Theory of Error Rates for Digital FM

By J. E. MAZO and J. SALZ
(Manuseript received June 29, 1966)

A general theory is presented for evalualing the error performance of a
digital FM system in the presence of additive noise. The digital system con-
sidered is a conventional one employing a voltage-controlled oscillator as the
modulator and a limiter-discriminator followed by a low-pass filter as the
demodulator. Because of the nonlinear nature of the demodulation process,
no adequate analytical techniques have been available to provide a satisfac-
tory treatment. Adopling the notion of “clicks’ used by S. 0. Rice to siudy
threshold effects in analog FM systems, we have succeeded in evolving a
theory capable of predicting performance for a wide range of applications.
While our theory reinforces some previously derived results for binary and
for narrow-band systems, the results obtained here are not confined to these
situations. In particular, the inefliciency of the FM discriminator as a de-
tector for a large number of orthogonal signals is quantitatively evaluated, as
well as the role of the post-detection filter. Some qualitative aspects of the
error-causing mechanisms discussed in the paper are general, but quantita-
tive results are confined to additive Gaussian noise and large signal-fo-
noise ratios.

I. INTRODUCTION

Theoretical investigations of FM receivers with analog input signals
date back to J. R. Carson and T. C. Fry,! and to M. G. Crosby.? These
investigators and others that followed them®** were primarily concerned
with the signal-to-noise (S/N) transfer attainable in M receivers and
the determination of threshold effects. Recently S. O. Rice,® and previ-
ously J. Cohn,” attacked the threshold problem in FM receivers from a
fresh point of view by using the notion of “clicks.” It has been observed
that when the noise at the input of an FM receiver is increased beyond
some value, the receiver ‘“breaks,” that is, for a given (S/N) at the in-
put, a much poorer (S/N) at the output is measured than would be pre-
dicted from a linearized analysis of the receiver. Before the breaking
point, clicks are heard in the output of an audio receiver. As the input
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noise is further increased, the clicks merge into a sputtering sound.
Rice’s approach is to relate this breaking point with the expected num-
ber of clicks per second at the output due to the added noise at the in-
put.

While in analog application the criterion of (S/N) transfer is satisfac-
tory, in digital data transmission it does not by itself furnish an adequate
performance criterion. Usually performance is judged in terms of error
rates which cannot be predicted from the (S/N) transfer for nonlinear
receivers. The error rate clearly depends on the statistical distribution of
the output noise. In good systems, the errors are very infrequent and are
associated with rare peak noise conditions. The statistical structure of
the occurrence of infrequent noise peaks and the manner in which they
cause errors in FM receivers is the main subject of this paper. Some
previous investigations of these effects have been carried out. For ex-
ample, Bennett and Salz® have analyzed binary FM systems, including
the effects of distortion. They derived formulas for the error rate without
including the post-detection filter in their model. Since the error rates
that they obtained for a well-designed binary system were close to the
optimum obtainable for any receiver, they were able to conclude that the
neglect of this filter was justified. Formulas are also available®® for the
probability distribution function of the instantaneous frequency of sig-
nal plus noise at the input to the post-detection filter for N-ary FM, but
these equations are not very useful in predicting the performance of a
practical I'M system since the task of relating this distribution to the
distribution at the output of the post-detection filter is apparently
untractable. In a recent paper, Salz" considered a multilevel FM narrow-
band digital communications system where he included the post-detec-
tion filter in his analysis. However, the results assume that the post-de-
tection filter did not perform significant selective processing of the
detected signal.

In this paper, we shall develop a general theory from which the per-
formance of FM receivers with arbitrary processing gain may be pre-
dicted. We shall view the conventional FM receiver, described in Section
I, as a device for detecting digital signals and examine its properties in
detail. In Section III, after approximating the post-detection filter by an
ideal integrator, we show how clicks enter the problem.* Our assumptions
and the ensuing mathematical model of the stochastic output are also
stated there. The following section supplies the considerable amount of

* Cohn, Ref. (7), has also mentioned the application of the concept of clicks to
explain errors in dlgltal FM. Furt.her, D. Schilling of Brooklyn Polytechnic Insti-
tute has called to the authors’ attention that he 18 also investigating the relation-
ship between clicks and error rates in FM.
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mathematical detail needed to quantitatively substantiate the work of
Sections V through VII. In particular, the notion of clicks will be used to
explain the poor performance (compared to ideal) of this receiver to de-
tect a large number of orthogonal signals. This phenomenon has also been
mentioned by Wozencraft and Jacobs.* Another result of the present
paper is to establish conditions under which the previous analyses reli-
ably predict the performance of actual FM systems. The work of Refs. 8
and 11 will be supported and it will be shown that for multilevel wide-
band systems the post-detection filter cannot be ignored. Finally, in Sec-
tion VIII a discussion is given to suggest circumstances under which sue-
cessive clicks will not be independent and an instructive example is
given showing how this renders ineffective the additional selective filter-
ing possible at the input when the frequencies are very widely spaced.

II. THE DIGITAL FM SYSTEM

A digital FM signal is readily produced by changing the frequency of an
oscillator in response to a digital baseband signal. The voltage or current
at the output of such an oscillator may be represented as

S(t) = A cos [wnt + j: s(¢)dt + 6] , (1)

where A4 is a real amplitude, w, the angular center frequency of the oscil-
lator, and @ is an initial phase angle. The digital information-bearing
signal s(¢) is taken to be a piece-wise constant function of time represent-
able as a random time series of the form

s(t) = wa Zﬂ axg(t — nT), (2)
where {a, ,n = 0, 1, ---} is a sequence of independent and identically
distributed integer valued stochastic variables representing the data.
For example, one might have a, = =1 with equal probability for binary
systems. The function g(t) is a rectangular pulse of unit amplitude and T
seconds duration and w, is a proportionality constant relating frequency
displacement to baseband signal voltage or current. The spectral proper-
ties of this FM wave have been extensively analyzed in Refs. 13 and 14.

Transmission and reception of the FM wave is accomplished as follows.
The wave S(¢) is first processed by a transmitting filter, channel noise is
added, and the result is processed again by a receiving filter assumed to
be the inverse of the transmitting one. The signal is then detected via
the limiter-discriminator and filtered at baseband before being synchro-
nously sampled at ¢ = nT (using independent timing information) to de-
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Fig. 1 — Block diagram of a digital FM receiver,

termine sequentially the values of {a.}. We have illustrated these opera-
tions in block diagram form in Fig. 1. A detailed description of the blocks
shown is given in Ref. 15. We shall state here in mathematical terms the
assumed operation of the limiter-discriminator. Let the input to the
limiter be written in terms of in-phase and quadrature components as

x'(t) cos wit — y'(f) sin wit = R(t) cos [wd + o(8)], (3)
where
R(t) = V'O + YV OF (4)
and
o(t) = tan™' y'(8) /2’ (1). 6))
Then the output of the diseriminator is taken to be
de _ 2'(1)y'(¢) — y' (D)2 (t) ’ (6)
di [=' ()] + [y’ ()]

where the dots denote differentiation with respect to time. The post-
detection filter acts upon the quantity (6).

III. FORMULATION OF THE PROBLEM AND A MATHEMATICAL MODEL

We approximate the low-pass filter as an ideal integrator whose im-
pulse response is unity for 7" seconds and zero afterward. The duration
1" is taken equal to the signaling time 7 and so no intersymbol interfer-
ence oceurs at the sampling times for a wave described by (1) and (2).
The results obtained with this particular choice of filter should be repre-
sentative of the results one would obtain with any low-pass filter of simi-
lar bandwidth.

The sampled output ¢’ of the discriminator low-pass filter output is
given by (7)

r TR0y @) — ()
R @
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The in-phase and quadrature components occurring in (7) are now not
those of the pure FM wave (1), but have the analogous components of
zero mean noise added in as well. One may, by use of a rotating coordinate
system, equally consider

(8)

T . ,

q=¢q — aw = f w(”yfﬂ ygt)x(t) &
0 22(t) + y*()

where 7(f) is now a zero mean quadrature noise process, while z(t) is an

in-phase noise process with mean A4, the amplitude of the noise-free re-
ceived FM wave. We now proceed formally with (8), defining a quantity

r(t) = y(@) /(). (9)
Equation (8) is then rewritten as a path integral
r(T)
dr(t) f
= ——— = [dp(t). 1
q o 1+ ,,.2(0 (ﬂa( ) ( 0)

In (10) we have written dp = d(tan™! /), but of course we do not mean
that ¢ is evaluated using some fixed branch of tan™ 3/ since this would
give ¢ as a single valued function of y and x and would not allow for the
fact that as we circle once about the origin in the ay-plane ¢ increases by
2. The noise processes y(f) and () wander about the xy-plane (see
Fig. 2), usually staying close to their mean values but occasionally tak-
ing large excursions and encircling the origin. Each infinitesimal portion
of the path contributes an amount de volts to the output and all these
small amounts from all the small portions of the path must be added to-
gether to form the total contribution ¢. It is easy to see that ¢ depends on
the path taken, not just on its endpoints. A simple mathematical reason
for this is that the transformation (9) is undefined whenever x(f) = 0.
Further, the paths taken in the ry-plane are random, and g is therefore,
a random variable with some probability density related to the statistics
t g

y /‘/\\d"’

/ Yy~

- [z©,y()]
/ -

< [z(T),y(T)]
K 1 /
\ \_/ A T —

Fig. 2 — A possible path in the zy-plane traced by the noise from ¢ = 0to ¢ = 7'
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of r(t). Unfortunately, this probability density is not determined solely
by the elementary statistics of r(#). As will be seen, in addition to the
elementary statistics of r(¢) the distribution of its singularities on the time
axis enters the picture. The singularities of »(f) are determined by the
zero-crossings of x(f). Thus, the behavior of FM receivers is intimately
related to the structure of the zero crossings of the added noise.'®

To see how to handle the situation, visualize the following hypotheti-
cal state of affairs. Suppose for 0 = ¢ £ T we have that y(f) > 0, and
that x(t) is positive for a while, decreases once through zero at ¢ = ¢,
and then remains negative. A possible plot of r(f) versus ¢ over the time
interval is then shown in Fig. 3. For this particular path one has

*d g ® d "mg

q= —T2+f T2= '—T——z‘l‘f —ré-(ll)
s 1 47 — 1 4+ 7 — 1 + 7 r) 147

In (11) the straightforward interpretation of the integrals is meant.

Evaluating the infinite integral one obtains for this path
g = 7+ tan”' #(T) — tan™ r(0),

where tan™' 2 means the principal value inverse tangent function,
| tan~! z | = =/2. In general, one has the result that

g = tan ! »(T) — tan™! 7(0) 4+ n(T)m, (12)

where tan— x again has the principal value interpretation and n(7T) is
an integer (which may be positive, negative, or zero) which is related to
the number of times x(f) vanishes in the interal 7' and to the sign of y(Z)
when z(tf) vanishes. For large signal-to-noise ratios it is clear that if
x(t) vanishes by going to zero from the positive side that it will almost
immediately be followed by another vanishing of x(¢) in the other direc-
tion. If y(#) has not changed, the contribution of the “return trip” to
n(T') will cancel the contribution from the previous crossing of the y-axis.
On the other hand, if y(t) does change sign so as to cause an encircling
of the origin then the contribution to n(f) will be the same as the previous
crossing. The net contribution to n(7") of a number of paths is shown in
Fig. 4. The paths which have An = =42 are immediately recognized as
the “clicks’ discussed by Rice.® The “clicks” are not the only contribu-
tion to n(T) however. There is also a contribution because of the fact
that at ¢ = 0, when our process begins, we may be in the middle of a
large noise fluctuation and be over in the left-half plane. Immediately
afterwards, at t = 04, we will experience a contribution of =1 to n(T);
a similar situation may prevail at time ¢ = T, when a possibility exists of
stopping the process immediately after we have crossed over to the left-
half plane. We will show later that for large signal-to-noise ratios, these
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Fig. 3 — A possible sample function of r({).

end-effects may be neglected because they occur with a probability that
is asymptotically negligible compared with the probability of a click.

An important fact to observe before proceeding with the analysis is
that ¢ can be decomposed into the sum of three random variables. The
first two random variables appearing in (12) are continuous and bounded.
Their probability densities are related to the elementary statistics of
x(t) and y(t). The third random variable is a discrete one, whose proba-
bilities are determined from the probabilities of zero-crossings of x(f)
and y(t).

The remarks made thus far about the effect of noise on M reception
have been general; no assumptions have been made about the statistical
nature of the additive disturbance. In order to obtain quantitative re-
sults some definite assumptions are necessary. For the remainder of the

An=o0

An=+2
| l—
< L —— An=-2
L / —
N C R

Fig. 4 — Net changes An in n(7') caused by some typical paths in the zy-plane.
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paper we shall set ourselves the task of studying the structure of the
probability distribution of ¢ when the input noise statistics are those of a
Gaussian process having a symmetric spectral density about the carrier.
From these distributions we determine the error rates as a function of the
pertinent system parameters.

No attempt will be made in this paper to derive an exact probability
density for the random variable g. This is not a mathematically tractable
problem since it requires knowledge of the probability distribution of
zero-crossings of random processes. This by itself has been an area of
investigation for many years without too much success. The probability
distribution of the zero-crossings of most elementary random processes
is not currently known.

In order to permit an analysis of the model two assumptions are made,
both of which we feel are quite reasonable. These two assumptions taken
together state that the three random variables that determine ¢ via
(12) are all independent. We separate this statement into two assump-
tions because their individual justification stems from two different
physical arguments, one having to do with bandwidth and the other
with signal-to-noise ratio. The first assumption states that tan= »(T)
and tan—! r(0) are independent. For a flat Gaussian noise input this will
be a good approximation if T = 1/W, where W is the input noise band-
width. Since T is also the signaling interval, and the correlation func-
tion of the input noise has its first zero at ¢ ~ 1/W, the motivation for
this assumption is clear. The second assumption, somewhat harder to
justify, states that n(T) is independent of the previous two random varia-
bles, and the clicks, which comprise n(7"), are independent from one
another. This is clearly an assumption expressing an intuitive feeling
that the clicks oceur rarely and of sufficiently short duration. In general,
they will be rare if the signal-to-noise ratio is large, and short if the
bandwidth satisfies W = 1/7 as required above.

These two assumptions plus the identification of crossings of the nega-
tive x-axis by the moving point in the xy-plane (as calculated by Rice)
with the occurrence of a click shall constitute our working model of the
output noise. An indication of how this model must be modified if the
input noise spectrum is not relatively flat is given in Section VIII.

IV. THE BASIC DISTRIBUTIONS

Let ¢ be a Guassian variable of zero mean, variance ¢%, and = be another
independent Gaussian variable of mean A, variance ¢2.* Then the den-
* Recall that even though our z(¢) and y({) are not independent processes be-

cause the noise spectrum will not be symmetrical about (w. + @awa), they are inde-
pendent variables.
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sity (@) where tan @ = y/x and @ has the full range of 27 is well known
and is given by Bennett,"”

(¢) = exp (—p) + 3 ,‘ﬁcos g exp (—psin’ 3)
21 T

=i

(13)
(1 + erf (/p cos @),

where p = A2%/20%

One fact which is implicitly contained in (13) is the probability P,
of finding the signal point in the left half of the xy-plane. However, an
easier way to obtain P is as follows:

A —
P, = Pr(z < 0) = %erfc\/adnu;il;;f\;%. (14)

Equation (14) will be of use in the arguments used to discard the “‘end
effects” at ¢ = 0 and ¢ = T spoken of earlier. Equation (13) also im-
mediately yields the probability density p(e) for ¢ = tan=' (y/x),
—m/2 < ¢ < 7/2. Indeed, we have

ple) + ple + =)
= (ﬂ# + ,‘/:-Jr cos ¢ exp (—psin® @) erf (4/p cos ¢)

for | | = =/2.

Suppose ¢; and @, are two independent angles which have the density
(15), and define an angle ® = ¢, — @2, | ® | = . It will be of interest for
us to determine the probability P, that ® exceeds some angle ¢ > 0,
i.e., we would like to determine

Il

p(e)
(15)

(r/2)—¢ /2
Po= [ Tder [T deptenpte),  e>0. (16)
—n/2 vote

In general, one is unable to perform these integrations exactly, but since
discussion has already been limited to the large S/N region, little will be
lost if we make use of this in simplifying the evaluation of (16). The
asymptotic evaluation is carried out in detail in the Appendix; we
distinguish three cases:*

CaseI;0 < ¢ < 7/2:

1 cot (¢/2) exp [—2p sin? (p/2)]
P'PN‘\/S—W Vcos ¢ Vo . (17a)

* In (17) the symbol “~"" is used to denote asymptotic equality; this has also
been used in (14). Also (17a) and (17¢) do not hold 1f ¢ gets too close to the end
points of the appropriate interval. As a rough rule, ¢ should not be closer than
1/+/p radians to the end points.
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Case IT; o = 7/2:
P, ~ (3) exp (—p). (17b)
Case IIT; ¢ > x/2:

exp [—a(1 + cost p)]
2mV7 pV/psin g cos ¢

The most important characteristic of the result (17) is the dependence
of the exponent on angle, since for large p the nonexponential factors
are relatively slowly varying.

We should remark that for very small angles (15) is well approximated
by the Gaussian curve

o(e) = 4/2oxp (~o6) (18)

of zero mean and variance 1/2p. The difference angle ® would, for very
small &, be well approximated by the difference of two independent
Gaussian variables, each having the density (18). The quantity P,
calculated on this basis agrees (asymptotically) with the small angle
approximation of (17a).

The final item that we discuss in this section is the density of n(T),
or rather we discuss the density of that part of n(T) that arises from the
clicks (An = =+2), ignoring An = =1 contributions. For this we need
only take over some ideas and formulas from Rice.® We have that
(ignoring An = =+1)

P, (17¢)

n(T) = 2=N(T), (19)

where N(T) is the number of clicks that occur in time T'. Following Rice,
we assume that all clicks are independent and that those tending to in-
crease (decrease) ¢ by 27 form a Poisson process with rate of occurrence
N.(N_). In general, with a modulated signal, N, and N_ are not equal.
The probability density p(z) of 2 = N(T') is then given by

oo k2
p(z) = exp [— (Ny + N_)T] kg_:m 8(z — k) (&)

-I.(2T/N,N_);

as may be shown by forming the discrete convolution of the densities
of the positive and negative clicks. In (20) 8(-) is the Dirac delta func-
tion and 7i(u) is the modified Bessel function of integer order k, be-
having for small u as®™

(20)
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1k] 1
Ik(.u)_)(g) W; (21)

B0
also
I.J,(Z) = I;;(Z).

The type of modulation that we are concerned with is when the in-
stantaneous frequency deviates by ws from the carrier* for a time T,
T being the signaling and processing interval. For this situation Rice
gives for the average rates N, and N_ when the noise at the receiver
input is Gaussian

Ny = VP Ff2 L — ef Vo + ofid/r]

— faexp (=p)[1 — erf (fn/p/M]} )
and
N_ = Ny + faexp (—p), (23)
wheret
r = (1/2m)(¢/a)
ol = varx = vary
¢* = var & = var . (24)
Under the assumption that f; is positive we have asymptotically
Ne~ o C*fi—)(f_) exp [—p(1 + £i/1°)]
2\
N_~ N; + faexp (—p). (25)

Thus, we see that for large p an ever greater majority of clicks oecur in
the negative direction (f; > 0) and for our purposes of computing error
rate the clicks in the positive direction may be neglected; i.e., we shall use

1V+ ~ 0
for fq > 0. (26)
N_~ faexp (—p)

* We trust that no confusion will arise between r introduced in (24) and r(f)
introduced in (9).

t The case wa = 0 corresponds to no modulation. Also, for ease of writing, we no
longer explicitly consider the factor a, .
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For fi < 0 the situation is reversed of course. We note that the effect of
the clicks on a modulated carrier is to tend to make the measured fre-
quencies appear closer to the carrier frequency than the transmitted
frequencies. That is, confining oneself for the moment to only errors
caused by clicks, frequencies transmitted higher (lower) than the carrier
will be measured to be at that frequency or a lower (higher) one, when
the noise is small.

Since we shall use approximation (26), the distribution (20) for
z = N(T) may be replaced by the simpler Poisson one, where the proba-
bility of getting exactly N (negative) clicks in time T is given by*

exp (—N_T)(N_T)""

NN (27)

pIN(T)] =

Also the probability of getting M or more clicks is, for large signal-to-
noise ratios, approximately the probability of getting exactly M clicks.

V. DISTRIBUTION OF OUTPUT AND PROBABILITY OF ERROR

Equations (14), (17), (26), and (27) provide the information required
to calculate the distribution of ¢, (12). In principle we simply convolve
the continuous density of [tan~!#(T) — tan™ »(0)] with the discrete
density of n(T)x. In Fig. 5, we have given a qualitative sketch of the
result, neglecting end effects. This picture is intended to show that the
density consists of a central lobe about the transmitted frequency ex-
tending to 4 on each side, which is the density of [tan™'»(T) —
tan— r(0)], plus identically shaped lobes displaced by integral multiples
of 2« toward lower frequencies (assuming f; > 0). These displaced lobes
are weighted by the probability of getting the appropriate number of
clicks to effect the displacement. Thus, the lobe occupying the space
—2nw + = is weighted by the probability of getting exactly n clicks in
time T. For n = 0 the weighting is essentially one, for large S/N. There
are, strictly speaking, similar lobes and weightings on the opposite side
as well, but these weights are, for large S/N, negligible compared to the
eorresponding lobe we have drawn. That is to say, the first lobe on the
right (not shown in Fig. 5) has small probability compared to the first
lobe on the left, but has a large probability compared to the second lobe
on the left. Nevertheless, we have neglected to include it because we will
generally be concerned with probabilities like Pr[ | ¢ — faT' | > ¢], and
thus corresponding weights are important. We dwell on this point be-

* We confine ourselves to f3 > 0. Exaetly analogous consideration apply to fi <
0. The case fa = 0 occurs if an odd number of frequencies are allowed.



DIGITAL FM 1523

|

|

I
-aw -2m -T _7T -9

2

Fig. 5 — Qualitative sketech of density of ¢' (neglecting end effects) for fa > 0.
The dashed lines are for reference in the text.

cause it is conceivable that for some practical or conceptual application
the neglect would not be justified.

The discussion given above is still not quite correct; it is modified
when we include end effects. The principle correction that inclusion of
end effects will eause is to add two more side lobes, one over the interval
[—27,0] and the other over the interval [0,27]. The weightings of these
lobes certainly should not exceed the estimate given in (14), and this
will be enough to exclude them for our purposes.

We now apply our results to some typical calculations. Consider the
case of narrow band* FM (defined by AfyT < =), where one has J
equally spaced frequencies of separation Af; crowded into a bandwidth
W. The probability of error for any one of the frequenciest (not situated
at the ends) is the area outside of the interval bounded by lines L, and
L; in Fig. 5. If L, and L; are defined by | ¢ | = ¢ then the probability
of error for such a frequency is, from (17a),

1 cot ¢/2 exp [—2p sin? (p/2)]

- — = 28
Pe V21 Veose vV'p ! (28)
where, if one assumes that the bandwidth W = JAfs, one would take
aWT
= ) 29
© 7 (29)

Our requirement that AfyT < = implies J > 2 for the narrow-band
formula to be applicable (assuming WT = 1). Note sin? (p/2) is less
than %, and thus the exponent in (28) is exp [—kp], where & < 1. Now
the contribution of the clicks to P, is essentially the area A, of the
first side lobe which is by (26) and (27)

Ap = faT exp (—p). (30)

* Note the special sense in which the term is uesd here.
t The P, for a frequency at the end is one-half the expression (28).



1524 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMEBER 1966

But expression (30) is, asymptotically, exponentially small compared to
(28). Likewise, the area due to the side lobes caused by end effects is
exponentially small, and the probability of error for narrow-band FM
is given by (28). The result that the clicks do not asymptotically con-
tribute to errors in narrow-band multilevel FM lends justification to a
previous evaluation of this type system by Salz,* who considered the
special narrow-band system with WT = 1. It is both interesting and
gratifying that this result is in agreement with the result given in Ref.
11. In a later paper, Salz and Koll" report on experimental results which
agree with the earlier theoretical results.

Next, consider the asymptotic evaluation of P, for the case of orthog-
onal signals; this case corresponds to (Awg)T = w, and we assume that
the thresholds are spaced midway between the frequencies. Thus, (for a
frequency not on the edges) we have that the error probability is given
by the area outside of that bounded between the lines L, and L, . The
contribution from the major lobe is, from (17b),

3 exp (—p).

In addition, the area of the first side lobe is asymptotically comparable
to this and is

JaT exp (—p),

being weakly dependent on the frequency sent. In fact, for the nth signal
(J = 2n) we have for orthogonal signals that

fT=2  n=12--,

] &y

The average error rate is then, for orthogonal signals (J of them, J
even, and equally spaced signals and thresholds),

P, = (3) exp [—p] + ()(J/2 + 1) exp (—p). (31)

Equation (31) is indeed a surprising result. The first term of (31) is the
probability of confusing the transmitted frequency with one of its
nearest neighbors. The second term is the (average) probability of con-
fusing it with its second nearest neighbor closest to the carrier. This is
because the area from (—w) to (—3w/2) is, by application of (17b),
negligible compared to the area from (—3w/2) to (—5=/2). Thus, it
states that for the multilevel scheme considered here (a not unreason-
able one) one is less likely to confuse a transmitted frequency with its
nearest neighbors than one is to confuse it with a particular one of its
second nearest neighbors. We see from (31) that the error rate from the
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continuous part of the output is comparable to the error rate caused by
clicks.

As a final remark about the orthogonal system we see comparing
(31) and (14) why end effects are neglected again.

For a final example, consider the wide-band situation where the signals
are loosely packed in the band; i.e., (Aws)T > 7. Now no errors will be
caused by the continuous part of the output; only clicks will cause errors.
If the frequencies are widely spaced a single click may not cause an error;
several clicks during the time interval 7' may be required. Thus, suppose
that the frequencies are spaced so that the phase differences of nearest
neighbors is (Aws) T = 2nm, n being any positive integer. The probability
of error will then be the probability of getting n (or more) clicks in time
T, which from (26) and (27) behaves as

(faT)" exp (—mp) _ (n/2)" exp (—np)
n! = n! (32)
Lexp (—np).

The coefficient in (32) is at least as bad as for the orthogonal case, but
the important item is the exponent. Superficially at least it appears that
we have gained in performance by spacing the frequencies widely, since
the exponential has changed from ¢ ” from the minimum orthogonal
case (AwgT = 7) to ¢ "*. One must realize, however, that one is talking
about different p’s here. The bandwidth for the case under consideration
is essentially 2n times the minimum orthogonal one and therefore, for
the same signal power, the nominal value of p has decreased 2n, and one
has in fact not gained a factor of n in the exponent. In addition to the
bandwidth penalty, error performance has actually suffered too.

v

VI. COMPARISON WITH OPTIMUM

One can demonstrate how the FM discriminator compares with the
optimum detector when used to detect orthogonal signals; i.e., when
AwsT = . It is known that when optimum detection is used for any
orthogonal set of signals, the (exponential part of the) error rate behaves
as exp [—E/N], where E is the signal energy (assumed common to all
J levels) and Ny/2 is the (two-sided) spectral density of the noise. If we
let S denote the average signal power, write £ = ST, and estimate the
total bandwidth W for large J by W = J/(2T), we see that the ideal
exponent becomes exp [—Jp/2]. However, we had seen that, regardless
of the number of levels, the disecriminator error rate for Aw,T = 7 be-
haves as exp [—p]. Thus, we have lost a factor of J in the error exponent
by substituting discriminator detection for matched filter detection.
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An important conclusion may immediately be drawn concerning the
performance of conventional FM receivers or detectors of orthogonal
signals. Our results show that the receiver is indeed inferior in perform-
ance when compared with the optimum. This fact has been stated by
Wozeneraft and Jacobs!? and the reasons are clear from our analysis. The
FM receiver admits too much noise at its front-end which cannot be
cleaned by the post-detection filter because of the nonlinear anomalies,
namely the clicks. As a matter of fact, the amount of noise grows in
direct proportion to the number of orthogonal signals, hence the inferior
exponent.* The optimum detector is a bank of matched filters. The noise
power at the output of each filter does not grow with the number of
signals; it is a fixed constant determined by the bandwidth of the filter,
which roughly needs be no broader than the symbol rate, 1/T'.

This poor performance of conventional FM receivers when used to
detect data might be remedied by employing an FM with feedback
system such as described in Refs. 20 and 21. The physical argument to
support this contention is often stated as follows. In the absence of the
feedback loop, the IF filter must be wide enough to pass the total swing
of the incoming signal. However, since the feedback loop tracks the in-
coming frequency, this IF filter, whose width determines the noise vari-
ance, could be narrowed and less noise would be admitted.

This possibility of making use of FM with feedback to improve the
error rate in digital systems has been suggested by Wozencraft and
Jacobs.” TUnfortunately a mathematical treatment of this difficult
problem does not exist at present.

VII. EFFECT OF POST-DETECTION FILTER

In the previous sections we have discussed in detail the performance
of an FM discriminator followed by a low-pass filter. The low-pass filter
was approximated by an ideal integrator whose integration time was
taken to be equal to the duration of an individual signaling interval.
Formulas sufficient to evaluate the performance of multilevel FM with-
out the post-detection filter have recently been developed by Mazo and
Salz;!° comparison of the results of the present paper with Ref. 10 will
show the influence of filtering.

* Actually, these qualitative conclusions may be arrived at by the Gaussian
approximation to the output noise. The reason why this works is apparent from
(31) which gives P, for orthogonal signals. The first term of (31) is not due to clicks
but arises from the continuous part of the output noise. This is the part that the
Gaussian approximation would tend to duplicate. The second term of (31) is due
to clicks and has the same behavior with regard to p. Even if one could keep p

constant as the number of levels J increased, the factor of J in the click contribu-
tion to (31) would still degrade performance.
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Suppose that the angular frequency  is sent and we ask for the proba-
bility that the observed output is less than z, where (4 — 2) > 0. It is
shown in Ref. 10 that the probability P is essentially given by* (for

large p)
PEex])[ M] (33)

—p -
22 + 0'2,'"‘0'2

Consider the situation for orthogonal signals, or in fact for any signal
set where the frequency spacing between the individual frequencies is
fixed. One expects the ratio ¢%/¢® to increase as the square of the total
input bandwidth, hence as /2, the square of the number of levels. Thus,
for a large number of orthogonal levels the post-detection filter does
very well in improving the error performance, changing the error rate
from? (roughly) exp (—p/J?%) to exp (—p). One would certainly expect
something like this to be true since, for a large number of levels, the noise
bandwidth before the post-detection filter is much greater than the
signal bandwidth at that point.

Another qualitative effect of the post-detection filter may be noted.
From (33) we see that the distribution of output noise without the post-
detection filter depends on the frequency sent, because of the factor
(2> + ¢%*/c?) in the exponent; the “spread” of the probability density
will be roughly twice as great at the ends of the band than at the center,
and thus without a post-detection filter one would not choose the fre-
quencies to be equally spaced. We have seen that there is no such de-
pendence of the error rate exponent on the transmitted frequency when
the post-detection filter is present.

VIII, AN APPARENT PARADOX

At this point we have basically concluded our discussion of error rates
in digital FM, based in part upon the theory of “clicks” in I'M receivers.
In particular, we have seen in Section VI that even when frequencies
were widely spaced so that «,T is many multiples of 2r the error per-
formance did not improve. The reason was noted to be that although the
distance between frequencies increased, the noise admitted to the system
increased by a corresponding factor. The latter is predicated on the
assumption that the input bandpass filter is essentially a flat filter up
to some cutoff frequency determined by the signal spectrum. It may be
possible, however, to shape the front-end filter so that increasing the
frequency separation does not cause a proportionate increase in the

* Equation (33) represents only the exponential part of P. Also (33) is true [see
Ref. 10] only if (y — 2)2/[z2 + ¢%/0?] < 1.

T 8et (F — 2)? &2 (AN)% (6%/?) 2 J2(AN)*
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noise power admitted. We know that the power spectrum of the trans-
mitted signal will have peaks at the transmitted frequencies of width of
the order (1/7). Suppose we have a notch filter then, with transmittance
peaks at the possible frequencies of the appropriate width. The input
noise power will be constant and therefore by choosing a large enough
separation one can force the probability of error to be arbitrarily small,
contradicting optimality considerations for reception of signals against
a white Gaussian noise background.

Before giving what we feel is the correct answer to the stated paradox,
we wish to explore some other considerations which, on the surface,
might resolve the paradox without changing the basic assumptions of the
model. One might first object that our argument was too heuristic; is
the noise power really constant as the frequency separation increases?
To answer this we have performed the following caleulations. We have
chosen transmitting and receiving filters so that the FM signal is strictly
undistorted and then optimized the filters to minimize the variance of
the noise admitted. This procedure is discussed in Ref. 11, and the results
depend on the power spectrum of the noise. We then specialize to a
binary system and, using (48) of Ref. 13 for the spectral density of a
binary FSK wave train, calculate the noise admitted. The result shows
that while the noise admitted does, in fact, increase as the frequency
separation increases, it does so only logarithmically with the separation.
Thus, the error probability still will decrease to an arbitrarily small
value as the separation increases and from this point of view the question
is still unresolved.

A second consideration is the following. The probability of error that
we have calculated was based on asymptotic approximations to formulas
given in Ref. 6. The results depended only on the amplitude of the re-
ceived FM wave and the average noise power ¢2 at the input to the
limiter-diseriminator; if one allows transmitting and receiving filters
the more relevant parameters are the average signal power on the line,
Piine, and o2 However, the exact formulas of Rice also involve the
quantity &2 which is the average power in the derivative of the noise at
the input to the limiter-discriminator (after the receiving filter).* Let
S(w) be the signal spectral density and F(w) the transmittance of the
receiving filter. Turther, let us insist that the signal at the input to the
limiter-discriminator be exactly the FSK wave described,| so the trans-
mitting filter is the inverse of the receiving filter. We then have for a
white noise background of Nof

* Rice, Ref. 6, uses the parameter r = (1/2x) (¢/7).

t We emphasize that continuous phase at frequency transition is demanded, but
nothing more.

1 It 18 for such a noise background that the optimum results are known.



DIGITAL FM 1529

o = 12""] | Fw) [ do (34a)
& = g:f 2| Fw) [F d (34D)
1t S

P = 5 | o 4 (34c)

When one realizes that the spectrum of an FSK wave decreases at
infinity like the fourth power of the frequency,” (34b) and (34¢) imply
that 62 and the line power P\, cannot both be finite. Thus, suppose 42
is finite. The convergence of the integral in (34b) implies that | F'(w) |?
must decrease at least like 1/w"**, ¢ > 0. The integral for Py, will,
for large w, look like

f w%- w dw

which diverges. Likewise, the assumption of finite line power implies ¢2
is infinite. An infinite 62 certainly violates the conditions under which
the asymptotic results of Rice’s formulas hold. In particular, these
formulae show that an infinite ¢* corresponds to an infinite average
number of clicks per second (assuming such a language is still possible)
and the FM diseriminator will not work, in the strict sense. On the other
hand, if we choose the evil of infinite line power then perfect performance
is not surprising,.

While the above theorem about ¢,d, P, is true from a mathematical
point of view, it is almost irrelevant from an engineering point of view
because it involves discussions of infinitely large frequencies, and does
not really eliminate the paradox at all. We need merely precede the
limiter-discriminator with a flat filter with a cutoff so high that the
signal is almost undistorted. Since real diseriminators work, this is not
an unreasonable thing to assume. Now ¢ is finite, and although we may
have to go to extremely large S/N ratios, the paradox is as entrenched as
ever,

The resolution of the problem lies in a reinterpretation of Rice’s
caleulation of the average number of crossings of the negative ax-axis.
We had assumed each crossing corresponds to an encirclement of the
origin which is independent of all past and future encirclements, This is
reasonable when the receiving filter is essentially flat across the whole
received spectrum and the correlation time out of the receiving filter is
small (~1/W). However, if the input noise spectrum is chopped into a
few slits or notches, correlations in the noise being processed in the de-
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tector will persist for a longer time and multiple encirclements of the
origin can occur with essentially the same probability that one would
normally associate with a single large excursion close to the origin.

To make our arguments more precise we consider a binary situation
at almost zero rate, i.e., we have very narrow filters F; and ¥, about the
frequencies (w, + wa) and (w. — wa), respectively. The bandwidth of
these individual filters is of order 1/T. The noise out of F; and F, can
be written as

na(t) = naz(t) cos (we — wa)t — Noy(t) sin (we — walt,

N1(t) cos (w. + wa)l — n(t) sin (w. + wa)?

I

(35)

where n.:(t), ete., are independent baseband noise currents. If we assume
that the frequency (w. + wa) is being transmitted with amplitude A,
then in a “coordinate system’’ following that frequency we have

r=4+ X
(36)
y=171,
where
X = Mg + naz 008 2wg + Moy Sin 2wt
(37)

Y = ny, + ngy cos 2wt — R sin 2wd,

A typical portion of the path that the noise traces out in the xy plane
can be caleulated from (36) and (37) and is shown in IFig. 6. Neglecting
the time variations of ni;(¢), ete., which vary on a time scale comparable

T R = Y(nay) ? +(nzy)?

ANGULAR VELOCITY=2w4g

ANGULAR VELOCITY=2wy
4R .
\\_/ A T —

Tig. 6 — Small portions of some noise trajectories when receiving filter has two
transmittance peaks.
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to T, we see the path is a circle centered at (4 — 7y, —ny,), of radius
Vit + Na,2, and counter-clockwise angular velocity of (2wg). If o2
and o2* denote the average noise powers out of F; and F. , respectively,
then the probability P that the circle is appropriately situated with a
large enough radius to encircle the origin is given exactly by
g 2
P = 2f; a’lsza'zz exp (_P): (38)

where p = A2?/2(c* + o5°). For the case of a symmetrical spectrum
about the carrier (a2 = ¢.%), (38) is comparable to (26). However, our
circle is rotating with frequeney 2f; and will have a constant radius for
about 7' seconds; thus, it will complete 2f;T revolutions in time 7. As
the frequencies are spread and notched filters are used the noise indeed
does not increase proportionally, but the number of multiple encircle-
ments of the origin that a click will make does increase as the separation.
Thus, the filter shaping under discussion will affect the statistical struc-
ture of the clicks, preventing a violation of optimality.

Note added in Proof. A discussion of the click contribution to the error
rate has been given very recently by J. Klapper in the RCA Review,
June, 1966.

APPENDIX

Asymptotic Behavior of P,

We wish to record here an outline* of the details of the evaluation of
(16) for large S/N so as to obtain the results given in (17). If we set

p(x) = %GXP (=p) + ﬂcosmexp (—p sin® z)

(39)
-erf (\/p cos z),
then according to (16) the required probability is written as
(r/2=¢) (=/2)
Po=[" Tay [ dep(y)p(a). (40)
(r/2) (wte)
If we define the distribution function
;
P@) = [ piy (41)
—(x/2)

* We do not explain the techniques used here for the asymptotic evaluation of
integrals. The interested reader may wish to consult the subjects “saddle point
method,” ‘“Laplace’s method,”” “Watson’s lemma’ in Ref. 22.
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and perform and integration by parts, (40) becomes
] T/2—¢
Po= [ " Pty + o)y, (42)

(7/2)

Our evaluation will be based upon approximating the functions P(y)
and p(y) when p is large. In particular, from (39) we see

py) ~ 1/5_ cos y exp ( —p sin’y), (43)

provided y is not close to +w/2. Integrating (43) yields
P(y) ~ 3lerf v/p + erf (\/p sin p)], (44)

which will be a good approximation for large p except when y is near
—7/2. These exceptional points will receive special consideration.

As a first example consider the case when ¢ < /2. The integrand for
(42) is shown symbolically in Fig. 7. Consider the contribution first from
negative y. This is from (42), (43), and (44)

0 _ -~ /
3/ Ly dolert Vb = erf (Vpsin [y )] /& cos (y + o) -

cexp [—p sin® (y + ¢)].

Next, approximate erf 4/p by unity to obtain

—— P (Yte)

Fig. 7 — Symbolic representation of the factors in the integrand of (42) drawn
for ¢ < =/2.
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. _
lf dy erfe (\/,;sinly\)/‘/fcos(y+qp)
2 —(x/2) ™

(46)
cexp [—p sin® (y + )]
and use the asymptotic expansion
1
erfec x ~ ﬁ exp (—2%). (47)
The resultant integrand has a saddle point at ¥y = —¢/2, and a routine

saddle point evaluation will yield (17a) of the text. It is easy to verify
that the error made by replacing erf 4/p by unity in (45) creates an
asymptotically small error. Likewise the neglect of positive y is asymptot-
ically small for

(7/2)—¢ (r/2)—¢ - 1
f dyP(y)p(y + ¢) = f dyp(y + ¢) = [§ - so] (—)
0 0

us

exp (—p) + f(rm ° 1/5 "

-cos (y + ¢) exp [—psin’ (y + ¢)]
exp [—p sin® ¢]

24/ mpsing ’
by Laplace’s method. For ¢ < /2 we have

~

2 sin? (¢/2) < sin?

which proves our point. The addition of the term (1/r) exp (—p) in
(48) provides a strict upper bound to p(y + ¢) and thus takes care of
special considerations at the right end of p(y + ¢). At the left end point
of the range of integration, (—m/2), p(y + ¢) is still well approximated.
The function P(y) is, however, approximately

S e L A )
™
Using (49) it is easy to obtain an estimate of the contribution of the
left end point behaving as exp (—p) and this is asymptotically small.
This ends our discussion for ¢ < 7/2.
We give a somewhat more condensed outline for ¢ = /2. The contri-
bution of the middle of the range of integration is again approximated
by (46) with ¢ = 7/2. Using (47) and (46) immediately evaluates to

[exp (—p)]/4.
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Next, consider the error made at the right end point. Equation (43)
holds to within a strip of order 1/4/p from 0, after which p(y + ¢)
behaves like [exp (—p)]/w. Therefore, the error behaves like

2 ™ 7; ?
which is asymptotically small.
The left end point error is bounded by

0
_ exp (—p) (f )1/E . _ 2.d .. (—p)
er —— (gt Tsmyexp( pcos y)dy KE ol

which is again asymptotically small.

Our final case is ¢ > 7/2, and this time end point contributions will
not be small. The reason is that if one examines the integral representing
the contribution from the middle of the range of integration, i.e.,

(r/D—¢ -
1 f dylerfe v/p sin | y | — erfe v/pl P cos (y + o)
2 L(xy2y ™ (50)

X exp [—p sin’ (y + o)),

Lexp (=p) 1

it is exponentially dominated by contributions near the end points. But
in (50) our approximation to P(y) vanishes faster than the correct P(y)
at y = —n/2, and our approximation to p(y + ¢) vanishes at y =
(/2 — ) while the true p(y + ¢) does not. This implies that the asymp-
totic evaluation of (50) will be asymptotically smaller than the correct
contributions from the ends of the interval. The contribution from the

right end is

(x[2)—p —_
%_/: dy[erf\/I:—e'rf\/fasinIyll'%—“2

(r/2)
51
exp [—p(1 + cos® )] (81)

“4rvrp\Vpsingecos ¢’
The lower limit of integration (51) is immaterial, as will be the upper
limit in (52). For the contribution from the left end we have

Pl (x/2)—¢

— dy [g + y] 1/3 cos (y + ¢) exp [—psin’ (y + )]
T (x/2) T (52)
exp —p(1l 4+ cos? ¢)]

“4rv/TpVpsinecos’ o’

The sum of (52) and (51) yields (17¢) of the text.
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