Physical Limitations on Ray Oscillation
Suppressors
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The question of whether it is possible to suppress ray oscillations in light
waveguides is imporlant for the design of light communications systems.
With the help of Liouville’s theorem of statistical mechanics it is shown that
it is impossible lo reduce simultaneously the amplitudes and the angles of
ray oscillations if the ray originaies in and returns to a region of low index
of refraction. A reduction of both ray amplitudes and angles can be achieved
only if the ray moves from a region of low to one of high index of refraction.

Liowville’s theorem is used to derive a condition relating the output posi-
tion and slope of a ray which traverses an optical transformer to ils input
position and slope. With p; , X; denoting the canonically conjugate variables
of the output ray and p;, x; those of the input ray, the condition derived
from Liouville’s theorem states that the Jacobian of the transformation 18 one.
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I. INTRODUCTION

Light transmission systems can be built in various ways. A continuous
dielectric medium of rotational symmetry with an index of refraction
which depends on the distance r from the optical axis

n = n(r)

is capable of guiding light rays if n(r) decreases monotonically with in-
creasing r. Another example is the beam-waveguide consisting of a
series of lenses which refocuses the light beam periodically counteracting
diffraction.

Both of these examples have one point in common — a ray which is
launched off-axis into the waveguide follows an oscillatory trajectory.
However, even if a light ray travels on-axis it will be forced into an
oscillatory trajectory by any imperfection of the guidance medium.' To
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keep the ray amplitudes small requires a very high precision of align-
ment which might be hard to obtain for long waveguides.

It seemed natural, therefore, to consider means of suppressing these
ray oscillations, and if all such efforts fail, to ask for a general physical
principle which says that such ray oscillation suppressors are impossible.

The search for such a general principle is even more important as it is
easy to construct models of beam waveguides which violate physical
prineiples in subtle ways thus seeming to lead to ray oscillation suppres-
sors. One such system is shown in Fig. 1. Assume that we deform thin
lenses as indicated in the figure and assume further that these lenses
behave just like plane thin lenses in that they break each ray by an
amount B8, which depends only on the radius r, of the ray but not on
the input angle.

tan B, = —r./f.

Making the paraxial approximation, which means replacing tan 8, by
B, and tan e, by e., we obtain the ray equation -

Tapr = Ta + a’n(zn+1 - zn) (la.)
Opt1 = Qp — T'}H- (lb)

If the lenses are warped to form parabolas,
Zny1 — Bp = d—+ b(.’.n2 - Tn+12). (2)

Equations (1a) and (1b) together with (2) describe rays which, if they
travel from the left to the right in Fig. 1, exhibit decreasing amplitudes.
In fact, if one allows each ray to travel a sufficient distance they approach
the axis arbitrarily closely.

It appears that we have invented a ray oscillation suppressor.

The object of this paper is to prove that such a device is impossible.
So the question arises: What went wrong with the argument presented
above? A closer examination shows that the assumption that 8, is
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Fig. 1 — Beam-waveguide composed of warped, thin lenses.
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independent of e, violates Liouville’s theorem. We will return to this
question later.

The general proof of the impossibility of constructing a ray oscilla-
tion suppressor was suggested by J. R. Pierce.

II. PROOF OF THE IMPOSSIBILITY OF A RAY OSCILLATION SUPPRESSOR

The proof is based on Liouville’s theorem.? It refers to the representa-
tion of physical systems in phase space. Phase space is the space of the
canonically conjugate variables ¢; and p; describing the system. Each
system is represented by one point in phase space. Many identical sys-
tems which happen to be in different states described by different values
of their coordinator g; and p; can be described by the density of their
representation points in phase space. Liouville’s theorem states that the
density of any given configuration of points in phase space is constant
if the systems under consideration obey the canonical differential equa-
tions

dt  op: dt agi 3)

H is the Hamiltonian function deseribing the system. Another version
of Liouville’s theorem states that the volume containing a constant
number of points in phase space remains constant in time.

For Liouville's theorem to be applicable to light rays we have only to
show that light rays can be described by equations of the form (3). The
derivation of the Hamiltonian equations of geometric optics can be
found in Ref. 5. The derivations are sketched here for the sake of con-
venience.

To show this we start with Fermat’s principle which states that a
light ray connecting two arbitrary points P, and P in a medium of index
of refraction

n = n(z,y,2) (5)
follows a path such that

1 ("
J = _f nd s = extremum. (6)
Cc Py

Here, ¢ is the velocity of light in vacuum and s is the path length meas-
ured along the ray trajectory. Introducing coordinates z,y,2, we can
rewrite (6) as

Py
J = lf nV1 + 2% + y? dz = extremum (7

C Jpy
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with

¢ dx ; dy
= —_— d = —_—,

v dz anc ¥y dz (8)

Equation (7) is analogous to Hamilton’s principle of least action with

the Lagrangian
L=n+1+2z2"+y" (9)

and the time ¢ being replaced by the z-coordinate.
Once the Lagrangian of a system is known the moments p. and p,
canonically conjugate to the 2 and y coordinates are defined by

’

oL T
P= 3 " T T e T o (10a)
oL y'
Py T NIt et (100)
and the Hamiltonian function by
H=pa +py —L=—Va—p'—p' (11)
The variational problem (7) is solved by the equations?
' oH ’ oH
- = o7 12
3. Y= o (12a)
' o ' oH
Pe = 5y P T TG (12b)

Equations (12a) and (12b) are analogous to (3) which shows that the
ray description can be given in terms of canonical differential equations.
The equations of (12a) are satisfied identically while the equations of
(12b) lead to the well-known ray equations

1 d( z’ )_Bn (13a)
Viteitrra\"Vita'+y?) & N
1 d Yy _an
V1+ 2"+ y'?d_z("’ V142 + y’ﬂ) oy (13b)

Introducing

ds
— ! !
d_z_v1+$2+y2’ (14)

(13a) and (13b) can be written in the more familiar form?
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d dx an -
d( dy\ _on
ds(n(%) =3 (15b)

The preceding discussion of ray dynamics was sketched only to prove
that Liouville’s theorem applies to light rays.

Now, we are finally in a position to prove the impossibility of a ray
oscillation suppressor. To simplify the discussion let us limit the problem
to two dimensions, @ and z. Assume that z is the axis of the system. The
phase space is now two dimensional and is spanned by the coordinates
a and p,. Let us further assume that we consider an ensemble of rays
whose initial conditions are such that the representation points of all
these rays fill a square area centered around the origion of phase space
as shown in Fig. 2. Each ray represented in this area has a certain dis-
tance « from the optical axis z and a certain slope given by (10)

Pz
IE’ — %T_zpf' (16)

If an oscillation suppressor were possible we would require that all the
rays initially contained in the square of phase space of Fig. 2 would
approach the z-axis more closely. In addition, we would require that
the angles between the rays and the z-axis don’t increase or perhaps
even decrease. If we look at the rays initially and finally in a region of
constant index of refraction n for example in vacuum, n = 1, we would
find that the square of Fig. 2 has deformed either into the rectangle, if
the angles don't shrink, or into the smaller square, if the angles as well
as the amplitudes shrink, as indicated in Fig. 2 by dotted lines. In either
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Fig. 2— Volume in phase space occupied by light ray representation points.
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case, we find that the area (volume in two dimensions) of phase space
occupied by the points representing the initial ray positions has de-
creased. However, Liouville’s theorem says that this is impossible so
that we see that a ray oscillation suppressor is impossible. We can trade
off amplitude at the expense of spread in p. direction. In this case, either
the tangent of the ray angles 2’ or the index of refraction has to increase.
It is even possible to decrease both the ray amplitudes and angles by
increasing n along the z-axis. However, the area in phase space has to
stay constant. The initial square has to deform into a rectangle of equal
area which stretches along the p, axis. After some distance we have
reached a region of high index of refraction and find both the amplitude
and the ray angles decreased (but not the p. values which have in-
creased). For most applications to be able to make use of the effect, we
have to leave the high index medium. But as soon as n drops to a low
value the angles have to increase to keep the spread in p, constant and
again we have traded a decrease in the ray amplitudes for an increase
in the ray angles. The ray position in most optical systems will eventually
spread far apart if we allow the rays to travel far enough. This means
that the volume in phase space, though its volume content remains
constant, assumes a “filamentous” appearance and extends to many
different parts of phase space.?

III. A BASIC RELATION FOR OPTICAL TRANSFORMERS

Liouville’s theorem allows one to formulate a theorem which all rays
passing through an optical device (optical transformer) have to obey.

Let us assume we have an arbitrary optical transformer with input
rays whose positions and slopes are described by the canonically con-
jugate variables ¢;, p; and corresponding output ray with variables
q:, pi - The output variables are related to the input variables by

q: = qilg:, Pi)
p: = pigi, pi)-

The input rays may occupy a volume dV = dqidg:dp.dp: in phase space.
This volume deforms, as the rays propagate, to dV. Liouville’s theorem
states that these volumes are identical:

dv = dv. (17)
The volume dV on the right hand side of (17) can be rewritten as

7 a(qi) pl)
dV = m‘) ’ d,Q1 dQ'Q dpl dpg (183.)
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or

0lai, ) gy (18b)

dv = .
a(qi, pi)

We conclude from (17) and (18) that the Jacobian must be equal to
unity

6(q1:, P{)

3qi> pr) L (19)

Equation (19) is stated in Ref. 6 without proof.

The derivation of (19) is based on the fact that the ray trajectory can
be described by the differential equations of (13). However, there may
be discontinuities in the index of refraction, n, where the ray equations
can not be applied. But it is well known that rays traverse discontin-
uities of the index of refraction. The ray trajectory is unaltered if the
discontinuity is replaced by a rapidly changing but continous transi-
tion of n. In this way we assure that the ray equations hold everywhere
and that (19) is applicable even in that case.

Limiting the problem to two dimensions we can write (19) as

opox _dpox _ (20)

Equation (20) allows us to derive an interesting relation between the
input and output angles of rays passing through an infinitesimally thin
optical transformer (Fig. 3). If the thickness of the optical transformer
shrinks to zero we have x = z and consequently,

x

-7
OPTICAL —--—
TRANSFORMER

Fig. 3 — Illustrations of a thin optical transformer.
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% =0 P 1
so that (20) reduces to
3_1; —1
whose solution is
p=rp+ fz). (21)
With the help of (10) we see that if
g—:=tana 3—:=tana,
it follows that
p = nsinea P = @isin&
so that (21) can be written as
Asina = nsin e + (7 80 &) e . (22)

This is a fundamental relation which all rays passing through thin lenses
or any other thin optical device have to obey.
Ifbothaea<landa <k 1landa = n = 1, (22) simplifies

B=a—a= (@)ao. (23)

This is the relation which is used to deseribe the change of ray angles
passing through a thin lens. Equation (22) shows that this thin lens
relation holds approximately for rays which impinge nearly perpendicu-
lar to the lens. If the rays make large angles with respect to the direction
normal to the lens surface (23) has to be replaced by (22). This explains
the error which was made in deriving (1). If this equation is corrected
by using (22) rather than (16) the ray oscillation suppressing quality
of the warped thin lenses disappears.

The general expressions (19), (20), or (22) can be used to check the
physical realizability of optical models.
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