Predictive Quantizing Systems
(Differential Pulse Code Modulation)
for the Transmission of
Television Signals

By J. B. O'NEAL, JR.
(Manusecript received December 27 , 1965)

Differential pulse code modulation (DPCM) and predictive quantizing
are fwo names for a technique used to encode analog signals into digital
pulses suitable for transmission over binary channels. It is the purpose
of this paper to delermine what kind of performance can be expected from
well-designed systems of this type when used fo encode television signals.
Systems using both previous sample and previous line feedback are con-
sidered.

A procedure is presented for the design of nonadaptive, time tnvariant
systems which are near optimum in the sense thal the resulling signal to
unweighted quantizing noise ratios (S/N) are nearly maximum. Simple
formulas are derived for these S/N ratios which apply to DPCM as well
as standard PCM. Standard PCM is shown to be a special case of DPCM.
These formulas are verified by digital computer simulation.

Any advaniage of DPCM stems from removing the redundancy from
the signal to be transmitied. Redundancy in a signal, however, affords a
certain protection against noise introduced in the {ransmission medium.
The penalty for removing this redundancy, through DPCM or other means,
is that the transmilled signal becomes more fragile and requires a higher-
quality transmission medium than would otherwise be required. This pen-
alty is discussed in quantitative terms.

I. INTRODUCTION

In this paper, the terms predictive quantizing and differential pulse
code modulation (DPCM) will be used interchangeably. They describe
a special kind of predictive communications system. A predictive com-
munications system is one in which the difference between the actual
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signal and an estimate of the signal, based on its past, is transmitted.
Both the transmitter and the receiver make an estimate or prediction
of the signal’s value based on the previously transmitted signal. The
transmitter subtracts this predietion from the true value of the signal
and transmits this difference. The receiver adds this prediction to the
received difference signal yielding the true signal. Highly redundant
signals, such as television, are well suited for predictive transmission
systems because of the accuracy possible in the prediction. If the signal
is sampled, and if the difference signal is quantized and encoded into
PCM, then the system is a predictive quantizing or DPCM system.

A block diagram of systems of this type is shown in Fig. 1. Although
delta modulation which uses the feedback principle was introduced
somewhat earlier,! DPCM systems are based primarily on an invention
by Cutler.? In his original patent in 1952, Cutler used one or more
integrators to perform the prediction function. His invention is based
on transmitting the quantized difference between successive sample
values rather than the sample values themselves. The invention is a
special case of a predictive quantizing system and it turned out to be
a special case admirably matched to the statistics of television signals.

In the early nineteen forties Weiner? developed the theory of optimum
linear prediction. By 1952 Oliver, Kretzmer and Harrison at the Bell
Telephone Laboratories, realized the importance of linear prediction in
feedback communications systems and proposed that it be used to reduce
the redundancy, and, therefore, lower the required power in highly
periodic signals such as television. Oliver explained how linear predic-
tion could be used to reduce the bandwidth required to transmit re-
dundant signals. Realizing that knowledge of the statistical properties
of television signals was necessary in the design of linear prediction sys-
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Fig. 1 — Block diagram of a DPCM system.
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tems, Kretzmer® determined some statistics of typical television picture
material. Harrison® actually built a signal processing system for television
signals and illustrated how redundancy could be removed from these sig-
nals using linear prediction. Conecurrently with this work at the Bell
Telephone Laboratories, but published somewhat later, Elias” at MIT
was developing this theory of predictive coding which explained the use
of linear prediction in PCM systems.

Graham?® recognized that the theory of prediction could be incor-
porated into the system described by Cutler. Since Graham’s work in
1958, much effort has been expended to devise and build such a system
for the transmission of television signals. Although a few experimental
systems have been constructed, it is a discouraging fact that such sys-
tems have never proved to be very useful for high quality television
transmission. Television signals are still being transmitted over trans-
mission systems which do not take advantage of the signals’ inherent
redundancy.

It is the purpose of this paper to determine the advantages and dis-
advantages of well-designed DPCM systems. Such information is
needed in order to establish whether or not DPCM systems are poten-
tially useful for the transmission of television signals. To do this we
present a procedure for the design of some DPCM systems which are
near optimum for three television scenes and determine what kind of
performance can be expected from such systems. The results obtained
are verified by simulating some DPCM systems on an IBM 7094 digital
computer and using, as an input, television signals derived from a
flying spot secanner. Our study is restricted to nonadaptive systems
using linear prediction in the feedback loop and a quantizer whose
characteristics do not depend on the instantaneous value of the input
signal. Both previous-sample and previous-line feedback in the predic-
tion operation are considered in detail.

II. SUMMARY OF RESULTS AND CONCLUSIONS

Some of the more important results and conelusions about DPCM
systems designed for the transmission of television signals are enumer-
ated below. Throughout this paper the term S/N refers to the ratio of
signal to quantizing noise.

(i) A simple formula for the S/N ratio is derived. If the syne pulses
need not be transmitted, then standard PCM is shown to be a special
case of DPCM and its S/N ratio is also given by this formula.

(77) When the horizontal resolution is equal to the vertical resolution,
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line feedback, when used in addition to previous-sample feedback, can
give no more than a 1.9-db additional improvement in S/N ratio. For
FCC standard monochrome entertainment television the improvement
due to line feedback will be considerably less than 1.9 db.

(##7) Differential PCM provides more of an advantage for high reso-
lution television systems than for low resolution systems. For mono-
chrome entertainment television, previous-sample feedback DPCM
transmission systems can provide a signal-to-quantizing noise ratio
approximately 15 db higher than standard PCM. This improvement
may easily vary as much as 2 or 3 db depending on picture material. A
2.8-db improvement in S/N ratio can be realized in standard PCM
systems if the sync pulses can be reconstructed by the decoder and need
not be transmitted. The improvement of previous-sample feedback
DPCM over sync-less PCM is, therefore, only about 12 db for mono-
chrome entertainment television. The effect of line feedback has not
been included in the above numbers.

(7v) Since 6 db of quantizing noise is equivalent to one bit per sample,
the advantage in DPCM can also be expressed in terms of bit rate. For
a constant signal-to-quantizing noise ratio, a DPCM system designed
for entertainment television can provide a saving of about 18 megabits
(2 bits per sample) over standard PCM. This assumes a sampling rate
of 9 megacycles, which is twice the bandwidth, and that the noise added
by bit errors in the transmission medium is negligible. These bit rate
reductions are nearly independent of the signal-to-quantizing noise
ratios required.

(v) A signal encoded into DPCM is more vulnerable to noise in the
transmission medium (bit errors) than one encoded into PCM. It is
characteristic of DPCM systems that, if they decrease the quantizing
noise by k db over standard PCM, then the noise in the decoded signal
caused by errors in the digital transmission channel is increased by % db.
This penalty means that, if DPCM is used to reduce the quantizing
noise by &k db, then the error rate in the digital channel required for
satisfactory transmission is reduced by a factor of (1.26)*. This does
not imply that DPCM offers no advantage. If the limiting degradation
is quantizing noise, and this is generally true for digital systems, then
decreasing this quantizing noise, even at the expense of increasing the
noise introduced in the transmissoin medium, is desirable. Digital
transmission lines designed for PCM encoding, however, may be un-
satisfactory for DPCM encoding. This result applies to DPCM systems
designed for any type of signal.

(vi) The power spectrum of the quantizing noise is approximately



PREDICTIVE QUANTIZING SYSTEMS 693

flat. The amplitude density function of the quantizing noise is found to
be somewhat flatter than a Gaussian function.

(vit) For television input signals the amplitude density function of
the quantizer input in a well-designed DPCM system is approximately
Laplacian.

Television picture material which has meaning to a human observer
has certain patterns which cause statistical redundaney in the resulting
television signals. Differential PCM takes advantage of this statistical
redundancy and the performance of DPCM systems varies with this
redundancy. Conclusions (7i7) and (i) above are based on measured
statistics of television signals derived from three scenes which have de-
tail typical of television picture material.

ITI. PERFORMANCE CRITERION

The performance criterion used is the ordinary signal-to-quantizing
noise ratio, S/N, present in the video part of the composite signal.
Noise present in the syne pulses is seldom a limiting factor in television
transmission. While it has often been argued that the S/N ratio is not
an adequate performance criterion for television systems, a better
alternative for analytical study has never been proposed. Furthermore,
when used with discretion, the S/N ratio is a useful measure in deter-
mining the performance of television systems. It is especially useful in
helping to decide which kinds of systems should be built and evaluated
subjectively. The subjective test is the final arbiter in determining the
usefulness of DPCM for the transmission of television signals.

Unless otherwise stated, the term noise used in this paper implies
quantizing noise. We are concerned here with designing DPCM encoding
and decoding systems which minimize the mean square difference be-
tween the decoded output signal and the analog input signal. This
optimization is based on an analytical, i.e., objective, criterion, not a
subjective one. Thus, the S/N ratios used are unweighted. All sampling
is assumed to be at twice the bandwidth of the baseband input signal,
and all the resulting quantizing noise is considered to be in-band. Sys-
tems have been proposed® which shape the power spectrum of the
quantizing noise to make it less objectionable to the human observer.
This approach, however, is complicated by the difficulty in determining
the proper weighting function for noise which is not independent of
the signal. In most DPCM systems the quantizing noise is highly corre-
lated with the derivative of the signal.
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IV. DESIGN PROCEDURE

The design procedure used herein is to first design the predictor
ignoring the presence of the quantizer, Then the quantizer is designed
to match the amplitude distribution of the signal coming from the
subtractor. This procedure will result in a system which is very nearly
optimum because when the number of quantizing levels is large, the
inclusion of the quantizer in the circuit has very little effect on the
amplitude distribution of the signal coming out of the subtractor. The
predictor will be resiricted to be a linear time invariant device and the
theory of linear prediction will be used to optimize it. The quantizer
will be designed in accordance with procedures first proposed by Panter
and Dite.X

V. THE PREDICTOR

It is true that nonlinear prediction is superior, by the S/N ratio
criterion, to linear prediection for television signals. Tt has never been
determined, however, just how much the S/N ratio can be improved
by using nonlinear prediction techniques. Graham?® suggested one non-
linear predictor and simulated it on the computer. I'ine" discusses the
general case where both nonlinear prediction and quantization are
allowed. In this paper, however, only linear prediction is used.

5.1 Theory of Linear Prediction

The following brief explanation of the procedure of linear prediction
is based on the terse exposition of this subject given by Papoulis.’?
Let a stationary signal S(f) with mean 0 and rms value ¢ be sampled at

the times ¢, #z, -+, £., - - - and let the sample values be Sy, S, -+,
8, , - -+, respectively.
A linear estimate of the next sample value Sy based on the previous
n sample values Si, Sz, -+, S, is defined to be
Su =mS+ @S+ - + @S (1)

Tor simplicity, we assume here that the a’s and S’s are real numbers.
A linear predictive encoder forms this estimate S; and transmits the
difference or error

€y = So - Su. (2)

A block diagram of such a system is shown in Fig. 2. The D’s represent
delay elements,
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Fig. 2 — Block diagram of a linear predictive encoder.

We define the best estimate of So to be that value of S, for which
the expected value of the squared error is minimum, To find the values
of the a’s which satisfy this condition we first take the partial deriva-
tives of E[(Sy — So)?] with respect to each one of the a’s. E[r] denotes
the expected value of z.

SE[(So — 80)’] _ 8E[(So — (aiSi 4 asSz + - -+ + auSa))’]

oa; o0a;
= —2E[(So — (@S: + as8: + - - - + a.S,))8i]

i=1,2-,n

To find an extremum, in this case a minimum, we set this equal to
zero giving

E[(So — (a1S1 + @282 + +++ + @.8.)) 8
E[(So — S0) 8]

If we represent the covariance of S; and S; by
R; = E[S;8]], (4)

then from (3) we can rewrite the conditions for the best linear mean
square estimate as

Roi = mBy + @Bei + -+ + @uRni ¢

0
0 i=12-,n

3)

1

12)“')”' (5)
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Equation (5) defines a set of n simultaneous linear equations in the n
unknowns a;, 7 = 1,2, - -+, n, which can be found if the covariances
R;; are known. These covariances are found from the autocovariance
¥ (1) of the signal itself,

Ry = y(t: — ). (6)

If S, is the best linear mean square estimate of Sy, then the expected
value of the square of the error signal ¢ is

ol = E[(Sy — 8o = E[(So — 8)Si]
ol = Ry — (0Bn + a2Rez - - - + anFoa). (7)
In (7), Ry is simply the variance o of the original sequence S, Si,
<= {8}
The sequence of transmitted error samplesis ey, ey, -+ = {e;} where

e;=8:—8 i=0]1--, ®)
and
8 = a8y + @S2 + -+ + 3aSisn .

The error sequence {e;} is less correlated and has smaller variance than
the signal sequence {S;}. The use of linear prediction has produced a
sequence {e;} from which the sequence {S;} can be reconstructed. The
variance o2 of the error sequence {e;} is less than the variance of the
original sequence {S;} by the amount shown in the parenthesis in (7).
If the number of samples n used in forming the estimate is unlimited,
then the sequence of error samples can always be made completely
uncorrelated. If the sequence of samples S,, S, -+ = {S;} is an rth
order Markoff sequence, then only r samples need be used in forming
the best estimate of S; and the resulting sequence of error samples will
be uncorrelated.

As an example of particular relevance to television, consider the 1st
order Markoff sequence formed by sampling a signal whose autocorrela-
tion is the exponential function ¢ ‘. In this case, even if all previous
sample values are available, the estimate of Sy which minimizes o.* is
S0 = (Ru/o?)S; where S is the most recent sample value available.
Tt is easy to show that, in this case, the error sequence {e;} is completely
uncorrelated, i.e.,

Blee] =0 1]

-2 i=].
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The autocorrelation function of one line of a television signal is very
similar to ¢ ' so in this case we expect that basing our estimate only
on the previous sample value will be almost as good as using many
sample values on the same line. It will be shown, however, that, if we
have access to sample values on the adjacent line and /or on the previous
frame, we can improve our prediction.

5.2 Application to Television Signals

The samples Sy, Sa, ---, S, used in (1) to form the estimate S,
need not be the most recently transmitted ones and they need not be
in any particular order. They are simply n sample values which have
been transmitted in the past. Fig. 3 illustrates 7 sample values which
can be used to form a reasonably good estimate of S, . Such an estimate
would be

Sn = ;S + @8 + a8 + asSs + as S5 + @S a8y, (9)

where the a’s are chosen to satisfy (5). Also shown in the figure, are
covariances between these samples.

It will be shown that there is little advantage in using samples S;
through S; for, once S; and S are used in the prediction, the other five

—— OO OO — O

Ros Ro3 Ro2 Ros Ro7
SCENEA 0629 0.756 0.868 0.758 0.618
SCENEB  o.762 0813 0.901 0.796 0.763
SCENEC  o08i4 0.905 0.960 0.919 0.829
CSS CSI CSO
Ros ﬁ Roo
0.631 0.803 1.0
0.774 0816 1.0
0832 0.934 1.0

Fig. 3 — Television scan showing sample values near S, . Covariances for the
three scenes in Fig. 6 are also shown.
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samples contain little additional information about So. Most DPCM
systems built in the past use only the previous sample S; and form the
estimate

So = a181 .

In this simple case, it is clear from (5) that the constant a, should be
Ru/a? the covariance between adjacent sample points divided by the
mean square value of the input sequence. DPCM systems of this type
are called previous-sample feedback systems, and a block diagram of
the predictor used in such a system is shown in Fig. 4.

A DPCM system which forms its estimate of Sy by using the previous
sample S, and the adjacent sample on the previous line S» will be called
a line-and-sample feedback system. In this case,

Su = (I181 + GﬂSg . (11)

A block diagram of the predictor for this system is shown in Fig. 5.

This concept can easily be extended to take advantage of frame-to-
frame correlation. A frame-line-and-sample feedback system would
form its estimate of the next sample value by

Sg = 01181 + G'QSQ + aij (12)

where S; is the sample value which is equivalent to Sy but on the previ-
ous frame. Frame feedback systems are not considered in detail in this
paper primarily because statistics of frame-to-frame correlations are
not available.

5.3 Stalistics of Television Signals

In order to determine some statistics of television signals and to use
television signals as inputs to DPCM systems simulated on the IBM
7094 digital computer, some television signals were obtained from a
slow-speed flying-spot scanner.® These signals were sampled and en-
coded into 11 bit PCM and placed on a magnetic tape suitable as an

T0 PREDICTOR —
QUANTIZER

SUBTRACTOR a,
(SEE FIG.1) | | | SAMPLE | /N (SEE FIG.1)

pELAY D ! +

I

Fig. 4 — Previous-sample predictor.
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Fig. 5 — Previous line-and-sample predictor.

input to the computer. The signals were obtained by scanning the three
square slides shown in Fig. 6 and represent only one frame of a television
signal. In conformity with television practices, the video signal was a
function of the 0.4 power of the brightness of the original scene. The
standards used gave 100 lines and 100 samples per line for the visible
part of the pictures and all samples taken were on a symmetric lattice
or grid.

The signals on magnetic tape were composite signals, i.e., they con-
sisted of the video signal and a train of syne pulses. Noise and distortions
in the syne pulses do not govern the quality of a television signal as
long as synchronization is maintained. Therefore, DPCM systems
should be matched to the statistics of the video part alone. For this
reason, the horizontal syne pulses were ignored and the autocovariance
functions of the video part of the signals were obtained. For convenience,
the signals were first normalized so that the rms value ¢ of the video
was 1 and its mean value was 0. The autocovariance functions ¢(r)
are shown in Fig. 7. For small values of 7, these functions are very
similar to exponential functions. Since we are dealing with sample values
rather than with continuous signals, the autocovariance is actually a
set of points at integer values of the lag r and these points represent
the values of Ry;, 2z = 0,1, --- . Fig. 7 was constructed by finding these
points and drawing lines between them. This is also true of Figs. 8 and
16. The peaks at + = 100 are due, of course, to the high correlation
hetween adjacent lines of the television signals. Correlations between
adjacent frames are not illustrated in the figure because the signals
used represented only one frame of a television signal.

Fig. 3 illustrates some of the covariances between neighboring points
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()

Fig. 6 — Pictures of three slides scanned to obtain television signals.

for the three scenes. For example, the covariance between points Sy
and 8; in scene B is Ry = 0.796. The three pictures used had higher
vertical than horizontal correlation.

A transmission system is useful only if it can satisfactorily transmit
a vast ensemble of signals and its performance must be judged on the
basis of its ability to transmit almost all members of this ensemble.
The statistics we use here have been obtained from only three members
of this ensemble and, since the members of this ensemble are derived
from a nonergodic process, we cannot obtain the statistics of the ensem-
ble by examination of these three members. Nevertheless, it is useful
to determine the design and performance of DPCM systems when used
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to transmit these members which, in some sense at least, are representa-
tive of the whole ensemble.

The autocovariance functions in Fig. 7 are averages over the time
for each of the three signals used. The autocovariance function of the
random process from which these three signals could be derived could
not be determined here. Franks,’* however, has proposed a model for
this random process in which the autocovariance function of the picture
material is exponential in both the horizontal and vertical directions.
Data obtained in this study, some of which is illustrated in Fig. 7,
indicates that this is a good approximation for the three scenes used here.

5.4 Lanear Predictors

Using the data in TFig. 3, we can solve (5) and (7) for the a; and o,
for several practical linear predictors. Table I illustrates the optimum
values of the a’s and the resulting mean square error signals for 8 differ-
ent predictors. The relative positions of the sample values in this table
are those of Fig. 3. For example, if the prediction of S, is based on the
three sample values S;, Sz, and S; (predictor number 6) then the linear

1.0

0.9
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o.arh ==== SCENE B !
L\ — — SCENE C }:" ‘\‘
0.7 '.| A
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Fig. 7 — Autocovariances of the 100 line, 100 samples per line video signals
obtained from the three scenes of Fig. 6. (The syne pulses were not included in
computing these functions.)
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predictor giving the smallest value of o, for scene C forms S, by the
equation
Sy = 0383 8, + 0.362 S: + 0.263 S;.

When no quantization is present, such a system results in an error signal
whose rms value o, is 0.230. This is 12.8 db below the rms value of the
signal itself whose rms value ¢ is 1. The transmitted error sequence will
be much less correlated than the original signal sequence. We may think
of this signal processing as the removal of redundancy, in this case,
12.8 db of redundancy.

Examination of Table I reveals that once samples S; and S, have
been used in the prediction, there is little advantage in using any others.
This means that samples S; and S; provide almost all of the informa-
tion about sample Sy which can be obtained from the previous samples.
Samples S; and S; contain almost no additional information. For a
system with line feedback (a system which can store and, therefore, has
access to the previous line), there is little point in using any samples
but S; and S.. Similarly, for a system without line feedback there is
little point in using any sample but S; to predict Sy . Furthermore, for
the pictures tested, line feedback itself provides only about a 3-db
improvement in the estimate of Sp. This is somewhat disappointing
especially in view of the fact that the scenes tested had higher vertical
than horizontal correlation. Exactly what can be obtained from frame
feedback must await the availability of frame-to-frame covariance
statistics. Although the above conclusions about line feedback are based
on statistics obtained from some 100 line and 100 samples per line pic-
tures it will be shown in section VIIT that they apply to television sys-
tems in general.

This study suggests that the sequence of sample values derived from
one frame of a television signal (or a facsimile signal) may be approxi-
mated well by a second-order Markoff sequence.* Furthermore, studies
by Deriugin'® indicate that the sequence derived from many frames of
a typical television signal may be, approximately, a third-order Markoff
sequence.* In this case, the state (value) of the next sample Sy may be
statistically dependent only on Sy, S: and Sp, where these are the
sample values adjacent to So on the same line, the previous line, and
the previous frame, respectively. More work is required to determine
just how well Markoff sequences can represent sample values of tele-
vision signals.

* This might more properly be called a distant second (or third) order Markoff

sequence because, although 8, is the previous sample value, there are many
intervening samples between S;, S, and Sp .
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5.5 Computer Simulation of Predictors

In order to determine how effectively redundancy could be removed
from a television signal by using prediction, the predietors number
1, 3, and 8 shown in Table I were simulated on the computer for all
three scenes. The actual rms value e, of the errors in the predietion
agreed well with those shown in Table I. The autocovariances of the
error signals were found and for scene C they are illustrated in Fig. 8.
The autocovariance funections shown in Fig. 8 are also representative
of what was found for scenes A and B.

Figs. 9 and 10 show the amplitude distribution of the error sequence

TABLE I — VALUES oF THE AMPLIFIER GAINs AND RMs PRrREpICTION
Error For 8 PreEpicTORS MATCHED TO THE 3 PICTURES OF

Fic. 6
Eies Toed 1 'I];hegl_'etjca.l'Erms
. ediction
P&“ﬂ;fg:: a[:l‘;p;:?li-‘(i:g:;‘) " Scene e ot @ a2 @ a4 a5
o, |—20loge,
A 0.597) 4.5 | 0.803
1 Sy B |0.578] 4.8 | 0.816
(see Fig. 4) C |0.358] 8.9 | 0.934
A |0.498] 6.1 0.868
2 Sa B |0.434] 7.2 0.901
C 10.279| 10.1 0.960
A ]0.444| 7.0 | 0.341) 0.610
3 8,82 B 10.402 7.9 | 0.270| 0.686
(see Fig. 5) C [0.247| 12.1 | 0.333] 0.654
A 0.595 4.5 | 0.834 —0.039
4 S1.8s B |0.547] 5.2 | 0.552 0.324
C 10.339] 9.4 1.229 —0.316
A 0.494) 6.1 | 0.541 0.423
5 S1.8: B |0.512] 5.8 | 0.499 0.415
C 10.246| 12.2 | 0.550 0.463
A |0.443) 7.1 | 0.337| 0.481 0.163
6 81828 B [0.398) 8.0 | 0.238] 0.629 0.101
C 10.230, 12.8 | 0.383| 0.362 0.263
A |0.439] 7.2 | 0.432| 0.660{—0.149
7 S1.8: .83 B (0.401 7.9 | 0.227| 0.670] 0.062
C 10.224] 13.0 | 0.606{ 0.793|—0.417
A (0.429) 7.3 | 0.419| 0.533|—0.134| 0.155
8 81.8:.8:.8, B 10.398 8.0 | 0.210{ 0.620, 0.047| 0.097
C 1(0.214 13.4 | 0.598| 0.544|—0.346| 0.203

* The rms value ¢ of the input signal is 1. This table is concerned only with
prediction error and does not consider the eff ects of quantization.
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Fig. 8 — Autocovariance of error sequence {e;} of scene C for three linear pre-
dictors matched to this scene. (The samples S1, Sz, S;, and Ss are defined in
Fig. 3.)

for the three pictures using previous-sample prediction (predictor num-
ber 1 in Table I), and line-and-sample prediction (predictor number 3
in Table I), respectively. The shape of these density functions is of
foremost importance in designing an optimum quantizer. In both figures
the density functions can be approximated reasonably well by La-
placian functions. These amplitude density functions were found by
dividing the range +4¢ into 25 equal intervals and finding the number
of sample values in each interval. The points so found were normalized

and curves drawn between them.

VI. THE QUANTIZER

In analog systems, it is difficult to evaluate the wisdom in reducing
the power by removing the redundancy from a signal. For this process
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automatically makes a signal more susceptible to noise in the trans-
mission medium. While this is still true in digital systems, as will be
shown later, we are assured both by logic® and by experience” that
the errors in properly designed digital systems can be made small enough
to be neglected. And, if we can ignore this transmission noise, i.e.,
assume that the probability of error in a digital system can be made as
small as we like, there is a dividend in reducing the rms value of the
signal to be transmitted. In fact, it will be shown that (for the signals
used here, at least) reducing the rms value of the transmitted signal
from o to o, decreases the rms value of the quantizing noise by a factor
c/oe .

If the input to the quantizer in Fig. 1 is ey, then its output is ey 4 go
where ¢ is the quantizing noise. Since the receiver forms the decoded
output by adding e, + ¢o to the estimate S,, the quantizing noise in
the decoded signal is also g, . Minimizing the quantizing noise in the
decoded output, therefore, is equivalent to minimizing the rms value
of the quantizing noise coming out of the quantizer. This method of
minimizing the quantizing noise was recognized independently by
Nitadori.®®
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In what follows, approximations are made which apply when the
number of quantizing levels N = 2" is large. Figs. 12 and 13, to be
discussed later, illustrate that the S/N formulas for DPCM systems
are accurate for small N as well. It is possible, nevertheless, that in-
accuracies may occur under certain conditions when N is too small.
If N is less than about 8, the formulas and design procedures presented
here should be used with caution.

6.1 Optimum Quantization

For n bit quantization, each member of the error sequence is made to
assume one of N = 2" different levels. It has long been known that
nonuniform quantization is generally preferable to uniform quantization
in DPCM systems. Panter and Dite have shown that the minimum
mean square quantizing error is given by

ol = %Uf Pi(e) de:r, (13)
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where P(e) is an even function representing the probability density
of the input to the quantizer and P(e) is zero outside the interval
(—V,V) which represents the range of the quantizer input.

The curves for P(e) shown in Figs. 9 and 10 may be approximated
reasonably well by the Laplacian density function

Pe) = \/%Ua exp (—\Zzle I), (14)

where ¢, is the rms value of the quantizer input. Sinee the amplitude
density function is different for each scene to be transmitted, the best
we can do is to choose some representative density function and match
the quantizer to it. We choose this function to be the exponential of
(14) and we feel that this will give results which can be expected in
practice. Although Figs. 9 and 10 are plots of the error signal without
a quantizer in the circuit, computer simulations with the quantizer in
the circuit showed that these amplitude density functions are effected
very little by the addition of the quantizer as long as the number of
levels N was greater than 4. Solving the integral in (13) for this P(e)
and taking the limit as V gets large gives, as an approximation for the
mean square value of the quantizing noise,

O = —— Og- (15)

Refining this approximation by using the actual value of V changes it
very little since, for cases of interest in DPCM, V, which is the peak-to-
peak value of the input signal S(t), is always large compared to o, . For
the three scenes considered here V is about 7 times the rms value ¢ of
the signal S(¢), and ¢, is generally much less than ¢. For small values
of V the density function in (14) must be truncated. This changes and
complicates the value of ¢, given in (15).

From (15) we see that if the rms value in the input video signal is ¢
then the rms S/N ratio in the video (considering only quantizing noise)
of a decoded television signal transmitted through a well-designed n
digit differential PCM system is (in db)

2 2
S/N = 10 log 2NZ
9,
2
S/N 2~ —65 + 6n + 10 1ogj—2. (16)

Equation (16) gives the ratio of the rms video signal to rms quantizing
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noise in the video. A bound on the S/N ratio to be presented later dif-
fers from (16) only by a constant and suggests that this S/N ratio is
within about 5 db of that possible for any encoding system. To convert
this /N to the more useful measure, peak-to-peak composite signal
to rms noise in the video, we must add a constant to (16) giving (in db)

2
S/Nﬁ_—v—a.5+c+6n+1010g%,

where C is the ratio in db of peak-to-peak composite signal to the rms
value of the video. The value of C' is determined by the peak value of
the syne pulses. It is also dependent on picture material and upon such
apparently extraneous factors as the man or electronic device which
regulates the peak values of the video signal. For FCC standard mono-
chrome entertainment television some measurements, as well as some
data derived from the flying spot scanner used for these studies, indicate
that the rms value of the video is about one tenth the peak value of
the composite signal and the value of C is, therefore, about 20 db.*
Actual measurements of the signals derived from scenes A, B, and C
of Fig. 6 give 20.0, 19.8, and 18.1 db, respectively, for the value of C
(assuming FCC syne standards). An approximation, then, for the ratio
of peak-to-peak composite signal to rms quantizing noise in the video
for a typical FCC standard television signal is (in db)
2

S/N 22 135 4 6n + 10 log ‘;_3 (17)

Bennett® showed that if the input signal is distributed evenly between
the quantizing levels, the rms value of the quantizing noise for standard
PCM is Ey,/A/12. E, is the step size of the uniform quantizer and
Ey = Vyear/2", where Ve is the peak value of the signal to be encoded
and n is the number of quantizing digits. Therefore, the peak-to-peak
composite signal to rms noise ratio for standard PCM is (in db)

S/N = 20 logv/12 + 20 log 2"
= 10.8 + 6n. (18)

If the syne pulses could be reconstructed by the decoder, then all the
PCM levels could be used for the video and the constant in (18) would
be 20 log (+/12/0.072) = 13.6. In other words, if the sync pulses need not

* Some unpublished studies by J. W. Smith indicate that for systems which
have automatic regulation of the peak signal excursions the constant C may be
several db less than this. Such systems, in attempting to determine peak white
and peak black, introduce a certain amount of clipping.
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be transmitted then the ratio of peak-to-peak composite signal to rms
noise in the video for standard PCM becomes (in db)

S/N =2 13.6 + 6n. (19)

Transmitting the syne lowers the S/N by 2.8 db for PCM. As one might
expect, provided we neglect the sync pulses, the S/N ratios for standard
PCM and differential PCM can be approximated by the same expres-
sion, namely (17). Since the constant in (17) is somewhat arbitrary, it
would be easy to justify making it 13.6 to agree with (19). In standard
PCM, there is no feedback loop and the estimate of the sample value
So based on previous sample values is simply 0, the mean value of the
input sequence. In this trivial case, since ¢, = ¢, the DPCM system
becomes identical to standard PCM and (17) reduces approximately
to (19). Therefore, we may consider standard PCM to be a special
case of DPCM which is optimum when all the covariances R;; for z # j,
are zero.

When the feedback loop exists and when the amplifier gain(s) are
reasonably large, then the DPCM system ean adequately encode the
syne pulses as well as the video. However, when the amplifier gain(s)
are too small, or when the feedback loop is not provided at all, as in
standard PCM, then either the decoder must be arranged to reconstruct
the sync pulses, or the range of the quantizer must be increased beyond
what is required for the video in order to accommodate the syne pulses.

From (5) and (7), we can express o, in terms of the covariances R;; .
For the simplest case, the previous-sample feedback system, the peak-to-
peak composite signal to rms quantizing noise in the video S/N ratio
can be expressed as (in db)

2

~ (.5 ! T 2
§/N 2 =65 + C + 6n + 10 log 55 5 (20)
This equation illustrates that when Rg/¢* is close to 1, doubling the
bandwidth and the sampling rate (this doubles the horizontal resolu-
tion), which is roughly equivalent to halving the value of ¢* — Run/d%
inereases the S/N ratio by about 3 db.

6.2 Design of the Quantizer

One way to obtain the proper quantizer levels for minimizing the
rms quantizing noise is to form a function y(z) such that when z takes
on uniformly spaced levels between —V and V, y assumes the proper
quantizing levels. Smith® shows that, when the probability density
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of the signal to be quantized is that of (14), the function y(2) is given by

—;nv—lnljl—%(l—exp(-—m)):l, 0=z

Il

y(2) (21)*

y(—2) = y(2),
where
m = \2V/30,.

There are more elegant and exact ways for finding the quantizing
levels,23 but it is doubtful if they can be incorporated into practical
systems, Furthermore, it is unlikely that these more sophisticated
techniques offer a significant decrease in the quantizing noise over what
can be obtained by the simple quantizers described here.

Smith studied quantizers with the characteristic of (21) in some detail
for the application to standard PCM systems for speech. His rejection
of this characteristic in favor of another results primarily from the wide
variation of talker volumes present in speech channels. This objection
does not apply to television channels whose signal levels are relatively
constant.

A typical 8 level quantizer designed by using the characteristic of
(21) is shown in Fig. 11. The case shown is for V = 7 and m = 5.5.
The output signal always assumes the quantizing level nearest to the
input signal. Overload noise, which occurs when the signal to be quan-
tized is outside the range of the quantizer (#2.61 in Fig. 11), is a part
of the quantizing noise which is minimized here. It must be considered
separately only when the range of the quantizer is so small that over-
load causes a significant alteration in the probability density function
of (14).

VII. COMPUTER SIMULATION OF DPCM SYSTEMS

The results of computer simulations verify that systems designed by
the procedures presented here do function as predicted.

By applying the principles outlined herein, the parameters for some
DPCM systems were determined and these systems were simulated on
the IBM 7094 digital computer The input signals used were the 100
line, 100 samples per line television pictures obtained from the scenes
of Fig. 6. Section 5.3 contains a description of how these signals were
obtained. The results of the simulation are shown in Figs. 12 and 13.
The S/N ratios in these figures are ratios of rms video signal to rms

* This is the inversion of (A-6) of Ref. 21,
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Fig. 11 — Typical 8-level exponential quantizer characteristic obtained from
(21). (Case shown is for m = 5.5 and V = 7.)

noise in the video. To get the ratio of peak-to-peak composite signal
to rms noise in the video from these curves, we must add €, the ratio
in db of peak-to-peak composite signal to rms video. For scenes A, B,
and C this value of C is 20.0, 19.8, and 18.1, respectively (assuming
FCC sync standards). Also plotted in these figures are curves of S/N
ratio which were predicted for these systems using (16). Fig. 12 gives
the results for previous-sample feedback systems (predictor number 1
in Table I), and Fig. 13 presents results for line-and-sample feedback
systems (predictor number 3 in Table I). Both figures illustrate the
performance of systems whose predictors are tailored to the incoming
signal. Table I illustrates that the use of more complicated predictive
systems, using samples S;, Sy, and S; in addition to S; and S, , does
not significantly lower the rms error in the prediction. Furthermore,
the optimum designs of predictors 6, 7, and 8, which give only a slight
decrease in the rms error, are radically different for scenes A, B, and C.
A system using predictor 6, 7, or 8 designed to give good performance
for scene B is likely to give poor performance for scenes A and C. This
is not the case with predictors 1 and 3 which were simulated. To verify
this, previous-sample feedback DPCM systems were simulated for 4, 5,
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matched to each scene using previous-sample feedback DPCM. (Theoretical
results from (16) [straight lines] are compared with results of computer simula-
tion.)

and 6-bit encoding with a; = 0.815, m = 6 and V = 7. The signals
from all three scenes were used as inputs and the results were almost
identical to those shown in Fig. 12. Similarly, line-and-sample feedback
DPCM systems were simulated for 4, 5, and 6-bit encoding with @ =
0.315, @» = 0.650, m = 8 and V = 7, and the three signals all produced
S/N ratios essentially the same as those in Fig. 13. The parameters in
these two DPCM systems are not critical and need not be exactly
matched to the picture material from which the incoming signals were
obtained.

VIII. THE MARGINAL UTILITY OF LINE FEEDBACK

For the 100 by 100 matrix pictures used in this study, the use of line
feedback increased the S/N ratio by only about 2 or 3 db. This increase
is small because the sample values S, and S, contain substantially the
same information about S,, the sample value to be predicted. And,
once S; has been used in the prediction, there is only a 2 or 3 db ad-
vantage in simultaneously using S in the prediction.

To illustrate this point, consider a scene whose contours of equal
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autocovariance are circles. Further assume that the autocovariance
between any two points, S; and S;, separated by a distance D can be
expressed as R,; = ¢% 2. Both of these assumptions are reasonable
ones for television picture material. If S; (the previous sample) and S,
(the adjacent sample on the previous line) are equidistant from S,
then Ry = Ro and Ry = o*(Ru/e?)VZ:. From (5) the values of the
coefficients ¢; and a, are
Rﬂl

0’2 + U'Z(Rm/ﬂ'z)\/i

o= a [1 —~ %]‘ (23)

Compare this with the mean square value of the prediction error when
only S is used in the prediction

ol = o — Rot/ov. (24)

(22)

a; = a2 =

In Fig. 14, the advantage to be gained in a DPCM system by pro-
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viding a line-and-sample feedback predictor is compared with that of a
simple previous-sample predictor. This figure applies to sequentially
scanned television systems in which the covariance between adjacent
samples on the same line is equal to the covarianee between neighboring
samples on adjacent lines, i.e., Bn = Ko . In television systems using
interlace, the S/N ratio improvement provided by using line feedback
in addition to sample feedback will be even less. The two curves in
this figure are simply plots of 10 log ¢*/s.2 where the value of ¢.? is given
by (23) for the line-and-sample feedback system, and by (24) for the
previous-sample feedback system. From (17) we see that the term
log o%/a.? represents the S/N improvement to be expected from the
feedback loop. The two curves in Fig. 14 then show the value of the
feedback loops for the two predictors of interest. The distance between
the two curves is the improvement provided by the line-and-sample
feedback system over the previous-sample feedback system. It ean be
shown that the maximum value of this improvement approaches about
1.9 db and this oceurs as Ro/o? approaches 1. In other words, in television
signals whose samples have the same covariance in the horizontal direc-
tion as in the vertical direction, a line-and-sample feedback system can
provide, at best, only 1.9-db improvement in S/N ratio over a simple
previous-sample feedback system.

For the scenes used in this simulation, the line feedback loop provided
S/N ratio improvements between 2 and 3 db. This was more than the
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1.9 db maximum because the scenes used had higher vertical than
horizontal eorrelation. When line-and-sample feedback DPCM is used,
sequentially scanning a scene can provide as mueh as, but no more than,
3-db improvement in S/N ratio over 2:1 interlaced scanning with the
same number of lines. This is true because the value of 1 — (Rgs/0?)
for the sequential scanning is about half of what it would be for inter-
laced scanning. Exactly how much improvement is afforded by se-
quential scanning depends on the values of Ro, Ko, and Ry which
are determined by the scene scanned as well as by the television stand-
ards used.

The lower curve in Fig. 14 can also be used to predict the advantage
to be gained by frame feedback DPCM. In this case, the abscissa would
be Ror/c® where Ror is the covariance between equivalent points on
adjacent frames. The S/N ratio for a frame feedback system is given by
(20) if R is replaced by Ryr . Some measurements by Kretzmer® and
Deriugin'® suggest that Ror/c? may, in general, be less than Ry /% This
implies that frame feedback may be of little value in reducing the S/N
ratio in DPCM systems.

IX. DPCM FOR MONOCHROME ENTERTAINMENT TELEVISION

In 4.5-Mec/s entertainment black and white television there is little
advantage in basing the prediction on any sample values except the
previous one, unless, of course, sample values from previous fields are
available. For this previous-sample feedback system the approximate
value of the S/N ratio to be expected is given in (20). In a 525-line pic-
ture at a frame rate of 30 per second, sampling at twice the bandwidth
or 9 Me/s means that there are about 571 samples per line. Only 83
per cent, of these, or 474, occur in the video while the others oceur during
the horizontal and vertical sync pulses.

Using simple linear interpolation*® we see that, if scene A of Fig. 6 were
sampled at 9 Me/s, the covariance between adjacent points would be
Ry =2 0.958. For scene C, RBn == 0.986. Using these numbers and the
appropriate values of the constant €' in (20), and remembering that
o2 = 1 for these signals, the S/N ratios to be expected for transmitting
these seenes over a DPCM channel can be found. The S/N ratio for
scene B would fall somewhere between those of seenes A and C. These
S/N ratios are compared with standard PCM and delta modulation
in Iig. 15. For the lower bit rates, these curves must be used with dis-
cretion. The line representing the PCM performance is simply a plot
of (18) which assumes that the syne is transmitted. The PCM S/N

* Since the aspect ratio is 4:3 we could not transmit these pictures as they are.
We assume here that either the top or bottom 2 of the pictures is not transmitted.



716 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1966

S0
80 DPcM
SCENE C
r SCENE A

~
o

1
o
60 % ST'Q‘PB:_‘_?\':R D

=

- L~ \ DELTA
; // MODULATION
A ) (REFERENCE 24)

2 e 1

w
=]

IS
=}

N

N\
\

w
o
AY
\
\\

SIGNAL-TO-NOISE RATIO IN DECIBELS
\)

\

o 9 18 27 36 45 54 63 72 a8t 90
BIT RATE IN MEGABITS

Fig. 15— Comparison of previous-sample feedback DPCM with standard
PCM and delta modulation for monochrome 4.5-Me/s entertainment television.
(Peak-to-peak composite signal to rms quantizing noise in the video is the signal-
to-noise ratio shown. The sampling rate is 8 Me/s.)

ratios can be increased by 2.8 db if the syne is not transmitted. The
delta modulation S/N ratios were found by an entirely different tech-
nique® and it is gratifying that they are reasonably consistent with the
results found here for 1 digit DPCM, which of course, is identical to
delta modulation with a sampling rate of twice the bandwidth.

Fig. 15 shows that, for a fixed bit rate, DPCM would give a 14-db
improvement over standard PCM for scene A and an 16.8-db improve-
ment for scene C. The advantage of DPCM can also be expressed in
terms of bit rate. For a given S/N ratio, DPCM gives a reduction in
bit rate over standard PCM of about 18 megabits (2 bits/sample).
Since the sampling rate for DPCM and PCM is assumed to be twice the
bandwidth or 9 Mec/s, these curves in Fig. 15 are actually defined only
at multiples of 9 megabits.

X. THE CHARACTER OF THE QUANTIZING NOISE

Fig. 16 illustrates the autocovariance for the quantizing noise in a
previous-sample feedback system. The cases shown are for scene B
but these curves are typical of all three scenes. The exact autocovariance
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optimized for this scene.)

function of the quantizing noise depends on the picture material of the
incoming signal. These autocovariance functions were essentially the
same when the parameters of the DPCM system did not exactly match
the statistics of the incoming signal. The spectra of the quantizing noise
in the three scenes is found by taking the Fourier transforms of their
autocovariance functions. These spectra were found to be relatively flat
for both previous-sample feedback and line-and-sample feedback sys-
tems. In both cases, there were erratic peaks and valleys at multiples
of the line rate but the peaks and valleys differed from each other
only by about 2 to 4 db, these differences being slightly greater for the
previous-sample feedback system than for the line-and-sample feedback
systems. In neither case did the spectra show any general tendency to
increase or decrease for higher frequencies. Fig. 16 illustrates that the
correlations between sample values is quite weak. The usual assumption
of flat quantizing noise in DPCM systems is probably a good one for
most purposes.
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TFig. 17 shows a plot of the amplitude density function of the quantizing
noise for scene B. It is typical of all the scenes that the amplitude density
is relatively flat for a small number of quantizing levels N and becomes
more Gaussian shaped as N gets large. In all cases, however, even when
N was 64, the amplitude density function was flatter than Gaussian.
For all three scenes with N = 2 the quantizing noise amplitude density
function had a dip near zero.

XI. THE PENALTY

Removing the redundancy from the transmitted signal has the dis-
advantage that the signal becomes more vulnerable to noise introduced
in the medium of transmission. This is true of predictive systems, in
general, whether or not they are digital. A technique for reducing the
redundancy in analog television signals by linear filtering has been
proposed by Franks.* The similarity between this analog technique
and DPCM is apparent. The utility of digital transmission itself is
simply that it provides a desirable trade of bandwidth for noise im-
munity in the transmission medium. We may think of DPCM as a
counter-trade. For a given amount of quantizing noise, DPCM allows
transmission at a lower bit rate (and therefore bandwidth) than standard
PCM. Errors in the transmission channel, however, degrade the decoded
DPCM signal more than they would in standard PCM.
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Fig. 17 — Quantizing noise amplitude density functions for N = 2, 8, and 64
level previous-sample feedback DPCM. (Case shown is for scene B with the
DPCM system optimized for this scene.)



PREDICTIVE QUANTIZING SYSTEMS 719

The decoder in a DPCM system is a linear device which operates on
an incoming sequence with rms value ¢, to produce a decoded output
with rms value o. Just as the decoder increases the level of the incoming
signal by 20 log /¢, = k db, it will also increase the level of accompany-
ing noise (caused by digit errors in the transmission channel) by % db.

This is easily illustrated by considering the decoder of the previous-
sample feedback system with the predictor shown in Fig. 4. Noise 7,
caused by a digit error, on a member of the incoming sequence is fed
through the feedback loop and occurs on all subsequent samples. Such a
noise on a single member of the incoming sequence causes the error
sequence 7,amm,a%,a:%y, ..., in the decoded output sequence. The
noise energy in the decoded signal is, therefore

7+ (am)* + (a'n)* 4 - =7 (1_;(112)
For the properly designed previous-sample feedback system a, = Ro/o®
and 1/(1 — Ro®/o*) = ¢*/c,”. Therefore, a noise of energy %* in the trans-
mission channel appears in the decoded signal as noise with energy »*(a?/
a.%), a gain of 10 log ¢%/c,? db.

We have already shown that DPCM provides a decrease in quantizing
noise of about 10 log ¢*/¢.* db over standard PCM (assuming the syne
pulses are not transmitted). The penalty paid for this decrease in quantiz-
ing noise is that the noise in the decoded signal introduced in the trans-
mission medium is increased by exactly that same amount. This does
not mean that DPCM provides no advantage. For, in digital systems,
noise introduced in the transmission medium can be made extremely
small and the limiting degradation in DPCM systems is generally
quantizing noise. Decreasing the quantizing noise by & db may be
desirable even if the noise introduced in the channel is increased by this
amount.

When the probability P of a digit error in the transmission medium is
small enough so that the probability of getting two errors in the same
word may be neglected, then the noise power N, in the decoded output
introduced by the transmission medium is directly proportional to P
and we can express N, (in db) as

N, = K, + 101log P + 10 log ¢*/c.2 (25)
From (17) the quantizing noise N, can be expressed (in db) as
N, = K, — 10 log ¢*/c.. (26)

The constants K and K. are both dependent on the number of quantiz-
ing levels as well as other parameters. The term 10 log ¢*/e¢.* represents
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the effect of DPCM in both equations. Reducing the quantizing noise
N, by k db through DPCM requires increasing 10 log ¢°/c¢,* by this
amount and this increases the noise N; introduced in the medium of
transmission by & db. Whether or not DPCM can be used to advantage
depends on the relative importance of N, and N, in limiting the perform-
ance of the system. From (25) we see that if we require N, to remain
constant while reducing the quantizing noise by & db, we must reduce
the term 10 log P by k db. This requires reducing the value of P by a
factor of 1001k = (1.26)%.
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