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Integrated RC circuils can be made by depositing exceedingly thin
metallic and dielectric films in suitable patterns on an insulating substrate.
Resistors are strips of conductor; capacitors are patches on which conducting,
dielectric, and conducting layers are superimposed. Since conductors can
cross at capacitor paiches, RC networks need not be siricily planar to be
realizable in thin film.

Determining which RC circuits are realizable poses new problems in
topology which are remarkably simple to state but are as yet unsolved. The
results reported here are fragmentary, but they do cover some cases of small
order that may be of practical interest.

I. INTRODUCTION

Integrated RC circuits can be made by depositing exceedingly thin
metallic and dielectric films in suitable patterns on an insulating sub-
strate. A resistor is made by depositing a long, narrow strip of conductor
(usually in a zag-zag for compactness); a capacitor is made by super-
imposing conducting, dielectric, and conducting layers. Because the
dielectric is thin, the capacitance per unit area is high. Fig. 1 shows a
typical thin film pattern.

Ordinarily printed circuits are strictly planar; crossovers are made
only by leading one of the conductors entirely out of the plane of the
cireuit. In the thin film technique, however, conductors can be separated
by thin insulating layers within the plane of the circuit. Thus, cross-
overs can be permitted provided a nonzero capacitance between the
crossing conductors is acceptable. If an RC circuit can be laid out so
that conductors cross only if the circuit requires a nonzero capacitance
between them, we will say the circuit is realizable in thin film or just
realizable.

An example of a realizable nonplanar circuit is shown in Fig. 2. In
this case, the schematic thin film layout brings out intrinsic symmetries
not displayed by the circuit diagram.
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Fig. 1 — Thin film layout for a notch filter (courtesy W. H. Orr). Black region
is bottom conductor; shaded region is dielectric; white region is top conductor.

Finding feasible layouts, or even determining when they exist, leads
to unsolved problems in topology. The results presented here give
answers only in special cases. Moreover, these results concern only the
topological side of the problem; electrical equivalences are not taken into
account. It is assumed that the network is given topologically and that

(a) (b)

Fig. 2 — (a) Nonplanar ecircuit (“twin-tee’”, Ref. 3, p. 309); (b) schematic
thin film layout for the circuit in (a).
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terminals to the outside are located in given fixed positions on the
periphery of the board.

II. SEPARATION OF THE RESISTIVE AND CAPACITIVE PARTS

Given an RC network N, let Ry be the purely resistive network ob-
tained by replacing every capacitor by a direct connection. Clearly N
is not realizable in thin film unless Ry is. Ry is realizable only if its
graph (a vertex for each conductor, an edge for each resistor) is planar
under the restrictions imposed by the locations of the terminals to the
outside (see Fig. 3). This observation provides a first check: if Ry is not
planar, there is no need to proceed further.

Each vertex in the graph of Ry replaces a purely capacitive network.
In Fig. 3, for example, the vertex V in Ry replaces the network shown
in Fig. 4.

One way to construct a realization of N is to construct realizations
for the individual vertex-networks, and then to fit these into the planar
layout of Ry . Since the layout of Ry may not be unique (there may be
more than one ordering of edges about a vertex) the conditions on the
vertex-networks may not be unique.

Another approach, discussed briefly in the final section, is to modify
algorithms for purely capacitive networks to take account of resistors.
In either case, one needs to study the purely eapacitive networks first.

III. PURE C NETWORKS

A pure C network is a set of zero-resistance conductors ¢, ---, ¢,
some pairs of which are connected by capacitors. The problem of finding
a feasible layout for such a network is the following:

For each conductor ¢; find a connected region R; in the plane such that

() R; and R; have common points if and only if ¢; and ¢; are con-
nected by a capacitor, and

_:{ A—Yv

N R

Fig. 3 — Nonplanar RC network N and reduced purely resistive network Ry .
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VERTEX-NETWORK FOR VERTEX V REALIZATION

Fig. 4 — Capacitive network for vertex V of Fig. 3 and realization of this
network.

(72) no point belongs to more than two regions.

Condition (7z) says that no more than two conductors (separated by
dielectric) may be superimposed. If, contrary to condition (#z), conduct-
ing and dielectric layers can be stacked up indefinitely, then every con-
nected C network has a feasible layout. (The network is connecled if any
conductor can be reached from any other through a sequence of capaci-
tors.) This is not quite immediately obvious; a proof is given in Appendix
Al

Indefinite stacking offers other advantages as well.! Unfortunately it
also presents technical difficulties. To date most thin film circuits have
been limited to two conducting layers.

It does not change the problem to replace the connected regions R;
by curves C; of finite length, since a connected region can be nearly filled
by a curve of finite length, and a curve of finite length can be approxi-
mated by a narrow region. When convenient, the curves can have
branches, although this is not necessary, since a branch can be approxi-
mated by letting the curve double back. In some cases, a pair of curves,
whether branched or not, have to cross more than once (examples later).
Such multiple crossings will be permitted on the assumption that a
capacitance, if need be, can be distributed over several crossovers. Some-
times the curves are more convenient and sometimes the regions. I will
use both.

In addition to satisfying conditions (z) and (7) the regions (or curves)
may have to satisfy constraints associated with the terminals to the
outside. More specifically, R, , --- , R, may be required to lie within a
given region R and certain of the B; may be required to contain specified
points P; on the boundary of R. I will consider mainly the two extreme
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cases where (a) there are no such terminal constraints and (b) every
region R; satisfies a terminal constraint.

IV. UNCONSTRAINED CASE

The problem is simply stated: It is specified which pairs of a set of
curves (or connected regions) in the plane cross and which pairs do not.
When are such specifications consistent?

To get a feeling for the problem, the reader may wish to try the ex-
amples in Fig. 5.

The crossings are conveniently specified by means of a graph G.
Associate a vertex with each curve, and let two vertices be joined by an
edge if and only if the corresponding curves are required to cross. If a
set of curves satisfying the crossing specifications exists, we will say
that the graph @ is realizable.

If @ is planar, then it is realizable. In a planar representation of &
one has merely to replace each vertex v; by a star-shaped region R
whose points extend out along the edges emanating from v; far enough
to overlap the points of neighboring regions.

The converse is not true; some nonplanar graphs are realizable. For
instance, any complete graph (nonplanar if the order is greater than
four) is realizable, for in this case every curve C; crosses every other.
(Let the C; be straight lines in general position; i.e., no two parallel, no
three through a point.)

(@) (b)

Fig. 5 — Examples of unconstrained case. With the exception of the dashed
curve, a pair of eurves must cross if and only if they cross in the figure. The dashed
curve must make only the encircled erossings. One of these examples has a solution;
the other does not. Answers are given in Appendix A.2.
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Although nonrealizable is different from nonplanar there is a class
of nonrealizable graphs that is related to nonplanar graphs. If ' is non-
planar, then the graph G* obtained by inserting a new vertex into each
edge of @ is nonrealizable (see Fig. 6). If G* were realizable, one could
construct a planar representation of G as follows. In a realization of G*
let each of the curves C; corresponding to an original vertex of @ shrink
to a point in such a way that no new crossings are generated. This is
always possible. Since by assumption the remaining curves (correspond-
ing to edges of ) do not cross each other, the resulting figure is a planar
representation of @,

A theorem of Kuratowski? states that any nonplanar graph can be
reduced to one of two minimal nonplanar graphs &, or Gz (Fig. 7) by
(7) deleting edges and (77) combining adjacent vertices.

G c*

Fig. 6 — @ is nonplanar; G* is nonrealizable. On the right is a nonrealization of
G*; crossings marked with dots are required, no others are permitted.

The two operations (i) and (47) clearly preserve planarity. Operation
(1) also preserves realizability, but (i) does not. (If it did, all graphs
would be realizable, since any graph ean be constructed by deleting edges
of a complete graph, which is realizable.) To preserve realizability it is
necessary to replace (i) by the weaker operation (¢): deleting vertices
(together with attached edges). To see that (") and (%) do indeed
preserve realizability one has only to interpret them as operations on the
curves ;.

Using operations (z) and (iz) and Kuratowski’s theorem we can
identify a class of nonrealizable graphs as follows.

Let Gy* and G»* be the graphs obtained by inserting a new vertex

t @, is the graph involved in the familiar problem of connecting three utilities
(e.g., the gas, water, and electric plants) to three houses without erossing lines.
Since @, is nonplanar there is no solution. In Fig. 7 vertices 1, 3, and 5 can be taken
as the utilities and 2, 4, and 6 as the houses.
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G| GZ
Fig. 7 — Kuratowski graphs.

into each edge of the Kuratowski graphs G; and G». A graph is non-
realizable if it can be reduced to Gy* or Go* by application of (¢') and
(#1). Gy* and Go* are themselves irreducible. In Appendix A.2 one of the
examples in Fig. 5 is shown to be reducible to Gi*, hence nonrealizable.

The analogue of Kuratowski’s theorem which would say that every
nonrealizable graph can be reduced to Gi* or G.»* is false. An example of
a nonrealizable graph that cannot be so reduced is given in Appendix
A3.

V. CONSTRAINED CASE

In addition to satisfying the conditions (7) and (d7) in Section III,
the curves C; (or the regions R;) will now be required to lie within a
simply-connected region B (which we shall take to be a disk) and each
('; will be required to contain a specified point P; on the boundary of R.
(This covers the case where a single conductor is required to join two
or more separate terminals. One has only to require that the correspond-
ing curves cross each other; their union represents the conductor.)

Before proceeding further, the reader may wish to try the examples
in Fig. 8.

In passing, we observe that any constrained problem can be imbedded
in an unconstrained problem. The constraints can be simulated by
means of a ring structure containing 2r curves, where 7 is the number of
curves in the constrained problem. This is proved in connection with the
example discussed in Appendix A.3. Unfortunately, this observation is
of little use in the absence of more information about the unconstrained
case.

We will regard the vertices vy, -+, v, of graph @ as residing at the
terminal points Py, -+, P, . We will often make use of the complement
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(a)

Fig. 8 — Examples of constrained case. Curve C; must contain point P; and lie
otherwise within the circle. The dashed lines show the edges not in @, i.e., if P;
and P; are connected by a dashed line then curves C; and C'; may not cross; other-
wise C; and C'; must eross. One example has a solution, the other does not. Answers
in Appendix A 4.

G of G, where @ consists of all edges not in . Edges in G will be shown
as solid lines, edges in G as dashed lines.

A subset of vertex points Pi,, ---, P;, such that 91 < 4y < +++ < 4,
will be called a eyele if all the pairs
(P*I?Pfe):(Pi'zipf:«)l :(Pi'n:Pi'l)

are joined by edges. A cycle will be called empty if no other pairs are
joined by edges. We will be primarily concerned with empty cycles in
the complementary graph G. (See Fig. 9)

Theorem 1: A necessary condition for a constrained graph @ to be realizable
1s that G contain no empty cycles of order four or more.

Proof: (i) If (7 is an empty cycle of order four, then & is not realizable.
This is easily verified by inspection. If, therefore, G contains an empty
cyele of order four, then @ is not realizable.

(a) (b)

Fig. 9 — (a) Empty cycle in @, (b) non-cycles. Dashed edges belong to ;
edges not shown belong to G.
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(#7) Suppose the theorem is known to be true for cycles of order
4, ---,m — 1 and suppose, contrary to the theorem, that G contains
an empty cycle of order m and that @ is realizable. The realization of
can be generated in the following way: let curve C; grow continuously
out of point P; until it reaches its full length, then let curve C. grow
out of point P, until ¢ reaches its full length, and so on until all curves
are complete.

Let G(t) be the corresponding complementary graph at time {. At
the beginning, G(t) is the complete graph (no crossings); as the crossings
are generated one by one, edges are deleted from G(f). At some stage the
postulated empty cycle of order m, which is contained in the final form
of G, must have just one internal edge left. But this last internal edge
forms two empty cycles inside the final cycle, at least one of which
must be of order four or more (sinee m > 4) and less than order m.
Therefore, by the induction hypothesis, there can be no realization at
this intermediate stage. Contradiction.

For some time it appeared to me that the empty cycle condition was
not only necessary for the realizability of a constrained graph, but suffi-
cient as well. Recently, though, I found a counterexample of order eight.
This example is discussed in Appendix A.5.

Following are a number of results that help to identify and construct
special classes of realizable constrained graphs. Taken together these
seem to cover most cases of small order.

If no two edges of @ cross, then clearly @ is realizable. Less obvious
is a similar result for G:

Theorem 2: A sufficient condition for a constrained graph G to be realizable
is that G contain no empty cycles of arder four or more and that no two edges
of G cross.

An example of such a @ is the triangulated polygon of Fig. 8(b). This
example, typical of the genre, has a complicated solution with unavoida-
ble multiple crossings.

Theorem 2 is proved in Appendix B. A more general result, also proved
in Appendix B, is the following:

Theorem 3: (i) If (Py, Pi) is an edge of G that crosses no other edges of G,
and if the subgraphs G’ with vertices Py , Py, - - - , Py , and G” with vertices
Py, -+, P,, Pyareboth realizable, then G is realizable.

(i2) If (Py, Pi) is an edge of @ that crosses no other edges of G, and if
subgraphs G" with vertices Py, P», - -+ , Py, and G” with vertices Py , - - -
P, , P, are both realizable, then G is realizable.

b
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The following two theorems deseribe circumstances under which a
new curve C,;; can be added to an existing solution. In many cases
the entire solution can be generated by adding curves one at a time.

Theorem 4: Let G be a consirained graph with vertices Py, -+ , P, Pry1.
G is realizable if (1) the subgraph of G with vertices P1, - - - , P, 18 realizable,
and (i7) there do not exist three vertices P; , P;, Pr,1 <j <k <r 4+ 1
such that P,.\Pi and PP are edges of G and PP, and P,.P; are
edges of G. (See Fig. 10.)

Though cumbersome to state, this theorem is usually easy to apply.
The following special cases are often useful by themselves. Let S be the
set of vertices joined to P,,; by edges of G. Special case 1: the vertices
of 8 are an adjacent string. Special case 2: every pair of vertices in S
is joined by an edge of G. Special case 2, for instance can solve examples
like 8(b) in which @ is a triangulated polygon. One has only to add new
vertices one at a time in such a way that each additional vertex forms
one new triangle in G. The set § always has just two members.

Theorem 4 is proved in Appendix B. Though somewhat involved
when worked out in detail, the idea of the proof is simple. In the situa-
tion of Fig. 10 the curves C; and () (emanating from P, and P;) form
a barrier which C,,; cannot cross. This does not necessarily prevent
C' .11 from intersecting C; , for it is possible that C; could cross the barrier.
If, however, the barrier is not there, then C,;1 can reach C; on its own
without Cj’s help. If there are no barriers of the Fig. 10 type, then
Crpa can reach all of the curves it is supposed to cross no matter how
these may have been drawn. Thus, the new curve C,;; can be added
without disturbing the old ones.

pr‘+|

Fig. 10 — Configuration forbidden by hypothesis of Theorem 4. Dashed lines
show edges of @; solid lines show edges of G.
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The next theorem concerns an operation which I will call an adjacent
interchange. Given the circle B with the peripheral points Py, .-+, P, ,
let R’ be a slightly smaller circle concentric to R with corresponding
peripheral points P,’, ---, P,". Let the primed points have the same
order as the unprimed points except for one adjacent pair Pi',Piy.,
which is interchanged. The points P,, ---, P,, can be joined, respec-
tively, to Py, -+, P,’ by curves C; ---, C; in such a way that only
(' and Cjy, cross. (See Fig. 11.)

If the operation is repeated by means of a new circle R” inside R’,
then the curves C; are extended inward and one new crossing is gen-
erated. A sequence of such operations can be specified by giving the pair
of currently adjacent points that is to be interchanged.

Theorem 5 states the conditions under which all of the intersection
requirements of a curve can be satisfied by a sequence of adjacent
interchanges. These conditions involve cycles in G (not necessarily
empty) as defined just before Theorem 1. Note that the order of vertices
in a cycle of G is invariant under adjacent interchanges.

We will say that a member P; of a cycle in @ is active if it is joined to
some other member of the cycle by an edge of G.

Theorem &: The intersection requirements of a curve C; can be satisfied
entively by a sequence of adjacent interchanges if and only if P; is not an
active member of any cycle in G.

Theorems 4 and 5 tend to be complementary; where one fails, the
other often works. Iig. 8(b) is an example where Theorem 5 fails (every
vertex is an active member of several cycles) and Theorem 4 works,

Fig. 11 — An adjacent interchange.
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An example of the opposite kind is shown in Fig. 12. In this example
Theorem 4 fails (every vertex has the forbidden configuration) but
Theorem 5 works. The whole realization can be constructed by adjacent
interchanges.

A realizable example to which neither Theorem 4 nor Theorem 5
applies is given in Appendix A.6. This is the smallest such example I
have found (twelve vertices), but I doubt that it is really minimal.

VI. ORDER OF CROSSINGS

It is possible to obtain directly from the graph G information about
the order in which crossings must occur along a given curve C;. This
information is contained in configurations I will call empty chains.

An empty chain is a subset of vertex points P;, , Py, -+, P;, in
cyclic order such that the pairs (P;, , Pi,), (Piy, Piy), <+ 3 (Pin_y » Pi)
are joined by edges of G and all other pairs are joined by edges of G.

An empty chain is just an empty eycle with a gap in it. Since the
empty cycle is nonrealizable, it is not surprising to find that the realiza-
tion of the empty chain, though not quite unique, is tightly determined.
(See Iig. 13.)

Theorem 6: Let Py, ---, P, be the vertices of an emply chain. Along
curve Cy, the first crossings with Cy, -+, Ch—p must occur in that order;
the first crossings with Ciys, - - - , C, must occur tn reverse order.

The proof is given in Appendix B.

Every empty chain of length four or more yields ordering informa-
tion. If, for instance, P,, P2, Ps, P7 is an empty chain, then C; must
cross C; before it crosses €'y and C'; must cross C; before €. . Since most

. Fig. 12 — No vertex is an active member of any cycle in @, therefore, a realiza-
tion exists.
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Fig. 13 — Realization of the empty chain of order seven.

examples of interest contain several such empty chains, this theorem
is very generally applicable. The example of T'ig. 8(b), for instance,
contains six empty chains of order four and one of order five, which
together give complete information about first crossings.

Searching for empty chains is tedious to do by hand, but could easily
be done by machine.

A weakness of Theorem 6, evident in the example of Fig. 8(b), is
that it says nothing about multiple crossings. It is clear in many ex-
amples that multiple crossings are determined by . A way of extracting
this information would be very useful.

VII. CONSTRUCTION OF SOLUTIONS — SUMMARY

The preceding results are not strong enough to define a guaranteed
procedure for constructing realizations of constrained graphs. They do,
however, seem to work in most cases of small order. To apply them one
can proceed as follows:

(i) Look for empty cycles in G of order four or more. If any exist,
G cannot be realized (Theorem 1).

(17) Look for edges of G (or () that do not cross other edges of ¢
(or G). Such edges, if internal, permit the graph to be broken
into two independent parts (Theorem 3).

(#77) Look for vertices that are free of the configuration shown in
Tig. 10. Such vertices can be temporarily deleted, since the
corresponding curves can be drawn in after the remaining curves
have been drawn (Theorem 4).

(#) Look for vertices that are not active members of any cycle in
G. These are typically on tree-like branches of G. The corre-
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sponding curves can be constructed either at the beginning or
the end by means of adjacent interchanges (Theorem 5).

(v) Find all the empty chains of order four or more and write down
all the ordering relations they imply. Try to locate each crossing
on both of its eurves. This cannot always be done uniquely.

In a systematic procedure one could combine 1, 4, and 5 since these
all involve chains and cycles.

Chains and cycles in G seem to be important in this problem; they
certainly yield much information. But apparently they are not enough.
To set up necessary and sufficient conditions for realizability, some
other element is needed.

VIII. LOOSE ENDS

So far we have considered only completely constrained and completely
unconstrained graphs, corresponding to networks where none or all
of the conductors are connected to outside terminals. In general, of
course, one wants the intermediate case where only some of the con-
ductors are connected to outside terminals. This remains to be studied.

The preceding results can be used to construct realizations for the
pure C networks represented by the nodes of the resistive network Ey .
(See Section II.) Alternatively, one can generalize the pure C problem
as follows to take account of resistors a priori.

The graph G can be replaced by its associated matrix A, where
a;; = X (for “crossing”) if conductors C; and C; are connected through
a capacitor (or a short ecircuit) and a;; = 0 (for “no crossing”) if C; and
(; are not so connected. To take account of resistors, we let a;; = T
if C; is connected to C'; through a resistor but not through a capacitor.
This will mean topologically that C; and C'; must touch without crossing.

T and X can be defined more precisely as follows. Consider instead
of the curves C; the regions E; . We can assume that the R, are simply
connected. If a;; = T, then the part of E/s boundary that lies inside
R; must be connected (i.e., a single piece). If a;; = X then the part of
R.s boundary inside £; may (but need not) consist of several pieces.

A. J. Goldstein has observed that in constructing an algorithm, the
regions R; have advantages over the curves C; . (The ends of the curves
have an unnecessarily special character.) He suggests that an algorithm
might be constructed that would keep track of all of the pieces of the
boundaries of the E; and take, so far as possible, only steps that are
topologically mandatory. Such an algorithm could easily take account
of both T and X connections. This idea has not been worked out in
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detail and we do not know how often one would be forced to take an
arbitrary step that might be wrong.

APPENDIX A

Ezxamples and Answers

A.1 If indefinite stacking of conducting and dielectric layers is per-
mitted, then any connected @ is realizable regardless of the positions
of the outside terminals. A universal realization can be constructed as
follows.

Since @ is connected, there is a path in G that contains every vertex
at least once. In their order along this path let the verticesbevy, «- -, va .
Over a disk D, stack n layers of conductor separated by layers of di-
electric. Associate the conductors with the vertices of G according to
their order along the path. This is permissible since the conductors
have nonzero capacitances only with their neighbors in the stack. These
capacitances correspond to the edges in the path. An extension of any
conductor can be brought out of the stack radially in any direction.
Thus, any pair of conductors required to have a nonzero capacitance
can be brought out together and superimposed in an arbitrarily long
radial strip. Similarly, any conductor can be brought out in the appro-
priate direction to connect to an outside terminal.

Although this construction shows the existence of a topological
realization, it would hardly do as a practical layout in every case, even
if indefinite stacking were permitted. Some of the metrical difficulties
can be overcome by substituting an annulus for the disk D, but even
so, this construction should be regarded as an existence proof, not as a
practical solution.

A.2 Answers to the Examples in Fig. .

The example (a) of Fig. 5, constructed by R. L. Graham, was the
first nonrealizable example found. It turns out to be of the type dis-
cussed in the text. Its graph is shown in Fig. 14(a). By deleting vertices
and combining adjacent vertices it can be reduced to the graph shown
in Fig. 14(b), which is a Kuratowski graph with a vertex inserted into
each edge. Therefore, the example is nonrealizable. (See discussion
subsequent to Fig. 5.)

Example (b) of Fig. 5 has the solution shown in Fig. 15.

A.3 Tig. 16(a) shows a nonrealizable graph which does not contain
either of the augmented Kuratowski graphs Gi* or G.»*. The outer ring
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(a) ()

Fig. 14 — (a) Graph for example (a) of Fig. 5. (b) Reduced graph G,*.

(B and (' vertices) simulates terminal constraints; the inner part (4
vertices) is a constrained graph (empty cycle of order 5) that is known
to be nonrealizable.

Proof: (i) The graph G of Fig. 16(a) cannot be reduced to Gy* or G,*.
The operations (i) and (iz) always reduce the number of vertices. But
G already has the same number of vertices (fifteen) as Gi* and Gy*,
(72) @ is nonrealizable. Suppose a realization exists. In this realization
let ¢ be the union of C-curves (Fig. 16(b)). No A-curve intersects C.
Therefore all A-curves must lie in the same mesh of C. Call the interior
of this mesh R. R is (or may be) partitioned into subregions by segments
of B-curves. We will show that all #ntersections between pairs of A-curves
lie within the same subregion of E.

The A -curves may be indexed so that in the cycle 4,, Ay, - -+, 45, A3
each curve intersects only its neighbors. Let I be an intersection between

Fig. 15 — Solution to example (b) of Fig. 5. Both triangles can be drawn out-
side the hexagon.
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Fig. 16 — Nonrealizable graph which does not contain either of the augmented
Kuratowski graphs G,* or G:* and a partial realization.

A;and Ay 1¢moa 5) and let J be an intersection between A; and A jy1¢moa 5) -
There exist two distinet paths along 4-curves joining I and J. One path
P, traverses segments of A:y, Aqe, ---, A; and the other path P,
traverses A;, Ay, -+, Aju (indices mod 5). (In case 1 = j, Py tra-
verses A4 and P, traverses A;.) The sets of A-curves represented in
the two paths are disjoint. Since each B-curve can cross only one A-curve
and cannot cross any other B-curve it is not possible for a continuous
boundary made up of B-curves to cross both P, and P, . Therefore, I
and J cannot belong to different subregions.

Let R* be the subregion to which all A-intersections belong. The
boundary G of R* is made up of segments of B and C curves. (Every
B-curve is represented since every A -curve must intersect its correspond-
ing B-curve and could leave R* only at a point belonging to this curve.)
If by,ba, -+ ,bs are any points on @ belonging to By, Bz, ---, Bs,
respectively (indexed according to the BC cycle), then the points
by, - -+, by must lie in cyclic order around G. If not, it is possible to find
a subset of four out of cyclic order, say by, bs, ba, by . But by is joined
to bs by a path lying within B,, Cy, Bz, and b; is joined to bs by a path
lying within By, Cs, By . These paths cannot cross, yet must be outside
R*. This is not possible under the postulated ordering by, b, ba, bs.
All other noneyeclic orderings can be similarly ruled out.

The points at which the A-curves join G must, therefore, lie in the
order determined by the BC cycle and all intersections between A -curves
must lie within B*. But these are the conditions of a constrained case
known (Theorem 1) to be nonrealizable.
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A4 Answers to Examples in Fig. 8

Example (a) of Fig. 8 has no solution (empty cycle); example (b)
has the solution shown in Fig. 17.

Tig. 17 — Solution to example in Fig. 8 (b). Curves C; and C, cross thrice.
Multiple erossings are unavoidable in this example.

A.5 Counterexample to the conjecture that all constrained graphs
free of empty cycles of order four or more are realizable. Fig. 18 shows
the graphs @ and @ for this example and a near-realization in which
only one required crossing does not occur.

The lack of empty cycles of order four or more can be verified by
inspection; the nonrealizability can be shown as follows.

Consider curves 4 and 8, which do not cross. Since curve 2 crosses
both of these, there exists a path from vertex 4 to vertex 8 traversing
curves 4, 2, and 8. In case of multiple crossings, there may be more than
one such path. We will assume that the path is chosen so that the seg-
ment of curve 2 contained in it has no crossings with curves 4 and 8
except at its endpoints. Since this path is to serve as a barrier, we will
denote it by B..

There exists a similar path traversing curves 4, 6, and 8. We will call
this one Bg .

Since curves 2 and 6 do not cross, the barriers B; and B can have no
points in common except along a single segment of curve 4 and a single
segment of eurve 8. Thus, the barriers must be related to each other
in one of two ways shown in Fig. 19.

Curve 1 cannot cross B; and curve 5 cannot cross Bs. Thus, the
barriers cannot be oriented as in case (a) of Fig. 19, for if they were
curve 1 could not cross curve 5. By a similar argument, case (b) is
eliminated by curves 3 and 7. Thus, neither case can occur; the example
is nonrealizable.
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NEAR—REALIZATION:
ALL CROSSINGS EXCEPT 3,7

Fig. 18 — Counterexample. @ contains no empty cycles of order four or more,
yet G is not realizable.

Fig. 19 — Proof of counterexample.
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A.6 Fig. 20 shows the realization for an example to which neither
Theorem 4 nor Theorem 5 applies. The ordering information supplied
by Theorem 6 is very complete in this case. Only the order of curves 5
and 6 along curve 2 (and the symmetric counterparts) is unspecified.
Indeed this could not be specified since either order is feasible. The
order 6, 5 however, requires multiple crossings. The realization without
multiple crossings is unique.

Fig. 20 — Realization for an example to which neither Theorem 4 nor 5 applies.
APPENDIX B

Proofs of Theorems

Theorem 2: A sufficient condition for a constrained graph G to be realizable
is that G contain no emply cycles of order four or more and that no two

edges of G cross.

Proof: The following proof depends on Theorems 3 and 5 whose proofs
are independent.

The theorem is certainly true if G' has three or fewer vertices. Suppose
it is known to be true if @ has m or fewer vertices. Consider a graph @
with m + 1 vertices. If @ satisfies the hypotheses of the theorem, then
either G is an empty chain (see discussion preceding Theorem 6) or else
G has an internal edge. If G is an empty chain, then by Theorem 5 it is
realizable. If G has an internal edge then this edge separates G into two
parts as defined in Theorem 3. Each of these parts has m or fewer vertices
and is free of crossing edges and empty cycles of order four or more
(by hypothesis), hence by the induction assumption is realizable. By
Theorem 3, G is realizable.
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Theorem 3: If (P, , Pi) is an edge of G (@) that crosses no other edge of G
(@), and if the subgraphs G’ with verticles Py, Ps, --- , P, and G" with
vertices Py , - -, P, , Py are both realizable, then G is realizable.

Proof: The method of proof is proof by picture (Fig. 21). Case (a):
(P, Py) is an edge of @ crossing no other edges of G. None of the curves
Cy, -+ ,Cry crosses any of the curves Ciyi, ---, Cr. Therefore,
except for C; and C; the realizations of G° and G” can be confined to
separate parts of the disk R. C; and () can participate in both parts.
(See Fig. 21(a).) Case b: (Py, Py) is an edge of G crossing no other edges
of G. Every one of the curves Cs, -+, Ci_; crosses every one of the
curves Ciyy, - - -, Cr . The realizations of G’ and G” can be confined to
the regions labelled with these letters in Fig. 21(b). The peripheral
terminals for these realizations can be connected to the terminals on
the periphery of the disk as shown in the figure. The connections to G’
can cross G”’s region since this can only generate allowable crossings.
The required crossings between curves of G' and curves of G” oceur in
the center of the figure.

X

Pk
Fig. 21 — Proof of Theorem 3.
Theorem 4: Let G be a constrained graph with vertices Py, - -+ , Py, Prys.
G is realizable if (i) the subgraph of G with vertices Py, - - - , P, is realiza-

ble, and (ii) there do not exist three vertices Py, Pj, Py ,1 <j <k <7+ 1
such that P, P; and P,1P. are edges of G and PPy and P...P; are
edges of G. (See Fig. 10.)

Proof: We suppose that a realization for the subgraph with vertices
Py, ---, P, is at hand. It will be convenient to think of this realization
as made up of regions R, ---, R, instead of curves. To simplify the
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notation later on we will designate the disk B to which the realization
is confined by the indexed name R, . We may assume that E; intersects
the boundary of R, only in the vertex P;.

Let R* be that connected piece of R, which contains P, but is
exterior to the regions that R,,; may not intersect. B* is the set of points
that can be reached by R, . We will show that the boundary of B*
contains all the vertices corresponding to regions E,;; must intersect,
i.e., all vertices joined to P,;; by edges of G.

The boundary of R* can be partitioned into a sequence of segments
Si, -+, 8. where S; belongs to the boundary of Eiu and k() #
(i + 1). The segments S; and S, adjacent to P,;; belong to R, , hence
k(1) = k(n) = 0. If k(s) = 0,1 < ¢ < n, then §; is that segment of
the boundary of the disk R, which runs from Pii1y t0 Preyr . (The
end cases7 = 1 and ¢ = n can be included by defining k(0) = k(n 4 1) =
r+ 1))

Now suppose P,;; P; is an edge of G (i.e., R,;; must intersect R;).
We will show that P; belongs to the boundary of R*.

Ifj > k@),i =1, - - - , n, then P;belongs to S, , hence to the boundary
of R*. If not, let 7 be the first index such that j < k(7 + 1). It is not
possible that k(i) = j because R; as a region that intersects F,; is
not involved in the boundary of R*. It is also not possible that 0 <
k(z) < j for this would violate hypothesis (77). (Ri:) intersects Ry
because segments of their boundaries are adjacent.) Therefore, k(i) = 0.
Hence, S; runs from Pk(i—l) to Pk({+1) . Since ]G(’L - 1) < j < ]C(’!, + 1),
S; must contain P;. Therefore, P; is on the boundary of R¥, which
was to be proved.

Theorem &: The intersection requirements of a curve C; can be salisfied
entirely by a sequence of adjacent interchanges if and only if P; is not an
active member of any cycle in G.

Proof: If: A chain is a sequence of vertices Py, , Py, , -+, Py, in cyclic
order such that (P, Pi,), (Piy, Piy), -+, (Piy_,, Ps,) are edges of
G. For the duration of this proof a chain must have at least three vertices.
Let the vertices be numbered in clockwise order and suppose P; is
not an active member of any cycle in G. Let S be the set of vertices
joined to P; by edges of G. We will show that by a sequence of adjacent
interchanges the members of S can be moved around the circle and
finally interchanged with P; .
S can be divided into three subsets:
(?) The clockwise set S;: P; € S, if P, is joined to P: by a chain
whose intermediate members have indices between 1 and k.
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(#7) The counterclockwise set S.. : Py € S.. if P, is joined to Px by a
chain whose intermediate members have indices greater than k.
(772) The rest Sk .
S. and S.. must be disjoint because otherwise P; would be an active
member of a cycle. Let P; be that member of S. with highest index. P;
can be interchanged with all vertices with higher indices. Thus, it can
be moved clockwise around the circle past P; . With P; out of the way,
the member of S, with next highest index ean also be moved clockwise
past P;. The process can continue until all members of S. have been
interchanged with P;. Similarly, the members of S.. can be moved
counterclockwise past P; . The members of S; can be moved either way.
Hence, every member of S can be interchanged with P, , which was to
be proved.

Only if: Suppose P, is an active member of a cycle. Then it is joined
to another member P; by an edge of G. P, cannot be brought adjacent
to Pi because the order of vertices in a cycle is invariant under adjacent
interchanges. Hence, P, cannot be interchanged with Py .

Theorem 6: Let Py, ---, P, be the vertices of an empty chain. Along
curve Cy the first crossings with Cy, - - -, Ci_s must occur in that order;
the first crossings with Cryz , - - - , C must occur in reverse order.

Proof: Tt is only necessary to prove the first part of the statement (con-
cerning C,, - - -, Cy_s) since the second part follows from the first by
symmetry. The first part is trivially true if k = 3. We assume then that
k> 3.

The region bounded by €, and Ci_; encloses Ci_». (See Fig. 22.)
Since C; cannot cross C'.—; it must cross C'y_; before it can cross Cr—_s .

Fig. 22 — Proof of Theorem 6.
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If k > 4, then there is a curve Ci_4. The region bounded by Ci_,
and Cy_s encloses Cy_s. Therefore, €. must cross either C_» or Ci_4
before it can cross Cy—_; . But by the previous argument it cannot cross
C'v_2 before Ci_; . Therefore, it must cross Ci_4 before Cy_; . Since this
argument can be iterated indefinitely, the theorem holds for arbitrary k.
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