Organic Synchronization: Design of the
Controls and Some Simulation Results
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Organic synchronization is a method for phase-locking the signals of an
extensive digital communication network. Each clock in the network is
made to depend on the phase drift of signals arriving and departing its
station. This work demonstrates the practicality of such schemes. A four
station simulation operating in real time with realistic parameters for
a transcontinental network is used to evaluate various types of linear
and nonlinear controls and to study effects of changing clock frequency
and transmission delays. Considerable attention is given to the analysis
of linear organic systems in order to pave the way for reasonable choices
of design parameters and to make the results more easily understandable.
The experiments show that the systems are very stable and easy to implement.
No difficulty was experienced in starting the systems or in modifying
their structures and they were immune to large scale breakdown caused by
local faults.

I[. INTRODUCTION

A model for certain mutually-synchronized systems of clocks and
transmission links has been described by M. Karnaugh.! He calls
systems that conform to this model “organic systems.” The work on
organic synchronization has been motivated chiefly by a desire to
synchronize the sampling and switching operations in a geographi-
cally widespread pulse code modulation communication network.

Broad sufficient conditions for the stability of nonlinear organie
systems have not yet been mathematically established. Nevertheless,
there is reason to believe that systems having readily achievable
clock stabilities and transmission delays of terrestrial magnitude can
be well behaved. Because of this, and because performance under a
variety of starting conditions, parameter choices, and perturbations
is of interest, an analog simulator for organic synchronization has
been constructed and put to use.
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Details of the simulator hardware are described in the preceding
article.? The present discussion will center on what has been learned
from experimenting with the simulator. Preliminary attention is given
to the analysis of linear organic systems; this aids the selection of
reasonable control parameters for the design and study of some rep-
resentative systems.

The experiments have supported the conjecture that systems of
continental, or even global, dimensions will be stable and easy to
implement. No great difficulty in starting the systems or in modify-
ing their structures has been encountered.

II. SYSTEM ORGANIZATION

2.1 Discussion

The simulator contains four oscillators. Each of these corresponds
to the local clock at a geographically distinet switching station. These
stations may be interconnected through selected delay lines in any
or all of the twelve possible directed paths. The sinusoids transmitted
through these paths correspond in period to the data frames in a
pulse code modulation communication system.

Each transmission path includes a large, fixed delay and a small,
continuously variable, delay. The latter is used to simulate the slow
variations in transmission delay which may occur in cables. In addi-
tion, there is another continuously variable delay line at the receiv-
ing terminal of each path. This simulates the buffer store which is
needed to retime all data arriving at a switching station. The buffer
store must synchronize the incoming data frames with the local
switching actions. The latter are timed by the local clock.

For example, consider the two stations illustrated in Fig. 1 which
shows a signal transmitted from station j to station ¢. The arriving
signal is held in close phase agreement with the ith clock by the
servoloop that automatically adjusts the buffer delay. Intuitively,
we see that a constant frequency difference between the two clocks
would drive the buffer at constant speed to one end, where synchron-
ism would be lost. To prevent such failure, the clock frequencies are
controlled by voltages derived from the position of the buffer, as
shown. Gain factors a and b are placed in the frequeney control paths.

A complete network is composed of many links resembling the one
we have described. When the frequency of the clock at each station
depends only upon the states of the buffers in transmission links arriving
at that station, b = 0, and the controls will be called “one-sided.”
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Fig. 1 — A transmission from station j to station 1.

When the clocks are also controlled by the states of buffers in links
leaving their stations, b # 0, the controls will be called “two-sided.”
Two-sided controls require the transmission of narrowband control
signals between nearest neighbors in the system. In the simulator,
separate baseband delays are used for this purpose.

The simulator incorporates filters, h, in the control paths to the
clocks. They are used to explore the possibility of shaping the dynamie
response of the network. Also included in the control paths is an ampli-
tude limiter, p, which places a bound on the frequency deviations.
Another nonlinearity, v, is placed in series with the buffer-position
output, x. This causes the effective gain to vary with buffer position,
so that the control influence of buffers near overflow may be made
greater than those near their center position.

2.2 Analysis

Karnaugh has analyzed one-sided controls to determine the settling
state after switching on from specified initial values. Now we shall
examine changes in the settling conditions resulting from disturbances
of transmission delays and clock frequencies, with two-sided controls.
The model used by Karnaugh,” with a very slight change in nota-
tion, is illustrated in Fig. 2. Mathematically,

ff(t) =F, + .ﬁl:hv.‘(")*{g1 ﬂ-’i‘-’[f-‘i(")] - Zj: bl (f — 7’-‘:‘)]}] (1)

That is, the frequency of the ith clock equals its natural frequency
F; plus a control function of x, the buffer states at the i® station and
its nearest neighbors.
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Fig. 2 — Station 7 and its control with respect to station j.

The function p(-), which represents a limiter, is defined by

o(z) = =, if |z]=2G@
= G, if z>@G
= —-@G, if z< -G (2)

It is stipulated that the control filters, k, have unity gain for de:

H,-(O)E./;wh;(t)dt=l, i=1,2 - ,N 3)

where hi(t) is the impulse response and H;(0) is the dc response.
Mathematical convolution is indicated by “*.”

The gain coefficients ai;, by are nonnegative values. They are both
equal to zero when there is no transmission link to station @ from sta-
tion j. When the link is present, a; > 0 and, if and only if the controls
are two-sided, by; > 0.

The function v(-) is monotonic and of odd symmetry. It is also
assumed that

o(£1) = 1. (4)
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Simple examples of such funections are

va(z) = m?n+1’ n=2012--- (5)

This is linear in the special ease, n = 0.

The instantaneous state of the buffer delay in the link to center 4
from station j is denoted by wy;(t). Let the number of clock cycles
stored in this buffer be y;;(¢), and let its capacity be 2Dy;. Then

zii(t) = [y(t) — D,-,]D:; . (6)
This represents the fractional deviation of the buffer delay from its

half capacity. For synchronism to exist the buffers must lock the
phase of the incoming signal to that of the local clock.

:Ci,-(t) = D_l:[p.l(t - 1".',') - p.(t)] + Cii . (7)
Where p;(t) is the phase of the ith clock, therefore
pi(t) = 1.(0). (8)

The constant C;; is determined by the initial switch-on conditions."

7i; 18 the transmission delay in the link to station 7 from station j.
#:; is the delay in sending control signals to station ¢ from station j.
It might or might not be approximately true that the two delays are
equal when both are defined, but this has been true of the simulations
that have been done.

Now assume that the system has settled down to a common fre-
quency f and that the phase differences remain finite. Thereafter

p:(t) = ft + 1, (9)
where r; is independent of time, Also, because the buffers are quiescent
z;(t + 1) = 2;;(t) forall >0

and
h(t)s = x

so equation (1) becomes time independent,
¥
f=F.+o»p Z taip(es) — b)), (10)
i=1
and (7) becomes

Tij = D—;:'[?'f - = fri] +C,y, (11)

which is also time independent.
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For the purpose of investigating the changes in settling frequency
of a system, F; and =; will be considered variables, and such varia-
tions are possible in the simulator. It is also possible to perturb the
simulator by connecting or disconnecting transmission links, or by
adding or removing an entire station.

III. LINEAR SYSTEMS

3.1 Analysis

The linear subclass of systems is of very special importance. Study
of these systems has added much to our knowledge of organic syn-
chronization.

One-sided linear systems have been very extensively studied. V. E.
Benef, in unpublished work, was the first to establish a very inter-
esting sufficient condition for stability of these systems, and to study
their settling frequency. A. Gersho and B. J. Karafin® have recently
simplified the derivation and proof of these results. M. B. Brilliant*
has shown that the requirement for network connectedness can be
weakened, if master-slave relations between subsystems are per-
mitted. He also has determined dynamic responses for some networks.
Karnaugh has formulated a model that makes explicit the influence of
the starting conditions in the formulas for settling frequency.*

Here, we shall extend the analysis to two-sided controls, consider-
ing the network to be switched on and in a quiescent state and then
determining the change of quiescent conditions resulting from certain
parameter changes. The result is a linear expression for the small
changes in frequency that result from small changes in delay and in
natural frequencies of the clocks.

The model defined in the previous section is linearized by removal
of the limiter and by assuming v(z) linear for the small changes.
Total derivatives of equations (10) and (11) show how the settling
state defined by the frequency f and the buffer states z is affected
by changes. Thus for small changes, A, from a given quiescent state
we have

Af = AF; + E fa:0'(x:;) Az — byv'(x;)) A-Tn} (12)

and

AI,’,‘ = D—'}[AT, == Ar.' - A(f'r;,;)]. (13)
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Now use
a;; = au‘D:‘}U’(-’BH)
and (14)
Bi: = bs‘-'D;:'U’(mii)
which are assumed constants for a given settling state. Also use
¥
g0 = 2 (s + B) (15)
=
and
N
Ti = E (C'-':‘Tn' - 5;‘:'7':'-') (16)
i=1
to get

Af = AF; + 2 (ai; + B;) Ar; — gi Ary — A(fr). (17)

i=1
Now measure phases with respect to the first station
Gi =Pi —PL=T; — T, Ag; = Ar; — Ar,. (18)
Then

AF.‘ - A(f‘fi) (19)

Il

Af + Z {g’.- 8 — (ay + B} Ag;

i=2
where §;; is the Kronecker delta
8'-‘- = 1’ 6.‘,‘ = 0 fO!‘ T: # j.

The solution of equation (19) by determinants, d, ean be carried
out to yield, after some simplification and index permutation,

Z d; AF; Z (d-f a;; — d; .Ba':') AUT:’:‘)
YR = A - i . e
> d. 2 d:

This equation is not solved for Af explicitly because the term A (fr;)
depends on Af, however this result is a convenient one for practical
use. Let us investigate its meaning.

By definition, fr; is the phase delay in the transmission link con-
necting center j to center i. Therefore equation (20) expresses the
change of settling frequency as a weighted sum of the changes in
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clock natural frequencies, AF, less a weighted sum of the change in
phase delays during transmission, A (fry).

The usefulness of the result derives from the fact that in most
practical networks the phase delay variations are determined by
changes of delay alone, variations resulting from changes of fre-
quency, rAf, are usually negligible, that is

A(fry;) =1 A7y

and this is true for the simulations.
Returning to the general result, for small changes we can write

A(fry;) = f Ari; + 7.4 Af. (21)
Then equation (20) becomes

i d,(AF. - f AT()
Af = = - (22)

N
_El di(l + 72)

This is similar to the result given by Bene%. It demonstrates the
surprising property that the sensitivity of the network to changes
is small when the delays are large. However, the effect has only the-
oretical interest because in practice 7; K 1.

Each weighting coefficient, d; , is the cofactor of the element in the
ith row, first column, of the matrix [T' — A], defined by

ST + Bis
L' = gs 6ij.
It can be shown, following Brilliant,* that d; > 0 when

N
I:):)\"] >0 forall j#=4
n=1 i
and d, = 0 otherwise. The criterion for positive d; is, heuristically
speaking, that a chain of transmission links of A shall run from station
i to every other station. If the 7th station provides a master clock for the
system, d; > 0 and d; = 0, j # 4. The strongly connected systems
of Benes, on the other hand, have d; > 0 for all 7. The system cannot
be synchronized unless at least one of these coefficients is positive.

The solution, (22), of the linear equations depends upon their being
nonsingular. This is equivalent to the nonvanishing of the denominator.
This condition will be seen to hold in systems of practical interest.
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3.2 The Expression for Settling Frequency

To give direction to the simulation experiments, we summarize the
salient properties of equation (20) in a set of rules that can be readily
confirmed experimentally without need for solving determinants. They
are also important because they describe conditions that might be
used in a real network.

Rule 1

In the case of two-sided controls that are ‘“proportional” so that
K,'C{,'.' = K.'ﬂ,'" for all 7 7 j, “'here (K:Kz e KN) iS a set of N pOSitviVe
numbers, then it can be shown that

K, _K,_Ky
d, d, dy
and that
N
> K. AF;
Af = H——o- (23)

2 K.

i=1

The settled frequency is a weighted average of the oscillator center
frequencies and is independent of delay.

Rule 2

In the particular case of ‘‘balanced” two-sided control defined by
oy = 6.’,‘ f01‘ aIl ?. ?5 j,

1 N
"N & .

The settled frequency of a balanced two-sided organic system is always
the unweighted average of the clock center frequencies.

Rule 8

In the case of a reciprocal control defined by K (e;; + Bi:) =
K (a;; + B:;) for all ¢ # j, it can be shown that
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and that

i K. AF, — 3 (K — K} A(f7:)
Af = i=1 ii=1 . (25)

N
2 K

i=1

Having reciprocal control requires that the controls also be linear,
v(z) = z. One sided controls, 8 = 0, can be reciprocal if Kia; = Kjaji.

Rule 4
In the case of proportional control, as in rule 1, if a transmission

link is symmetrical, ; = ; then, in response to a change Ary =
At
Av;; = D7} Arf and  Ax = D7 Arif
and there is no change in the position of any other buffer in the
network.
Rule s

The net phase delay around a closed loop in a synchronized network
is a constant integer.
To prove this we notice that the net phase delay in link 4j is

¢ = Dii(1 + x:;) + 7iif. (26)
Therefore
A¢i; = Dy; Az + Afri))
using (13)
Ad;; = Ar; — Ar;. (27)
Then around a closed loop in the network the net phase delay will be
Adi; + Dby + -+, Adus = Ar, — Ari + Ary — Ay, -, + A7
= 0.

The definition of synchronization requires that the net phase delay
be an integer. Notice that changes in the phase delays must be given
a direction. That is, changes in delays introduced into signals flowing
in one direction around the loop have the opposite sign from changes
in delays introduced in signals flowing in the other direction.
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IV, DYNAMIC RESPONSE AND STABILITY

In the foregoing analysis, stability was tacitly assumed and the
actual form of the dynamic response to the parameter changes was
ignored. Here we shall explore conditions for stability of two-sided
controls for a linear network having no limiter. The clock frequencies
will be considered variables but for convenience we shall assume
transmission delays are fixed.

The transient response and stability of linear organic systems may
be studied by means of the Laplace transforms of equations (1) and
(7). Combining these equations and putting

r(t) = p:(t) — p:(0) (28)
we obtain the result

sRi(s) = H.(s) ; (&:; + Bil‘)Rr’(s)

~ HOR® X o+ 8D+ V6 @)

where capitals denote Laplace transforms, and

d.‘,‘ = a.-,-e_"” (30)
Bie = By (31)
Eh‘ — 'Bne—l(r,';ﬂ".'j) (32)
v = T 4 o (33)

and C;(s) represents initial conditions of the network. Following
Gersho and Karafin® we notice that equation (29) may be put in
the form

Bi(s)

& + Bis + Li,.
R.(s) = B.(s) ; Ri(s) + 0 H.5) V.(s), (34)
where
Bi(s) = 0.11.() : (35)
s+ H,s) 2 (ei; + Bii)
Let M be the matrix whose (ij)th element is
M, = B9 Tt B (36)

g
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and let @ be the diagonal matrix with

B.(s) '
o= . 37
Ql i U;H‘-(S) ( )
The system is now seen to obey the vector equation

R(s) = [I — M]7'QV(s). (38)

When V (s) is specified, we ean compute the solution R(s) from this
relation.

Arguments which differ from those of Gersho and Karafin only in
minor detail ean now be used to establish a sufficient condition for
the stability of connected systems. The proof will not be repeated
here. The resulting condition is that

| Bi(s) | <1 for s =wv —1#0 i=12---,N, (39
where  is real.

Bi(s) is independent of the system delays when the controls are
one-sided. This is not the case for two-sided controls, as one may
see from equations (32) and (35). However, the sufficient condition
may be checked for any particular network and is easily satisfied

in practice.
M. B. Brilliant has simplified (39) for a simple but revealing case:

His) =1, gi=g¢, 1+ 7fe=r7 foral i3
The sufficient condition for stability is then

gr < 0.5. (40)

Thus, the largest product of the delay and the gain can, if it is less
than 0.5, guarantee stability of the unfiltered two-sided linear net-

work.

V. GAIN AND BUFFER DELAY

It will be shown later that, for one-sided controls, limiting of the
frequencies can cause synchronization failures when the transmis-
sion delays are changing. Therefore, we are motivated to use small
enough values of gains, g;, to avoid limiting.

When there are no filters, or only single-pole filters, equations (1),
(2), (4), and (6) show that limiting will not occur if

Z (a:; + b)) < G. (41)

i=1
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Notice that G would be made equal to the maximum tolerable fre-
quency deviation. For simplicity, suppose that

gi=¢g for +=1,2 .--- N

and
D;; =D forall (7).
Then the inequality, (41), becomes

gD < G. (42)

Now consider the buffer size. The buffers deflect to compensate
for delay changes and to correct oscillator drift. Let the greatest trans-
mission delay variation from midrange be denoted by Ar and let the
maximum error magnitude of the oscillator center frequency be denoted
by AF so that

AF = max | AF, |.
Then we require
D>FAr+ 2—1? (43)

and we wish to keep the buffer sizes small by making g large. Then
most of the buffer delay capacity is used to compensate for trans-
mission delay variations

F Ar > A?F (44)
Inequalities (44), (43), and (42) lead to
;"g <g<%<—fG = (45)
T F Ar + —g—

Values of D that satisfy the last two inequalities in (45) will exist,
provided that

whence,

— < g < T (46)
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Inequalities (46) are satisfied over a positive interval of values of
g whenever

G > 2 AF. (47)

Finally, D must be chosen in the interval,

AF G

FA7+—<D<E (48)
For some specific examples, let us make the following choices:
G = 4 AF
g = 2 A‘.F'
F Ar
D = {F Ar.

Let us further assume the largest single transmission delay to be
2 X 1072 seconds, which is of transcontinental magnitude, and let
Ar = 2 X 10°° seconds. The latter is almost surely an overestimate
for underground coaxial cable, but is reasonable if about 10 per cent
of the cable is above ground.

Two values of F will be used, corresponding roughly to voice and
video sampling rates. For each of these, two values of AF will be used,
corresponding roughly to the accuracies of simple crystal oscillators
and atomic oscillators. Table I shows the resulting parameters.

The greatest value of g encountered in Table I is 3x10-* Let us
examine the consequences of this with respect to the stability condi-
tion, equation (40). The product rg is less than 12Xx10~* for all cases.
Therefore in satisfying the stability condition rg < 0.5 we have a
factor of 400 to spare.

From (35), we see that Bi(s) is the transfer function for the ith
clock with respeet to equal perturbations of phase in all arriving

TaBLE I —Parameters for Voice and Video Sampling

F AF Ar @ g D
(Hz) (Hz) (seconds) (seconds™) (cycles)
104 3% 10® 2X10% 12 X107 3 X 102 3.5 X 107
104 105 2 X 1073 4 X 10738 10— 3.5 X 107t
6% 108 18X 107 2 X107 7.2 X100 3 X107 21 X 10°
6 X 10¢ 6 X107 2 X 10% 24 X 10* 10— 2.1 X 10
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signals. In the absence of delays,

g9:H (s) .
s + g.H(s)

Therefore, if H;(s) is either constant or is monotone decreasing with
little phase shift in

s =wV —1, 0=fw=yg,:,

the response radian bandwidth is no more than gi. When H; = 1,
the response has the simple time constant, g7'.

This enables us to interpret rg as the ratio of the delay between
stations to their time constants of response. When this ratio is very
small, the transmission delays have negligible effect on the dynamic
response of the network. This is another strong reason for using rela-
tively low gains.

Another useful approximation that applies to most practical net-
works concerns the phase delay during transmission frii . The change
of phase delay is

Bi(s) =

A(f"-‘i) =fAr; + 74 Af. (21)

We have seen that delays change about 0.1 per cent* while clock
frequencies change about 10-7, thus the second term in the expression
is negligible in most cases and this is true for the simulations. Equa-
tion (20) then becomes

i d,(AF; — f A7)

Af = =1 —
> d,

i=1

(49)

VI. A TWO STATION NETWORK

6.1 Response of the System to Small Change

Many revealing properties of the organic synchronizing scheme
can be illustrated with two stations connected in a loop as in Fig. 3.
Such a system is characterized by the following equations

Af = g9; AF; + g. AF; _ (@g0;0 — BiiB;)f Alrii + 74)
T gty 9: + 9

(50)

* For short delays the fractional change ean be much larger.
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Fig. 3 — Two coupled stations, ¢ and j.

.D,‘,'
Ar;; = [A[F; — ]+ (a ¢+ IBfl')f Alry; + 1',-,-)]
gi + gi ! (51)

-1

Az;; = g%;: [AlF: — F] + (s + B:)f A(riy + 759
Equation (50) was derived from (49), and equations (51) follow from
(13), (18), (19), and (49).

Our simulation of this network has a nominal 1 megahertz center
frequency with =41 hertz control range. The gains (g; + g,) are in
the range 0.1 to 0.001 sec™'. Transmission delay around the loop can
be preset in the range 0 to 0.1 second and be varied continuously by
=+ 100 microseconds in each link,

In all setups the settling states agree well with prediction. They con-
firm that fixed delay has negligible effect (< one percent) on buffer
and frequency deflections. Therefore the approximation in deriving
(49) from (20) is justified.

For illustration, Table IT gives some typical results. The data have
been normalized to represent unit amplitude disturbances. The in-
cremental delay changes, Ar are expressed as a fraction z of the asso-
ciated buffer capacity such that

_ AT‘fF'
=D

In the simulations the gain delay product rg is less than 10-%. This
should guarantee stability with reasonable valued filters, and indi-

cates that fixed delays are too small to have appreciable effect on
transients. Observations of responses after switeh-on and of subse-

(52)

Zig
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TasLe IT—Settling States of Two Stations

Gain Setting Disturbance Result
Control Type o Bi;  ay B AF; Azji Aziy Azji Af
Balanced 1 1 1 1 1 0 —1/4 +1/4 1/2
1 1 1 1 0 —1 1/2 1/2 0
2 2 2 2 1 0 -1/8 +1/8 1/2
2 2 2 2 0 —1 1/2 1/2 0
2 2 1 1 1 0 -1/6 —-1/6 1/2
2 2 1 1 0 —1 1/3 2/3 0
Proportioned 2 1 1 2 1 0 —1/6 1/6 1/3
2 1 1 2 0 -1 1/2 172 0
1 2 2 1 1 0 —1/6 1/6 2/3
1 2 2 1 ] —1 1/2 1/2 0
One Sided 1 0 1 0 0 -1 1/2 1/2 1/2
2 0 2 0 1 0 —1/4 1/4 1/2
5 0 2 0 0o -1 172 12 1
2 0 1 0 0 -1 1/3 2/3 2/3

Unit gain = 1072 sec™!

Unit frequency = 1 Hz

Unit delay = 10* usec

Nominal clock frequency = 1 MHz

quent disturbances confirm this conclusion. Indeed, delay had insig-
nificant effect when various one- and two-pole low pass filters were
included in the control loops. The filters investigated had ecut-off
frequencies from 0.01 to 50 hertz and g-factors up to 10.

When fixed delays are neglected, the response of the linear system
to small change can be expressed as

DX i(s) = Fi(s) — Fi(s) — [a;i(s) + B:i()[r:ii(s) + 7::(9)IF

[s + gi(s) + g:(3)] (53)
f(8) = ai;(s)Xii(s) — B;:()X,:(s) (54)
where
a;;(8) = a;;H(s), Bii(s) = B:;H (s)
and

g:(s) = g:H(s).
When no filters are used these responses have a simple time constant
1/(gi + g;). Fig. 4 gives some typical response curves for a system
with no filters and using various gain values. Including delays up to
0.1 second had no noticeable effect on these curves.
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Fig. 4 — Response of buffer z,; to a step decrease in delay Ari;. The controls
are balanced, and the net gain is such, that (gi+g,)™ is 12 seconds for curve a,
24 for b, 48 for ¢, 108 for d, and 216 for e.

Fig. 5 shows responses with similar one-pole low-pass filters in
both oscillator circuits. Notice that use of filter time constants near
1/g speeds the response. We do not anticipate that filters will play an
important role in the operation of the networks. We have seen that
they are not needed to stabilize the controls, nor will they be needed
to speed responses because most changes will be thermally induced,
and will therefore occur very slowly. Some filtering may be needed
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Fig. 5— Response of buffer z:; to a step decrease in 7y with various filters
1/(1+4s7). The controls are balanced and the net gain (g«4g:) = 1/24 sec.”™ The
filter time constants = are 0 seconds for eurve a, 10 for b, 20 for ¢ and 40 for d.
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to smooth the output of phase detectors and to reduce noise. For this,
time constants not greater than 1/g should be adequate.

6.2 When Control Signals Limit

A saturating limiter p is placed in the control path to the oscillators
in order to place a bound on the frequeney deviations. To demon-
strate its effect, Fig. 6 shows a buffer response to a ramp change of
delay using various gain values in a symmetrical one-sided control
system with no filters

a;i(s) = a;:(s) = ¢ Bii(s) = Byi(s) = 0.

At the start of the experiment the network is quiescent with the
two clock natural-frequencies offset from one another and the two
buffers defected by amounts that provide sufficient control voltage
to align the running frequencies.

Az;; = A—F'i D,; .
I’

This initial buffer-displacement decreases proportionately with
increased gain. For this purpose a large gain is attractive. However,
when the transmission delay varies, limiting oceurs if the gain is
large, as shown in curve ¢ of Fig. 6, where there is loss of control
and ultimately loss of synchronization. Clearly, saturation must be
avoided, that is, equation (41) satisfied, when one-sided controls are
used.

(o]
CORRECTION FOR © LIMITING I
INITIAL FREQUENCY<=" OCCURS
OFFSET TN N
N
-0.25 "\
AN N BUFFER
\, OVERFLOWS
N\ /
W
-0.50 AN NS
"3
3[__] \\
~
-0.75 SN
\.‘ “..‘-
~—
|x— DELAY CHANGES —>| e
-1.00 L . -
0 25 50 75 100 125

SECONDS

Fig. 6 — Response of zi; to similar ramp delay increases Ar;; and Ary in a
system having initial frequency discrepancy. The controls are one-sided and the
gains are such that g™ and g, are both equal to 50 seconds for curve a, 25 for
b, and 5 for c.
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With two-sided “proportioned” control, changes of delay do not
cause change of settling frequency. See rule 1. Any frequency changes
that might occur during the dynamic response will usually be small
because large parameter changes will oceur slowly in a practical net-
work. Thus with “proportioned” control, delay changes will not cause
limiting, the signal in the limiters being determined only by the dif-
ferences of oscillator center frequencies.

Larger gains can be used with two-sided control systems than with
one-sided. However, in practice equation (41) should always be
obeyed so that systems continue to operate reliably if faults inter-
rupt the distant control paths. The reasons for avoiding limiting are
equally valid for more complex networks, and this is not a hard
restriction on design. It has already been seen in Table I how limit-
ing can be avoided while using gains that satisfy the main re-
quirements of a practical network.

6.3 Nonlinear Conirol

Use of nonlinearity in the control loop has been proposed' as a
means for exaggerating the correcting influence of buffer stores that
are near overflow, at the expense of those nearer center. For this purpose
the nonlinear circuit »(z) is included in Fig. 2. It makes the incremental
gains a function of buffer position, as illustrated by equation (14).
We shall examine separately the nonlinear response to incremental
delay and incremental frequency change as given by equations (50)
and (51).

N

I

NN

NLT
e

LINEAR

NONLINEAR
-0.75
___| DELAY [
CHANGES LINEAR
-1.00 L
25 50 75 100 125

SECONDS

Fig. 7— The response of both buffers to a ramp increase in delay Ary with
liugar and nonlinear controls. Controls are balanced with net g = 0.04 second™
and p = 1.2,
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When z;; is nearer zero than x;; the nonlinearity can be selected
to make | »’(z;;) | very small compared with | v’(z;;) |. Then (a;; + B:;) <
(a;s + B;:). Therefore z,; will approximately track the delay change
and z;; will have little change.

To illustrate this, Fig. 7 shows the response of both buffers to a
steadily increasing delay commencing with z,; = 0 and z;; = 0.5.
The nonlinearity successfully makes the buffer with the most reserve
compensate for most delay change. In this and subsequent experiments

v(z) = H g > 1 (55)

A useful method for demonstrating the response of nonlinear control
is a locus on a graph of z;; plotted against z,; . Fig. 8 shows such loci
for various starting conditions, and Fig. 9 is an enlargement of a section
of Fig. 8 repeated for different values of nonlinearity. These results
show that the nonlinearity can prevent overflow in some circumstances.

Next, consider the response to frequency change with constant delays.
Equation (51) shows that when the deflections are expressed in cyles

:i._j —_—
n
n
1 1
’p|§1'.‘|=l OVERFLOW
BOUNDARY f.\CENTER
Ay
START I T
LINEAR /

NONLINEAR

FINISH 1
n

0

Fig. 8 — Loci of x;: against z(; for a slow ramp change of delay A7y in a two-
station network; I: balanced linear controls g: = g, = 0.04 second™; n: bal-
anced nonlinear controls p = 1.2 g = g; = 0.04 second-2.



248 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1968
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Fig. 9— An enlargement of the upper left quadrant of Fig. 8 for various values
of nonlinearity.

they are the same at both stations. We need to minimize their value
when a buffer is near overflow. Consider a worst case with z;; = 0
and z;; 2 1. Then there is improvement over the linear control if
the net gain (g; + g¢;) exceeds the linear gain. That is, if

[v'(0) — 1)(as: + Bis) + [v'(1) — 1(es; + Bii) > 0.

For example, when (a;: + Bi;) = (a:; + B;:) there is improvement
if 1 < u < 3 using nonlinearities described by equation (48) or if
n > 2 using nonlinearities described by equation (7). An illustration
is given in Fig. 10.

The degree of nonlinearity used will be limited by the need to maintain
some minimum gain for controls near center.

VII. A CHAIN OF FOUR STATIONS

The simulation is extended by adding two more stations to form
the chain shown in Fig. 11. In designing controls for this network it
seems sensible to make controls associated with each link reciprocal
and symmetric, that is,

(es; + Bis) = (ess + Byj) forall 7 g
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Fig. 10 —Loci of z,: against z( for a step change in frequency AF: in a two-
station network with balanced nonlinear control u = 1.2.

Then with the buffers at center the settling frequency is equally
sensitive to frequency drift in each oscillator. With such control the
net gain, g, of the relay stations j and k exceeds that of the end sta-
tions 7 and l. The relay stations therefore have greater risk of limiting,
but this risk is lessened by the larger possibility of averaging and
canceling of disturbances.

Some typical settling states for this chain are given in Table III.
The top of Fig. 12 shows how a sudden change of station ¢ frequency
causes transients through the system. The bottom shows the corre-
sponding response with nonlinearities added. Notice the slowing down
of the response and the increased deflections particularly at remote
stations. These effects are a consequence of the low control gains
when buffers are near center.

DumOund

Fig. 11 — The four station chain.
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Fig. 12 — Buffer responses to a step change of frequency AF; in a four station
chain. Top: linear balanced controls « = 8 = 0.02 second™. Bottom: nonlinear
balanced controls « = 8 = 0.02 second™ u = 1.2.

However, we have said that frequency drift is small in practice,
more significant are effects of delay change. These are demonstrated
in Fig. 13 which shows loci of x; against x; for a delay change Ary.
For simplicity, buffer x;; starts with the same content as x;. The con-
tent of x; and xy are apparent from the graph; all other buffers start
at center. Curve a is the response with two-sided balanced control.
For slow change, it is a vertical line whose shape is independent of
position on the graph or of nonlinearity value. Curve b is the response
with one-sided linear control. The others are for nonlinear one-sided
controls.

VIII. VARIOUS CONNECTIONS OF FOUR STATIONS

Figs. 14, 15, and 16 show four stations connected as a loop, star,
and complete network, respectively. The settling states of these three
networks are illustrated in Tables IV, V, and VI. These results were
virtually independent of fixed delay values and confirm the predic-
tion of equation (49).
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Fig. 13 — Loci of z;. against zu for a slow ramp change of delay Ary in a four

station chain.
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Fig. 14 — Ring network.

O
O

Fig. 15 — Star network.
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Fig. 16 — Complete network.

Fig. 17 gives some typical transient responses of the loop connec-
tion for both linear and nonlinear controls. Fig. 18 demonstrates the
effect of nonlinearity on loei of = to xy; for various starting positions.
A corresponding graph for the fully connected network is shown in
Fig. 19.

In studying the responses of all these networks no noticeable effects
were observed when delays up to 0.1 second were included in signal
and control paths. The responses were always stable even with single
pole filters in the control loop.

Obtaining proper statistical data on the response of the synchron-

0.100 T
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/ mLJ=mLL=-mJ-L=—mL-L
pd |
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z /
0.050 i
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0 i L
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/ TjL =Rl =-Tij="20
1
0.50 / ‘

x / Tk j=TKL="Tjk="LLk
0.25 |
// - Ty =-Lik=0
0 L rs |
Q 50 100 150 200 250 300 350 400 450
SECONDS

_Fig. 17 — Buffer responses to a step change of frequency AF. in a four station
ring. Top: balanced linear controls g = 0012 second™. Bottom: nonlinear con-
trols ¢ = 1.2 g = 0.012 second™.
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TaBLE IV — Settling States of a Four Station Ring

Gains Disturbance Result
Azi;  Azji Azys Azn Azii  Af
Control Type a 8 Fi  zji zij —Azjx —Azpi  —Azu
Balanced 1 1 1 0 0| —3/16 3/16 1/16 —1/16 —3/16 1/4
1 1 0 -1 0 3/8 5/8 1/8 1/8 1/8 0
1 1 0 —1 —1 1 1 0 0 0 0
One Sided 2 0 1 0 0| —3/163/16 1/16 —1/16 —3/16 1/4
Reciprocal 2 0 0 -1 0 3/8 5/8 3/8 1/8 —1/8 1/2
2 0|0 —1-1 11 172 0 —1/4 1/2

ized network to disturbances is an extensive project because of the
large number of interacting parameters available and because of the
slow response of the system to change. To short cut this work we
have examined tendencies in the response in some extreme conditions.

The fully connected network was disturbed by driving the delays
and the oscillators individually with triangular waves having unre-
lated frequencies in the range 0.01 to 0.001 Hz. The maximum deflec-
tion of the twelve buffers and their likelihood of overflow under
various control settings were observed.

The following conclusions were made from these experiments.

(i) The chance of buffers overflowing is decreased by use of in-
creased control gain, provided limiting is avoided. Increasing the
gain past the limiting point increased the chance of overflow.

(&t) The chance of overflow increases when limiting levels are
decreased.

(72) The chance of either limiting or overflow occurring is less
with balanced control than with one-sided control.

() Use of low pass filters with long time constants increases the
chance of overflow.

() Use of nonlinearities (¢ =2 1.2) in a balanced control system
reduces the chance of overflow.

(vi) Use of nonlinearity with single ended control increases the
chance of overflow.

(vit) Use of nonlinearity increases the chance of overflow when
disturbances change at rates comparable with the control bandwidth.

IX. RESPONSES IN FAILURE

If a single transmission link is severed or a signal is lost for any rea-
son the servo in' Fig. 1 normally drives its buffer to an extremity and
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thus deflects the frequency of the whole network. In the simulator this
is prevented by auxiliary equipment that takes the buffer to center
in case of signal loss. Meanwhile, the remainder of the network can
function correctly.

Another interesting fault occurs when a buffer is driven to over-
flow by the normal controls. In the simulator it rests at full deflec-
tion until the phase drift brings another frame within half a cycle
of synchronism with the local clock, the system locks to that frame.

Little difficulty has been experienced in switching stations in and
out of an active network. The switching transient can be reduced by
adjusting the station frequency so that its buffers are near center.

X. CONCLUSION AND RECOMMENDATION

There seems to be no good reason for using nonreciprocal con-
trols, moreover using linear-symmetric controls (ay; + Bu) = (an +
Bi;) makes the network equally sensitive to frequency drift in each
oscillator (rule 3). Then if the oscillators have similar properties this
minimizes the frequency displacement caused by oscillator drift.

Th; —>

| 1

o}

Fig. 18 — Responses of buffers to a ramp change in delay Ar;: in a four station
ring: (a) linear balanced control; (b) linear one-sided control. All other curves
for nonlinear balanced control u = 1.2 starting with 2. = zx;, T4y = z;: and all
other buffers at center, )
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Ty —>

(b) (a)

Fig. 19— Responses of buffers to a ramp change of delay Ary: for the com-
plete network with the same controls as in Fig. 18.

There is additional advantage in also balancing controls (ay; = By).
Then slow delay change will not affect the system frequency and the
chance of buffers overflowing is reduced. The disadvantage of using
two-sided, and hence also of balanced controls, is the need for control
paths between centers. These paths require little bandwidth (< 1 Hz)
but must pass de; they could be included in the framing and signal-
ing codes of a PCM system.

A commercially useful network will almost certainly contain both
sending and receiving links in each path used, and these links will
be similar in opposite directions. For example, they will expand and
contract together so that Ar; = Arj;. Rule 4 shows that if the controls
in such a network are proportional then each delay change is cor-
rected directly by the buffer in its link and no disturbance propagates
through the network.

If the buffers in such a symmetric path start at corresponding posi-
tions they will approximately track one another, deviating only to
correct small frequency drift and the misbalance of the links. There
will be little use for nonlinear shaping to equalize their positions,
besides, nonlinearities lower sensitivity when buffers are near center
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and increases the practical difficulty of keeping controls proportional.

Use of symmetric links and linear balanced controls provide for
near optimum design of buffers. Each one corrects only the delay
change of its own link and the small frequency drifts. They can be
designed independently of the network.
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