such that, in equation (31)

B(e'?)

- (32)

E Cﬂ-i-l-i-)\e{hw
A=0
in which A(-) is a polynomial of degree m and B(-) is a polynomial
of degree p. If the series converges, as assumed, the zeros of 4(z) will
lie outside the unit circle.
Under conditions which we shall examine further, the appropriate
exp [if(¢)] is now as follows:
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G _ AE)X(ET)
AE )X ()

in which § is small (at real ¢) and X(-) is a polynomial determined by
two further conditions. First, the zeros of X (z) must lie outside the unit
circle. Second € and X (-) must be such that

e AC)XE") | BE®) _ < UNE™)
2 AENX(E ) | AEY) XE)

in which N(-) is a polynomial. Let us examine the implications first
and the existence of such an ¢ and X (-) thereafter.

When ¢ is real exp (i¢) and exp (—ig) are conjugates, and so are
identical polynomials in these two variables. This makes f(¢) real in
equation (33), except for small corrections due to 5. When the zeros
of A(2) and X (z) lie outside the unit circle, as required, the unit circle in
the z plane maps into contours in the polynomial planes which do not
enclose 0. This makes f(¢) periodic in ¢.

The condition on the zeros of X(z) also permits the right side of
equation (34) to be expanded:

+ 8('") (33)

(34)

e "N ') N A —ie
—_— = G . 35
X 2, Gee (85)
Using equations (32), (33), (34) and (35) in equation (31) now gives
o0 2n+1
8 + DG = D Ge T (36)
o=1 o=1

P,=G,+Choe, oc=n-+1;
=dq,, n+1<eo<2n+ 1,

3e?) = — D G r.

2n+2

This § is small provided the zeros z; of X(z) are such that z; *"*® is

small. When § is small, the actual error extrema will differ from ¢, but
by no more than + |§| e
Equation (34) requires

e5A(e“'“’)X(e"’) + B(e)X (") = A@)e "*N(™'*) . (37)

The appropriate degree 5 of polynomial X(-) turns out to be one less
than the number of poles of zB(z)/A(z) (including any poles at z = ).
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When the degree of A(-) is greater than the degree of B(:) and the
zeros of A(-) are distinet, a set of » + 1 homogeneous equations in the
coefficients ¢; of X(-) can be derived by evaluating equation (37) at
the zeros of A(-). Then

(MA + ‘5 MB)Q =0 (38)

in which @ is the column matrix of the coefficients ¢; of X and M,
and My are square matrices of order » + 1. Under other conditions
an equation of the same form can be obtained in other ways.

Equation (38) requires ¢/2 to be one of n + 1 eigenvalues for which
the matrix coefficient of @ is singular. Each eigenvalue determines a
polynomial X(-) [including an arbitrary scale factor which cancels
out in equation (33)]. For our purposes, we must choose an e which
is real and such that the zeros of X (z) lie outside the unit cirele. This
raises a question of the existence of a suitable e and X(-).

When degree n = 0, X(+) is a constant, equation (38) is a real linear
equation in ¢, and there is no zero of X(-). When n = 1, X(+) is linear,
e is a root of a quadratic equation. It is not hard to show that the two
roots are real [under our assumptions regarding zeros of A(-)] and
that one (the larger) yields a zero z, of X (z) such that |z,| > 1. Equality
occurs only in singular cases such that n + 2 zero error points are
possible [even though there are only n + 1 disposable coefficients of
P(x)] and can be so placed that there are n 4 3 equal error extrema,
instead of only n + 2. This may be seen by assuming that the zero of
a linear X (2) is =1, and then noting that, in equation (33),

X('%) _ 1 + e'f
X ™) 14’

Conditions for the existence of a suitable ¢ have not been established
for n > 2. They are probably at least closely related to the (unknown)
general conditions under which the minimax approximation has the
equal ripple form of Fig. 1.

The procedures described here are appropriate only when a suitable
e does in fact exist. However, degrees n = 0 and 1, for which existence
has been established, are sufficient for many practical problems. IFor
approximately equal error extrema, equation (32) itself need be only
an approximation, and polynomials A(-) and B(-) for which » = 0
or 1 are likely to give a good enough approximation. This is particularly
true when degree n of P(z) is sufficiently large so that coefficients

— igi" . (39)
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C, , ¢ > m, in equation (26) approach a simple asymptotic behavior.
Percentage variations between error extrema need not have to be
very small even though the absolute errors must be very small. For
example, a 10 percent variation between very small extrema may be
acceptable, compared with large variations obtained by truncation
of the infinite Chebyshev polynomial series.

Table I indicates the degree m of A(-) and w of B(-) for which n = 0
or 1. The column headed m + p + 1 indicates the number of dispos-
able parameters in the rational fraction A/B which can be adjusted
to approximate the sum in equation (32).

The procedures for = 0 and 1 are particularly well suited for rapid
explorations of available error magnitudes as functions of initial design
parameters, such as degree of the disposable polynomial, extent of the
approximation interval, and parameters in the approximated function.
When only the error magnitude is needed, it is not necessary to caleulate
the coefficients of polynomial P(-), which requires the series expansion
(35). When n = 0, the exror magnitude is (approximately) the single e
determined by equation (38). Then simple closed form formulas can
frequently be obtained (and will be included in 4 of the 5 examples
in Section V). When n = 1, € is one of the two roots of the quadratic
equation required by equation (38). (To meet the condition on the
zero of X(-), the larger e must be chosen.)

When ¢ has been determined, it can be compared with the error er
obtained by simply truncating the Chebyshev polynomial expansion
of F(x). In terms of equations (26) and (32)

~ B(C'.‘:) g e B(C_j_v) o intle (40)
AE™) Ae™)

€7

Comparing the maximum e, (at real ¢) with e indicates the improve-

TasLe I—Value of m and g for which 71is 0 or 1.

Degree m Degree u Degree™n
of A(:) of B(-) of X(-) m+p+1

WO~ O
——ROOoOO
—
W00 b Lo b
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ment to be obtained by the minimax refinement of the truncated
series. Frequently, max e, occurs at ¢ = 0 or =, and then

B(+£1)

ma.x«.:r=2A(il)- (41)
4.2 Weighted Minimax A pproximations
Let
1
P(z) = F(x) + W@ e(r) (42)

in which P(x) is again a disposable polynomial of degree n, F(z) is
again a given function to be approximated in the intervalz, < z < z, ,
and the new function W(z) is a given weight factor. For what P(x)
is e(x) smallest in the minimax sense? We will again assume that the
minimax e(z) has the equal ripple form and will seek only approxi-
mations to equal ripples. We will also assume that W(z) is bounded
and positive definite in the approximation interval. (4 point where
W(z) = 0 or = would probably spoil the equal ripple character of the
minimax approximation.)

Map from 2 to ¢ as before and define P(-), F'(:) and E(-) again by
equations (24), (26), and (28). Express W(x) also in terms of expo-
nentials, but as a product instead of a sum. More specifically, let

H(x) = —log W(x) = H({'®) + H(E ') (43)

and assume that W(z) is sufficiently smooth, as well as bounded and
positive definite, so that H(z) is regular at |2] = 1. Then

1 ie —i¢
W_(E-S = D(*)DE "), (44)
D(E'?) = "7

with log D(z) regular when [z| < 1. This D(-) is a generalization of the
D(-) of Subsection 3.1 and of [S(-)]! of Subsection 3.2. Frequently
it ean be found by direct factorization of a function of e'* as in Section
IIT.

Equations like (29) and (30) can now be obtained as before. The
only difference is that #(-) must now be multiplied by the product
of functions of ¢ in equation (44). Then equation (30) becomes

P('*) = F(e'*) + D *)D{"*)E(e'®) (45)

and equation (31) becomes
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2n+1 0
S G = %D(e“’)D(e'”’)e””“ + 2 Conine™;  (46)
A=1 A=0
Gk=Pn+1—:\_0n+1—ks )‘én_l_l:
= Poia, n+1<A=2n+41.

Retain the rational fraction B(-)/A(-) of equation (32), but change
equation (33) to
g D(B_W)A(e_w)x(ew)

- io 7
D) A )X (%) + 8™ “7)

so that

D" ) Ale )X ()
AE )X ()

in which § and & are small. Then change equation (34) to

¢ DEAEIXE) | BET) _ e ONE)

D(BW)D(G_W)B”W) —

+ 8(e'*) (48)

2 A X (') AE'?) X(e )

Using equations (32), (47) and (35) in equation (46) now gives equation
(36) again. From equation (49), equation (37) must be changed to

(49)

%D’(e""’)A(e“"’)X(e"") + BE")X(e'*) = A ) "N *).  (50)

Equation (50) can be used to find ¢, and the X(-) and N(-) needed
for equations (353) and (36).

4.3 More General Approximating Functions
Let '

T[P(z), z] = G(z) + =(x) (51)

in which ¥[P(z), ] is a given function of x and a disposable polynomial
P(z), G(x) is a given funection to be approximated by ¥[P(x), z] in
the interval 2, < 2 £ 7, , and «(z) is the error in the approximation.
For what P(z) is e(xr) smallest in the minimax sense? Under certain
further assumptions regarding ¥(- , -) this approximation can be
transformed into a weighted minimax polynomial approximation.
Assume an inverse ¥ of ¥[P(x), z], with respect to P(z), exists
over the approximation interval. Then equation (51) can be replaced

by
P(z) = ¥ {[G(2) + ()], =}. (52)
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Assume ¥7'(- |, -) is sufficiently smooth and e(z) sufficiently small to
justify the following approximation (in the interval =z, = 2z = z,):
P() = V6w, 2] + T o). (53)
This is in the general form (42) with
F(z) = ¥7'[G(z), 2]
(54)

1 a0 '[G(r), 2]
W) 0GR

Thus Subsection 4.2 can now be applied provided the F(-) and W(-)
determined by equation (54) meet the appropriate conditions. Recall
that we required W(z) to be bounded and positive definite over the
interval of approximation. However, reversing the sign of W (z) merely
reverses the sign of £(x). Hence, in equation (54), we need only require
that the partial derivative must be bounded and either positive definite
or negative definite and sufficiently smooth for log D(z) to be regular
when |z| < 1.
As a first example of the inversion of equation (51), let

W(@)P(z) = G(x) + e(2) (55)
where W(z) and G(x) are given funetions of 2. Then

3 _ G@ +e@ _ G 1
Plr) = W(z) T W) ' W()

e(x). (56)

As a second example, let
[A(z) + B@)P ()" = G(z) + &) (57)

where A(z), B(z), and G(z) are given functions of z, with B(z) and
G(z) positive definite over the approximation interval. Solving for
P(x) gives

G*(x) — A(x) G(x) |

P(x) = B + 2 B(2) e(r) + B(IE)S (@). (58)
If the term in £°(z) is omitted
[A@) + B@P@] = G) + o(r) — q,% (59)

in which terms in £(z) have been neglected for ¢ > 2. An equal ripple
e(x) in equation (57) yields an approximately equal ripple error if the
last term is somewhat smaller than the extrema of e(x).
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4.4 Relation to Phase Modulation

The function of ¢ defined by equation (28) is similar to functions
of time ¢ used in communication theory to describe phase modulated
signals. If ¢ is replaced by ¢ in equation (28),

E(e“) — _‘%ei[(n+l)l+l}"(”]. (60)
This is the exponential representation of a phase modulated signal
in which the carrier (radian) frequency is n + 1 and the baseband
signal f(¢) is periodic with one period every n + 1 periods of the carrier.
The signal may be regarded as the carrier plus sequences of upper and
lower sidebands. The upper sidebands are determined by the coeffi-
cients C,.,., in equation (31). The lower sidebands are determined
by the requirement of a purely phase modulated signal. Finally, if
the sequence of lower sidebands extends as far as the negative carrier
frequency —(n + 1) we truncate it at —n.

Weighted minimax approximations can be interpreted similarly,
in terms of simultaneous phase and amplitude modulation.

4.5 Allernative Procedures

It is obvious that the procedures described above can be varied in
many different ways. A very few of the possible variations are noted
below.

Preliminary manipulations may be needed to obtain a formulation
in which the disposable part is a polynomial. Also, the pertinent Fourier
series may be sums of sines instead of cosines. Both these situations
will be illustrated by Example 5, in Section V.

If 8% '[G(x), 2]/9G(z) is expressed as a product of functions of z,
D(e’*) can be formulated as a product of corresponding factors. A
factor of the form (1 — ax/x2,)" contributes a factor of the form
[M,(1 — ~.'%)]", as in Section III. More generally, there may be
advantages to replacing the D(-) of equation (44) by D(-) defined

W=*(z) = D('*)D(e'%). (61)

Then the D*(-) in equations (48), (49) and (50) is replaced by D' (-).
It may sometimes be convenient to express P(x) and F(z) as products
of factors in exp (Z7¢) instead of sums, say

P@x) = P)P(e ), Fl) = FE)FE") (62)

in which P(-) is a polynomial of degree n with no negative powered
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terms. If a term in ¢* is neglected, one can now replace equation (29)
by

PEIPE) = | PE) + P‘f‘i("_‘f)][ @) +€$)’] (©3)

Equating factors separately replaces equation (30) by
EE*) ")

P
Subsequent modifications of our previous procedures are now easily
worked out.

It would be possible to replace equation (33) by other funectional
forms for exp [if(¢)]. The moduli must approximate unity at real ¢
and expansions in positive and negative powers of exp (ip) must exist.
Disposable parameters are to be adjusted so as to approximate the
required coefficients of positive powers. However, except for very

special functional forms [such as equation (33)], the adjustment is
likely to be a quite complicated task.

P@E'*) = F(e'") + (64)

V. EXAMPLES

This section further clarifies the general procedures by means of
five examples.

5.1 Example 1

Let
P(z)

(1 —af -TD)%
in which @, is a given constant, |z,| > 1, and the degree n of the dis-
posable polynomial P(z) is large. What is the approximate amplitude
le| of the equal error extrema of the minimax approximation?

This is a special case of equations (55) and (56), which can be solved
as a special case of equation (42) for which

(1 — z/zo)t. (66)

=1+4+e@@, —-1=2z=++1 (65)

F(z) = ﬁ =

To apply Section IV, define F(-) and D(-) by
(1 = 2/2)" = Fe*) + FE*%) = D)D),
3 (67)
FE'*) = 2 0",

=0
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Log D(2) regular, [z| = 1.

We have already factored a linear function of z in terms of exp (Zi¢),
in Section III. A similar factorization now gives

oy _ (1L — e’y
D(e ) = (1 +’Y2){ 3

and then the coefficients of C, correspond to an expansion of

(1 _ ,YB‘P)(I — 'Ye_‘p)]} — - icy = —iog
[ T+ = ; C.e’® + ;) Ce "%, (69)

[v| <1 (68)

To determine e we only need the coefficients C, for ¢ > n, which we have
assumed to be large.

The following expansion of [I — v exp (z¢)], valid for |[y| = 1, is well
known

A =yt = 2 K%

=0
Ko=—-1, K, = —v/2; (70)
— (3¢ — 3!
K, = =@ =3 ¥, e =2
47 (¢ — 2)1 !
When n is large and M < n,
Kiovei _ 24+ N -1 _
K 2t nF2" = Ty (71)
in which
_2n+1 3 ~ 9
k_2n+4—1 -n+4=1 (72)

As a result, when = is large

1
3

]{ 1eiv:m+1) 4
n+

1 — ye'? -
(1 — ye'?) L= Tye?

= 3 K" + (73)
o=0

Now note that
1— ye"'”]*[ Ko ] N (1 — kv)K,.,
3 — | = Le"* + .
l: 1+ 1 — kye'® ; (1 4+ ¥ — kye'™®)
(74)
If equation (74) is used to evaluate C, in equation (67), only the last
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term contributes to €, when ¢ > n. Then

= i 1—k ? %Kn+l

3 Crue™ o Ly Vo (75)

A=0 (I 4+ 7)*A — kye'®)
which is a special case of equation (32) with A(-) a linear polynomial
and B(-) a constant. The corresponding X (-) in equation (47) is a con-
stant and cancels out. Then equations (68) and (75) applied to equation
(50) give

‘2-Kn+1
(1 — E¥)(1 — k)" (76)
N ) = G, + G "

The constants (, and (, eontribute to the two highest degree terms in
the polynomial P(-). They need not be computed unless the specific
polynomial is needed as well as the amplitude |¢| of the approximation
CITOTS,

The linear A(-) and constant B(-) determined by equation (75) can
be used in equation (40) to approximate the truncation error for the
polynomial approximation defined by equation (66). The corresponding
error in equation (65) ean be found by dividing by (1 — x/x,)'". This
glves

€ =

T___maxle,.\=(1—k72)(1+k|7i_
€] PT—=1vD

Ifk = 1,7 = (1 + |y)* < 4. Actually k < 1, but further analysis
indicates that r will not be significantly >4 when %" is small.

When |z,| = », W(z) — 1, C.:142/Caii — 0, and e is dominated by a
single Chebyshev polynomial (which has equal extrema). Consistent
with this our v — 0, then ¢, , ¢» — 0 in equation (76) and r — 1 in
equation (77).

In equation (74), K,., can be determined by the formula for K,
in equation (70). However, the following simpler approximate formula
may be more useful:

(77)

- ! -
T 2w + D+ 1/4)

The error amounts to about 0.3 percent at n = 2 and abhout 0.04 percent
at n = 6. The derivation is related to, but requires more than substitu-
tion of Stirling’s approximation for the factorials in equation (70).

Fig. 3 illustrates computed errors e(z) and er(z) corresponding re-

K

(78)
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ERRORS € AND €7
|
|
I
|
I
]

099~ TRANSFORMED X SCALE ¢

Fig. 3 — Illustrating Example 1: (a) e(z) and (b) er(x).

spectively to our approximately equal ripple solution and truncation
of the Chebyshev polynomial series. The constants 4-¢ and re deter-
mined by equations (74) and (75) are included for comparison. The
computations started with

2 = 1.025, n =10
for which, as computed by equations (76), (77) and (78),
v =038, k=17/8,
K,., = 0.0006881, e =2 0.0040678, r == 3.74.
5.2 Example 2
Let
Pz) = (1 — v/2)"" +el@), —-1=z=+I (79)

in which the degree n of P(zr) is again large and z, is again a given
constant, |z,| > 1.

Since the function F(x) is the same as in Example 1, equation (75) is
again valid. Now, however, W(z) = 1 and hence Section 4.1 (on un-
weighted polynomial approximations) is appropriate. Applying equation
(75) to equation (37) gives

e = (1 - kTE)aKn+}l
(1 + 1 — k%) (80)
NE*) = G,

in which N(-) contributes only to the highest degree term in P(-). The
error ratio r turns out to be




24 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1970
max | e
r = |€|T =1+k|v]| <2 (81)

5.3 Frample 3*
Let

lIA

(A — z/2)*Plx) = 1 + (), —-1=z=1 (82)

in which degree n of P(x) is again large and z, is given, |z, > 1.
In the equivalent weighted polynomial approximation

_ 1 _4q_ -3
F(z) = W (1 — z/z) "% (83)
Proceeding as in Example 1, one now gets
N
ey = ETL
(1 — )
o0 . 24
Z Cn+1+18lw = 1 (1'_( _‘[2_ ;{1) Kn;‘;l s
7=0 (I = k') (1 — Kye'®) (84)

n+1

K (‘)n + 1)| n+1l ~
T i 4 1) [l + 5/4))"

on +3 1

om+4 o+ 4

k:

Then equation (49) gives
2K,,+1(1 — ky™)?

1 — ke ’

Y
—ig
e-—itpN(e—iv) — ﬂi—_iw’ (85)
1 — e
_ eyl = BQA + 4
M= T
Equation (35) is now
N o - —1i0

l—ﬁ = ;@ae ‘. (86)

The first 2n + 1 terms in this series contribute to P(-) per equation

* The author has encountered this problem in connection with two different
circuit theory studies, which will be deseribed in other papers.
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(36). The remainder can be summed, to get

N 2n+ le—i (2n+2) ¢

8(e'?) = (87)

—ig

1 — ve
Evaluating the error corresponding to simple truncation now gives

max | er | (1 — |y DA — Ky )
ro= o 88
el =0 kv DA = k) 58)
When n is large, ¥ =2 1 and r is so close to unity that the minimax
refinement of simple truncation is not likely to be justified. However,
our analysis has been useful in disclosing this fact, without the detailed
computation of any minimax approximations.

5.4 Example 4

Previous work, which we shall discuss in Section VI, concerns the
following problem: Let

P.(z) = P,..(z) + &(z), —1=z=+1 (89)

in which P,,,(z) is a given polynomial of degree n + » and P,(x) is a
disposable polynomial of degree n. For what P,(z) does =(z) have the
equal ripple form?

Equations (32), (33) and (37) now simplify to

r=1

g; Crsrin(e™) = E Carinn(e™?) = B(e™*),

ifle) _ X(B‘w) ip
e (_‘w)‘l‘ ( ))

5 X('") + BE")X(") = ¢ NE™)

(90)

in which B(-) is a polynomial of degree » — 1, with coefficients C,, ;.
and X (-) is a polynomial of degree v — 1, to be found therefrom. The
coefficients of B(-) can be found by expanding the left side of the last
equation and equating to zero the coefficients of pgsitive powers of
exp (ip). The result can be expressed as the following specialization of
equation (38):

(C+§ﬂ@=o (91)

in which @ is again a eolumn matrix whose elements are the » coefficients
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of X(+) and [ is the identity matrix of order ». The matrix C' has the
special form (assuming the elements ¢, of @ to be ordered per

X =2 )

Cn+l Cn+2 L Cm-v—l Crni-v
C‘ = C'n+2 Cn+3 e Cn+v 0 ] (92)
Cov, 0 o 0 0

When » = 1, X is a constant and the solution is elementary. When
» = 2, X(z) is linear. Let 2, be its zero. Then equations (91) and (92)
require

¢ + 20,6 — 4OE+2 = 0)

o= 20€ﬂ+2. (93)

The roots of the quadratic equation in e are real. When C,., # 0, the
larger | e| > 2| C,.s| and |2z, | > 1, as required. Then § in equation
(36) turns out to be a power series in exp (—i¢) which can be summed
to get

_72n+261 64:'(2111-2);:?

2n+2f

(94)

5(c'7) = T

1 — ve
vy =1/z, .

When C.., = 0, e = +£2C,,, and z, = 1. But then the error due to
simple truneation of the Chebyshev polynomial expansion of P,..(x)
is proportional to a single Chebyshev polynomial of degree n + 2, which
has equal ripples with n + 3 extrema instead of n + 2.

5.5 Fxample 5*

As a last example consider the following nonalgebraic approximation:
) = >, A,sinaf = 0 + &(6) (95)
o=1

—r < -6, =60=0 <.
I'or what coefficients 4, does the error £(f) have the equal ripple form
and what is the amplitude e of the ripples?

~*This problem is of interest in, for example, the approximation of differentia-
tion with a tapped delay line. A more detailed treatment is planned for a future

paper.
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A sequence of transformations changes equation (95) into a weighted
polynomial approximation. First, equation (95) is equivalent to

I'(f) = sin 6 nZi B, cos (p#), (96)

9A, = B,_, — B,., .

Second, relate @ to a new variable ¢ by

0
S]no

&

gsin ¢, | 6] < m; (97)

q=sin%<1.

Real ¢ maps into —60, = @8 = 6, . Also
cos 6 =1 — ¢° + ¢ cos 2, (98)
sin 6 = 2¢(1 — ¢ sin® ¢)* sin ¢.

In these terms, equation (96) becomes
n—1
['(8) = 2¢(1 — ¢*sin® ¢)ising Y B, cos (2p¢) (99)
p=0

in which the set of coefficients B, is linearly related to the set B, of
equation (96). In equivalent exponential terms

r(6) = ;—-1(1 — ¢*sin® @[P(’*) — P(e™™)] (100)
in which P(z) is a polynomial of degree 2n — 1 in odd powers of z only.

Use equation (100) in equation (95) and solve for the factor in [ ].
The result ecan be expressed in terms of exponentials:

P'*) — P(e™'*) = F('*) — F(e'™)
+ D)D) EE) — E@')]  (101)

in which F(-), D(-), and E(-) are related to previous functions by
3(1 — gsint )t = 320, sin (20 — De; (102)
a=1
[’v((,iq;) — E C2E“lci(21—1}p;

1 s .8 -1 Qe .
FI(I — ¢ sin® ) F = DET)DEY);
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i2¢y |4
pe) = [ <y

1 1 1 =1
E() = ; [BE) — BE™);
E(eiw) — %eil(2n+l)v+ﬂ¢)].
It can be shown that the coefficients C,,_, obey a difference equation

of order 2. The asymptotic behavior of the difference equation shows
that

20 — 1\
as g —wo, Coiy — — 2% + 1 YCaoy . (103)

As a result, for a sufficiently large n

] i(2n+1l) ¢
C ize-ne oy Conei€ "
2#*16

l

—_— i2¢ !
o=n+1 1+k"¥6 (104)
k= (2n+ 1)*g4n+ 1
S \2n+3/ T 4n+ 3

Proceeding almost exactly as in Example 3, using equation (104) and
the D(-) of equation (102), one can now obtain an approximation to the
minimax error e, to the error ex(¢) due to simply truncating the expan-
sion of F(e'¥), and to the ratio r of max | ez | and | € |. As in Example 3,
it turns out that the minimax approximation is only a little better than
the approximation by truncation, at least when = is large.

Figure 4 compares a computed er(¢) with the approximate e and
ratio r of max | ez | to | € |, using

6, = 170° n = 15,

for which
v = 0.8397 k = 0.96825,
e = 5.690° r = 1.0840.

VI. COMPARISON WITH OTHER WORK

This section compares the present paper with previous publications
in various related fields. It is not intended, however, to be an exhaustive
survey of all related publications.

The transformation from z to ¢ followed by distortion of the ¢ scale
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Fig. 4 — Tllustrating Example 5.

to obtain an error function of the form e cos [(n + 1)¢ + f(¢)] has been
used before. Pertinent references are papers by Clenshaw” and Stiefel,”*
who call our f(¢) the “phase function”. Of these, Clenshaw’s paper is
quite close to ours, and in fact our work might be regarded as a generali-
zation of his.

Clenshaw devotes much of his paper to the approximation of a
polynomial of degree n + » with a polynomial of degree n, which is our
Example 4. Clenshaw, (Ref. 2, pp. 30, 31) solves the problem for » = 2
_in- a quite similar way, except that he expresses his Fourier series in
terms of cosine functions instead of power series in ¢**?. He exhibits an
approximate solution which can be shown to be almost, but not quite
equivalent to ours. We would have obtained an exact equivalent if we
had restricted our polynomial P(-) to positive powers only, correspond-
ing to ¢ = 0 to n in equation (25) instead of —n to n. In equation (36),
this restricts the disposable @)’s to A = 1 to » + 1 and increases the
number of terms in 6(-) to A = n + 2 to «. The result is a somewhat
poorer, but frequently adequate, approximation to an equal ripple
error. Clenshaw also notes how his approximation ean be improved, but
does not fill in the details. It can be shown that the improved approxima-
tion would be an exact equivalent of ours. However, we have found that
our formulations in terms of e**¢, instead of cos ¢, are simpler, and also
more revealing concerning, for example, the nature of the approxima-
tions.

Clenshaw (Ref. 2, pp. 31-36) also considers » > 2, and obtains ap-
proximate solutions for » = 3, 4 in terms of roots of cubic and quartic
equations. However, he retains the use of cos ¢, instead of e***. As a
result, he does not include a formulation for a general » in terms of an
eigenvalue and eigen vector of a matrix, like our equation (91).
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Clenshaw (Ref. 2, p. 29) notes that the equal ripple approximation to
(r, — )" has been solved exactly and cites Hornecker® and Rivlin’.
Any solution to this problem is easily applied to more general problems
in which the given function yields the same sort of remainder when the
Chebyshev polynomial series is truncated. Examples are our Example 2
and our general formulation for unweighted polynomial approximations
with weight factor W = 1, m = 1, g = 0 in the remainder function (32).

Our procedures are more general in the following ways: First, remain-
der functions can have the more general form (32). For practical pur-
poses, degrees m and u should not be large. However, they need not be
restricted to the special casesm = 0, u < 4 and m = 1, u = 0. Second,
minimax weighted errors can be obtained [by using suitable weight
factors W (z) in equations (42), (44), and so on]. Third, unweighted mini-
max approximations can be obtained with approximating funetions of
which the disposable polynomial is only a part (by solving an equivalent
polynomial approximation with a weighted minimax error, as in our
Examples 1, 3 and 5). Finally, relatively simple formulations have been
obtained by using exponentials instead of cosine functions.

Stiefel’s papers®* have much less relevance to our work. They use
the error formulation e cos [(n + 1)e + f(¢)] but obtain solutions by
numerical iteration. Reference 3 also includes a general integral equa-
tion, which determines the required coefficients implicitly but is not
easily solved.

Our use of rational fractions to approximate remainder functions,
as in equation (32), and so on, is at least reminscent of the so-called
¢ algorithm. The e algorithm also uses rational function approximations
to remainders but for a different purpose—to increase the rate of con-
vergence when functions are evaluated from their power series. It is
quite different from the use of rational functions in the formulation of
minimax polynomial approximations. References for the e algorithm are
Shanks® and Wynn.”

Our procedures require evaluating certain of the coefficients in the
Chebyshev polynomial expansion of a given F(z) (or in the equivalent
Fourier series expansion in terms of ¢). Various established numerical
methods are available for this." The best choice depends on the form in
which F(z) is specified (for example in closed analytic form, as a power
series in x, or numerically at a set of discrete points). When F(z) satisfies
a differential equation with polynomial coefficients, the coefficients in
the Chebyshev polynomial series are related by a difference equation of
finite order and can be computed recursively. Our Example 5 is a special
case. The general relation is described by Clenshaw'® who also includes
numerical tabulations of coefficients for some common functions.
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The author’s 1952 paper on network synthesis in terms of Chebyshev
polynomials is only remotely related to the present work."

VII. CONCLUSIONS

Techniques like those described in Section IV and illustrated in Sec-
tion V can be applied to many approximation problems in which the
disposable part of the approximating function is a polynomial and
approximately equal weighted or unweighted error extrema are desired.
However, to be useful they must compete with other possible techniques,
especially established numerical methods whereby equal-ripple ap-
proximations are obtained by iterative improvement of a sequence of
unequal-error approximations. This section notes some circumstances
under which procedures like those deseribed here may perhaps be pref-
erable.

First, the techniques described here are more likely to be competitive
when the degree n of the disposable polynomial is large. When n is large
iterative numerical methods are more likely to entail excessive amounts
of computing. On the other hand, certain aspects of the more analytic
techniques described here are likely to become easier as n becomes
larger. These concern particularly the use of a simple rational fraction
to approximate a remainder function, as in equation (32).

Second, the techniques described here are particularly suitable for
exploring relationships between error amplitude | € |, the limits 2, , x,
of the approximation interval, the degree n of the disposable polynomial,
and other parameters in the approximating function (such as =z, in
examples 1, 2, and 3). In explorations of this sort the computation of
the actual coefficients of the disposable polynomial P(x) can usually
be omitted. When = is large this can mean omitting most of the computa-
tions required for a eomplete determination of the approximating fune-
tion. Frequently, computations which end with | € | remain very simple
even though n becomes arbitrarily large.

Third, sometimes, as in our Examples 1, 2, 3 and 5, our techniques
give quite simple estimates of the advantage of an equal-ripple approxi-
mation over simple truncation of an infinite series of Chebyshev poly-
nomials. Such a comparison may be useful, for example, in deciding
what sort of approximation should be computed in detail.

More generally, an attractive combination may be an initial explora-
tion in terms of the techniques deseribed here, followed by the detailed
computation of one or more preferred cases by established iterative
numerical methods.

We have assumed here that the parameters disposable for purposes
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of approximation are all the coefficients in a polynomial. Preliminary
investigation indicates that similar methods may be feasible for dis-
posable rational functions, or ratios of polynomials, provided the poly-
nomials in the denominators are of quite modest degree. This will be
the subject of a later paper.
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