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An analysis is made of the steady-state temperature distribution in a
poorly conducting plane film on a highly conducting semi-infinite substrate,
owing to a time-independent heat input in a cylindrical region of the film
and substrale. The problem 1s of interest in connection with the localized
hardening of anodic oxide films on silicon by electron beam bombardment
in order to produce oxide diffusion masks for the manufacture of inlegrated
eircuits, A formal solution 1s obtained for arbitrary dependence of the heat
inpul on radius and depth, and a detailed study is made of a particular
ease in which the heat input is independent of radius across the beam, and
varies in a realistic manner with depth in the film. Approximate formulas
are given for the temperature in the film when the radius of the beam 1is
large compared lo the thickness of the film, and also when the conductivity
of the film is small compared to the conductivity of the substrate. The ap-
proximate formulas are compared with the results of calculations based on
the exact solution. Finally, a crude estimate is made of the time required
lo reach the steady state.

I. INTRODUCTION AND SUMMARY

Recently considerable interest has developed in the application of
electron beam technology to microelectronics.! A number of papers
have been concerned with the heat-flow problems encountered when a
high-power electron beam interacts with a target. Previous investiga-
tions have considered electron heating of a uniform semi-infinite target,?
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of a target consisting of a highly conductive metal film on a less con-
ductive substrate,® and of a thin film not supported by a substrate.*
The heating of a poorly conductive film on a highly conductive substrate
does not appear to have been treated before, and forms the topic of the
present investigation. It corresponds to the case of an electron beam
incident upon an oxidized silicon substrate.

This analysis may find an application in the fabrication of oxide dif-
fusion masks for integrated circuits by electron beam bombardment.?
The etch rate of an anodic oxide film on silicon in hydrofluoric acid has
been shown to decrease strongly under electron bombardment, and a
proposal for producing patterns is to harden some areas of the film and
then to remove the surrounding oxide with dilute HF,

It should be noted that electron beam bombardment produces radia-
tion damage as well as thermal effects. The radiation damage alone would
increase the etch rate of the film in HF, but in conjunction with high
temperature it also facilitates ionic rearrangement in the SiO, film dur-
ing irradiation, which leads to a decrease in etch rate. The latter effect
predominates by far in the case of anodic SiO: films, so that the net
result is a strong decrease in etch rate.

While the rise in temperature during irradiation is thus not the only
factor contributing to the “hardening” of the oxide film, it is still the
major factor, and a knowledge of the temperature distribution during
irradiation is highly desirable. On the one hand one is interested in
working at a high temperature in order to increase the rate of oxide
“hardening’’; on the other hand one must stay below the melting point
of silicon (1415°C), or perhaps even lower in order not to generate ex-
cessive thermal stresses in the silicon. The edge definition of the hard-
ened region in the oxide film is also of paramount interest for mask fabri-
cation. Effects due to radiation damage will not be considered here,
but it may be noted that radiation damage will be generated exclusively
in the oxide and not in the silicon at the accelerating voltages of interest
(less than 10 kv).

In this paper we consider the mathematical problem of calculating
the steady-state temperature distribution due to an axially symmetric,
time-independent heat input throughout a cylindrical volume of the
film and substrate. The thermal properties of both materials are assumed
independent of temperature, and radiation from the outer surface of the
film is neglected. A formal solution of the problem is given in Section
IT for an arbitrary dependence of the heat input on radius and depth;
but in the subsequent analysis we assume that at any given depth



BEAM HEATING OF A THIN FILM 663

the heat input is independent of radius across the beam and zero out-
side the beam. We also confine our attention to the temperature dis-
tribution in the film itself. The only thing we really need to know about
the temperature in the substrate is that its maximum, which occurs
on the axis at the film-substrate interface, is not high enough to melt
the substrate.

With a fixed distribution of input heat, the normalized temperature
distribution in the film depends on two dimensionless parameters, namely
the ratio of beam radius to film thickness and the ratio of film conduc-
tivity to substrate conduetivity. In the physical problem, the beam
radius may be several times the film thickness, and the conductivity of
the oxide film is between a tenth and a hundredth of the conductivity
of the silicon substrate. In Section IIT an asymptotic approximation is
given for the temperature distribution when the normalized beam radius
is large. Section IV contains the solution for a perfectly conducting sub-
strate, as well as an estimate of the first-order effect of finite but large
substrate conductivity.

In order to calculate the temperature distribution numerically, it is
necessary to assume a definite dependence of heat input on distance
into the film (“depth-dose function”). In Section V we assume a depth-
dose funetion which approximates the form determined empirically by
Griin® and also employed by Wells.” The parameters are adjusted so
that the power input is maximum at a depth equal to 40 per cent of the
film thickness and zero at the bottom of the film, since, in general,
one wishes to avoid direct heating of the substrate by the electron
beam. Contour plots of normalized temperature have been calculated
from the formulas of Section II for selected beam diameters and con-
ductivity ratios. In addition, the exact temperature distributions along
the axis and at the top and bottom of the oxide film are compared with
the approximate formulas of Section III.

As a typical numerical result, we find that for an SiO, film of thickness
0.5 micron, bombarded by a 5 kv electron beam of diameter 20 microns
with a current of 628 ua and a uniform power density of 10® watts/cm?,
the steady-state temperature rise on the axis is about 1800°C at the
surface of the film, and about 800°C at the surface of the silicon sub-
strate.

In Section VI a crude estimate is made of the time required to reach
the steady-state temperature after the electron beam is instantaneously
switched on. It appears that in an example such as the preceding, the
transient time would be of the order of a few tenths of a microsecond.
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II. STEADY-STATE TEMPERATURE DISTRIBUTION

The geometry of the problem to be considered is shown in Fig. 1.
A plane film of thermal conductivity K fills the region 0 = z < ¢, and
overlies a semi-infinite substrate of thermal conductivity K, which
fills the region z < 0. We wish to find the steady-state temperature rise
T (r,z) under the influence of an axially symmetric, distributed heat
source of strength Q(r,z).

The temperature rise satisfies Poisson’s equation,

et sto{TUR 15w
and the boundary conditions are
T.(re) = 0,
T(r0%) = T(r07),
K\T.(r0") = KT.(r,07),

T(rz) —0 as P42 — o,

Il

2)

where T, denotes 87/dz. The first of the boundary conditions asserts
that there is no heat flow across the upper boundary of the film. The
method of solution which we are going to use would also allow for a
linearized radiation condition at the surface, i.e., a linear relation be-
tween T (r,c) and T,(r.c), if one knew the appropriate coefficients. The
second and third conditions insure the continuity of temperature and
heat flow across the interface between film and substrate, and the
fourth condition says that the temperature rise tends to zero at great
distances from the source.
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Fig. 1 — Cross section of plane film on semi-infinite substrate.
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It will be convenient henceforth to work in terms of normalized,
dimensionless quantities. In particular, we shall take the film thickness
as the unit of length, and denote the ratio of film conductivity to sub-
strate conductivity by e. We also introduce a representative heat

source strength @, having the dimensions of power per unit volume.
Thus, let

£ = r/c = normalized radius
{ = z/c = normalized depth
¢ = K,/K, = conductivity ratio
¢ = Q/Q = normalized heat input
U = (K:/c'Qo)T = normalized temperature rise.

In terms of these normalized quantities, (1) takes the form

2U 2 _
wriwrE-lL 1T
and the boundary conditions (2) become
Up(£1) = 0,
U0 = UE0),
(4)

U (£07) = Ur(£07),
UEL) =0  as £+ — w.
In what follows, we shall treat separately the cases of heat input to
the film and heat input to the substrate. The general case follows by
superposition.
2.1 Heat Input to Film

Assume that g(g¢) differs from zero only in the film. We denote the
normalized temperature rise in the film by U;(£,), and seek a solution
of Poisson’s equation in the form

i) = [ swpdode,  0s¢s1, (5)

where f(w,{) is a function to be determined. Similarly, for the normalized
temperature rise in the substrate, Us (£,{), we seek a solution of Laplace’s
equation in the form

Uied) = [ o) wide, 150, 6)

which vanishes as { — — 0.
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We shall consider the case in which the normalized heat input can be
written as

g(&8) = ¥(E)e(0), (7)

that is, as the product of a function of radius times a function of depth.
This will probably be justifiable if the increase in beam width with
depth due to electron scattering is negligible. Furthermore, by taking
(&) and () equal to d-functions it is possible to derive the Green’s
function, in terms of which one can express the solution for an arbitrary
axially symmetric heat input.

Substituting (5) and (7) into (3) and making use of Bessel’s equation,
we obtain

) " Unlwg) — @) Wolwt)dw = —p(B)e(e), ©

for 0< <1
From the Hankel inversion formula,’ it follows that
fa(wi) — wfwg) = —whwe (), ©)
where ¥ (w) is the Hankel transform of ¢ (£), defined by

P = [ (o1 (10)

TExtensive tables’ of Hankel transforms are available; we note in
particular the following pairs.
(7) Uniform beam of normalized radius a:

_ 1, 0=¢<a,
,1{/(5) {0, E> a, (]_la)
Fw) = (a/w)Ji(ew).
(#7) Gaussian beam:
¥(&) = exp (—£/d"),
2 2 2 (11b)
P(w) = (a’/2) exp (—a'w'/4).
(7i7) Infinitesimally thin, hollow beam of radius & :
y(&) = 6(¢ — &),
(11c¢)

¥ (w)

£ofo(wko).
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To satisfy the boundary conditions (4), we must have
fr(w,1) =0,
f(w0) = g(w), (12)
efr(w,0) = wg(w),
from which, eliminating g (w),
Lwl) =0,  &f(w0) = wf(w0). (13)

The solution of the two-point boundary value problem for f(w,{) by
standard methods leads to

nh sh !
S:}I:)Shwi "_!‘_ i'csi?h zg— u e(n) ecosh w(l — #)dn

_ f:‘a(n) sinh w(; — n)dn]-

f(wg) = Bw) [
(14)

From the second of (12),

ep(w) !
cosh w 4+ £ sinh w j,; e(n) cosh w(l — n)dn.  (15)

glw) =

In principle, the normalized temperature rise is completely given by
(5), (6), (10), (14), and (15), provided that the heat input to the film
can be represented as a product ¢ (£)¢(¢), and that there is no heat
input to the substrate. A complete numerical solution for arbitrary
¢ and ¢ would, however, involve the evaluation of five integrals, each
of which depends on one or more parameters. In practice, one would
try to approximate the source function in such a way that at least some
of the integrations could be done analytically. An example is discussed
in the following sections.

2.2 Heat Input to Substrate

Again we take the heat input in the product form (7), but now assume
that ¢ (¢) differs from zero only in the substrate, { < 0. For the norma-
lized temperature rise we assume

Ui(gp) = f: 1(w) cosh w(l — §)Jo(we)dw, 0=¢=1, (16)

Us(tg) = f m(w,)Jo(wt)duw, ¢

A

0, (17)
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in the film and substrate, respectively, where [ (w) and m (w,{) are func-
tions to be determined. The expression for U;(£¢) already satisfies
Laplace’s equation and the first of the boundary conditions (4).

As before, it is easy to show that m (w,{) must satisfy the differential
equation

mg (w,f) — wmwg) = —ewdw)e (), (18)
and the boundary conditions
I(w) cosh w = m(w,0),
—el(w) sinh w = m; (w,0), (19)
mw,g) —0 as — —oo,

By standard methods we find

m(wg) = Dw)e” +3ebw) [ exp (~wln— Dol

for ¢=0.

It is clear that m (w,{) satisfies the last of the boundary conditions (19)
if w > 0 and ¢(¢) vanishes for all sufficiently large negative {. In prac-
tical cases, it will certainly be justifiable to set the heat input identically
equal to zero below some finite depth. We shall not take space to in-
vestigate the mathematical question of how slowly ¢ ({) could approach
zero, and still have m (w,{) also approach zero, as { — —,

From the first two boundary conditions (19), it is straightforward
to calculate

- ey (w) 0
") = v T csinh w f_m exp (wn)e(n)dn, (21)

bep(w) [0 — e SMU] [ oxp (wmetmin.  (22)

D(w) cosh w + & sinh w

Il

The first of these, substituted into (16), gives the normalized tempera-
ture rise in the film; and the second, together with (17) and (20), gives
the temperature rise in the substrate.

111, APPROXIMATIONS FOR A UNIFORM BEAM OF LARGE RADIUS

We shall consider henceforth only the case in which the heat input is
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radially uniform out to the normalized radius ¢ = «, and zero for £ > a.
Also we shall be interested only in the temperature distribution in the
film itself. The dependence of heat input on depth will, however, still
be taken as arbitrary.

In the case where heat is applied to the film by means of a radially
uniform beam which does not penetrate the substrate, the normalized
temperature rise in the film is given by (5), (11a), and (14). In practice,
the 810, film may be only half a micron thick while the beam radius is
several microns. We accordingly seek an asymptotic expansion of the
temperature distribution for large o. In the analysis we assume that the
conductivity ratio ¢ is fixed with ¢ < 1. Our results will also include the
physically interesting case £ < 1.

Combining (5), (11a), and (14), we may write the temperature dis-
tribution in the film in the form

Uiese) = | [5— [ etwin + htw; s)Jmaw)Ju(sw)dw, )

0 1,

1A
IIA

¢

where

. h 1
St et o) ot =

hwg; e) = % [
(24)

1 ¢
- E_[J e(n)dn — fu ¢(n) sinh w(y — n)dn]-

It is clear that the function % (w,; ¢) may be expanded in a power
series around w = 0; that is,

h(wg;e) = mZ;O R (0,85 €)w™ /m!, (25)

where the superscripts denote derivatives with respect to w. In particu-
lar,

(0% €) = o [(;‘ — &) fulso(n)dn - [Dr (¢ — n)qo(n)dn]- (26)
Let

p=ta E=ap (27)

so that the boundary of the heat input region is p = 1. We have™
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= dw
P(p) Ef J1(aw)Jo( paw) P
0

_LwJﬁx>Japx>§§

]

0 (28)
;E(p), 0=<p<1,

SEORERO)

where F and K are complete elliptic integrals.

Furthermore, assuming that p, ¢, and ¢ are fixed, the following asymp-
totic expansions for large o are derived in the Appendix, in terms of the
derivatives of A (w,{;¢) at w = 0:

fm h(w,g; e)J1(aw)Jo pow)dw

W05 €) |, o (—1)'T(n + )
@ T RZ=[) T(3)I'(n + 1)
(2n+1) .
Pt hn+ 510 050 0z, <,
~ 2
$ (=)™ + 1) =
& T + D

(2n+1) ]
-F (n +iHn+ 532 12> h_z(O,g‘, £) . >,
p o n+42

where F{(a,b; ¢; 2) is the hypergeometric funetion. Since when p is near
. 1
unity, we have'

O[(1 — p)~*"™,

Fin+3n+3%1;0)
0< (1—p) K1,

(30
F (n +4n+ 32 #) = O[(p — 1)~ )

0<(p—1)K1,

it follows that the asymptotic expansions (29) are useful only for
a|1 — p|> 1, but not in the neighborhood of p = 1.
Combining (23), (26), (28), and (29), we obtain finally,
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1 1
Ur(pats €) ~ eaP(p) j; e(n)dy + (¢ — &) fo e(n)dn

{
— fﬂ (f' — q)v(n)d‘q + O[E/C!(l — P)]:

0=p<1;

(31)

Uilpay; e) ~ eaP(p) j; o(n)dn + Ole/alp — 1)p7,

p>1,

where P(p) is defined by (28). That the remainder terms are O(e)
when & << 1 may be seen from the relations

h(w;e) = h(—w,i; —e),

32
h(2n+1) (0,5-’ f,‘) = —h{2n+l) (Org‘; _E); ( )

ie., the odd derivatives of & with respect to w at w = 0 are odd functions
of £. Note, however, that setting ¢ = 0 in the asymptotic solution (31)
does not give the exact solution for a perfectly conducting substrate,
inasmuch as there are exponentially small terms in & which never appear
in the asymptotic solution. The exact solution for ¢ = 0 is given in
Section IV,

When the product e« is sufficiently large, the leading terms in the
asymptotic solution (31) are proportional to P(p); that is, they are
functions of p (= #/a) only, and are independent of the depth { in the
film. The function P (p) is plotted in Fig. 2. It is continuous, with a
logarithmically infinite slope, at p = 1. Numerical comparisons between
the exact solution (23) and the approximate solution (31) are made in
Section V.

We now look briefly at the case of heat input to the substrate by a
radially uniform beam of normalized radius a and depth dependence
e({), for ¢ £ 0. The normalized temperature rise in the film is, from
(11a), (16), (21), and (27),

Us(pagse) = ca fw coshw(l — ) I:[i exp (wn) ga(n)dn] (33)

o w(coshw + ¢sinh w)

~J1(aw)Jo( paw ) dw, 0=s¢=1.

When p, {, and ¢ are fixed, and bothae > 1and a |1 — p| >> 1, an analy-
sis entirely similar to the preceding gives
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Fig. 2 — The funetion P(p) = f D@ Jole2)

0 T

0 0
Usr(pai; €) ~ eaP(p) L o(n)dy + ¢ L (n — &)o(n)dy

+ Ole/a(l —p)l, 0=p<1;
(34)

Ui(payt; &) ~ eaP(p) LJ o(n)dn + Ole/alp — 1)p'],

p> 1.

1IV. APPROXIMATIONS FOR A UNIFORM BEAM WITH LARGE SUBSTRATE
CONDUCTIVITY

We now assume that e << 1; that is, the conductivity of the substrate
is large compared to the conductivity of the film. (For an SiO, film on
silicon, ¢ is between 0.1 and 0.01.) Again we consider a radially uniform
beam, with an arbitrary depth-dose function ¢ (). No restrictions are
placed on the normalized beam radius a.

For heat input to the film only, the normalized temperature rise in
the film is given by (5), (11a), and (14). Referring to (14), we expand
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the function f(w,{) in powers of €. After a little algebra, we find that the
normalized temperature rise in the film can be written as

Uilggse) = 25 &0 (), (35)
where
U (£f) = a f F(w,)J1(ew)Jo( fw) duw, (36)
with
1
F(wyg) = m [sinh wt A ¢(n) cosh w(1l — 5)dy
; (37)
+ cosh w(1 — §) j; ¢(n) sinh wn dn:l ,
and forn = 1,
] 1
0 (&0) = (=1 ] [ o) cosh w1 — i
0 0 (38)

cosh w(1 — ¢) tanh™™"
cosh? w

X v Jl(aw)Ju(W) d_l_v?'f .

The quantity U, (£,n) is the normalized temperature rise in the film
when the substrate is perfectly conducting. In this case, the temperature
rise at the bottom of the film is zero, and in fact it is obvious from (37)
that F(w,0) = 0. The quantity U," (£¢) represents the nth order
correction if £ is small but not zero.

We may evaluate U@ (£,¢) by contour integration. Let S, denote the
semicircle of radius nx in the upper half-plane (n = 1, 2, ---), with
diameter along the real axis indented at the origin. From (37) it follows
that F(w,) is uniformly bounded on S, , and has simple poles within
Sp.atw = (m — §)wi (m = 1, --- , n). The choice of integrand depends
on whether 0 £ £ S a,0or £ = a. For 0 = ¢ £ o we consider

[E F(w,6) Jo(£0) Hy® (caw) dun, (39)

and for ¢ = a we consider

fs F(w, )Ty (cw) Ho™ (), (40)

where Ho"” and H," are Hankel functions. The integrals are evaluated
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by the caleulus of residues and then the limit n — o is taken. Since the
procedure is a standard one, we omit the details and merely state the

results.
We obtain, for0 = ¢ £ «,

{Ulm(‘;’,i‘) - [i‘ [Mn)dq + j: nsa(n)dn]}

_ _ 2a S Si_n[(_m—l%_)vri']fn[(m — DatlKl(m — $)wea]  (41)
T m=1 (m - f)

j; e(n) sin [(m — 1) wyldn,

and, for { = «,
20 v sin [(m — 1)w¢]
F Z T (m — 1y

= (m—3)

U (g¢) =
(42)

Tl(m — D malKol(m — D)r 1[0 o(n) sin [(m — 3)mnldn.

Here Iy, I, , Ky, and K, are modified Bessel functions. The continuity
of U, /0t at £ = « is readily verified, while that of U, at ¢ = «
follows from the identities

Li(x)K (z) + L (2)Ky(2) = 1/, (43)
and

2 cos [(m — Hxf]
m=lwﬁ§(l 6), 0s6=2 (44)
We remark that (41) and (42) could have been derived by separation
of variables in (3). For |« — £]>> 1 the right-hand sides of (41) and
(42) are exponentially small. It follows that (41) and (42) are con-
sistent with the asymptotic expansions (31) and (32) for « >> 1, when
£ = 0 and asymptotically small terms are neglected.

It does not appear possible to evaluate the first-order correction
U,V (£¢), as given by (38), using contour integration, because the
integrand has the wrong parity in w. We can, however, obtain a bound
on the value of U/;(0,0), at the “hot spot” of the film-substrate inter-
face, where the zero-order solution 7, (0,0) vanishes.

From (38), setting n = 1 and changing the order of integration,
which is justified since the double integral is absolutely convergent,

1 0
U,(0,0) = aj; e(n) [fo COShc:u;hlw— n) Jl(gw) dw}dn- (45)
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When 5 = 0, the inner integral is equal® to 1. When 5 > 0, we trans-
form the inner integral by substituting the integral representation'

x/2
Jilaw) = (20w/7) f cos (aw cos @) sin® § d, (46)
1]

and again invoking the absolute convergence of the double integral to
change the order of integration. This leads to

f cosh w(1l — %) Jl(aw)
0 cosh w w

_ 2a f |:f M cos (aw cos B)dw:l sin” 6 d@
T Jo cosh w

o sin ™ f cosh (4ma cos 8) sin® 6 do
sinh? (37a cos 8) + sin? (3m9)
[

cosh (i7ra cos ) sin @ df

sinh? (37« cos 8) + sin® (37)

Etan_l [S—ﬁ——lph (fm):l <1,
T sin (3mn)

where the third line follows from a table of Fourier transforms." Hence,
finally, from (45) and (47),

Ul(-l! (0,0)

1 x/2 1 2
o . f cosh (3ra cos 8) sin® 8 dé :ld
“ fo eln)sin 2 [ o sinh? (37acos8) +sin® (3mn) | "

< o 8in —

2
™
2

1
< afo e(n)dn. (48)

We see from (31) that asymptotically, for ¢ >> 1, the upper bound in
(48) is attained, since P(1) = 1.

Now suppose that heat is put only into the substrate, so that the
normalized temperature rise in the film is given by (33). Expanding in
powers of ¢ leads to

Lvl (Ev;; ‘E‘) = n;[ 8"[‘[(") (E:;): (49)
where
(n) _ “(—=1)""cosh (1 — $)w tanh™" w
U (&) = aj; w cosh w

. (50)
X [L,, exp (wn)w(n)dn] J1(aw)J o Ew)dw.
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In particular we have, on changing the order of integration,

00(00) = a [ o) [ [ R CDAl) 4, o,

0
= [ o(m)(4* + a*)* + nldy,
after substituting the known value'® of the inner integral.

V. NUMERICAL RESULTS

In this section we give the results of some numerical computations
using the exact formulas of Section IT, and some comparisons with the
approximations of Sections IIT and IV. We asume that the electron
beam voltage is such that the electrons penetrate to the bottom of the
oxide film (about 5 kv for an 0.5 g film?1¢), but do not enter the sub-
strate. For the depth-dose function we take

W(.{—) = sin B¢, IB = 5”/61 0 =¢ é 1: (52)
which is plotted in Fig. 3. The assumed depth-dose function vanishes at

1.0

0.8

0.6

0.4

NORMALIZED HEIGHT, §

0.2

0 0.5 1.0
HEAT INPUT, ¢({)

Fig. 3 — Heat input function ¢(f) = sin 5x¢/6.
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the bottom of the film, has a maximum at a depth equal to 40 per cent
of the film thickness, and in general corresponds very closely to the
empirical function used by Griin® and Wells.” The position of the maxi-
mum could be varied, of course, by changing the parameter g.

Substituting ¢ (¢) into (5), (11a), and (14), we find after some al-
gebra that the normalized temperature rise in the film is given by

Ui(gg) = aV (&) sin B¢ + aBW (£1), (53)
where
_ [T Ji(ew)Jo(Ew) .
v = [ P (54)
and
[ Talew)Jolw)
W(Eg) v w(wt £ B9
(55)

'|:£ cosh(l — ¢)w — (sinh {fw + ¢ cosh {w) cos ﬁ:l dw
cosh w 4+ & sinh w '

The integral on the right side of (54) ean be expressed in terms of
modified Bessel functions. We have'”

f”le(aw)Jluw)dw LB Kx(Ba),
o (w48 L(Ba)K:(BL), (2 a

IIA

a,

(56)

Integrating both sides with respect to t from « to £ and using the rela-
tionship'

< Jl(a'w)Jg(aw) _ Il(aﬁ)KD(a.B) =
A 7
we obtain
.%I:Bia — Kl(Ba)Io(BE):I, 0=<¢=aq
V(¢) = (58)
Il(ﬁﬂ);(ﬂ(ﬁs) , E ; a.

The integral for W (%), on the other hand, has to be evaluated
numerically. The integrand is oscillatory, and falls off exponentially for
large wif0 < ¢ < 1.If ¢ = Oor ¢ = 1, it falls off like 1/w' if £ = 0,
and like 1/w™ if £ = 0. The numerical integration was done by Simp-
son’s rule on an IBM 7094 computer. Combined analytic and empirical
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investigations of the accuracy were made in order to guarantee that the
relative error in any value of U is less (in most cases, much less) than
one per cent.

Four different sets of parameters were chosen; namely, & = 2, 10, and
20 with ¢ = 1/40, and & = 2 with & = 1/4. The normalized temperature
rises at the surface of the film and at the film-substrate interface are
plotted against normalized radius in Fig. 4. Note the differences in
scale; in each case the edge of the beam, £ = ¢, is at the center of the
plot. The temperature distribution along the vertical axis is shown for
the same four cases in Fig. 5.

It is seen that the temperature distribution at the surface of the film
becomes more flat-topped, and the fall-off at the edge of the beam
becomes relatively (although not absolutely) mote abrupt as « increases
in the first three cases of Fig. 4. Also note that the temperature levels are
somewhat higher and the temperature variation through the film is less
in Fig. 4(d) than in Fig. 4 (a), since for the same value of a the relative
conductivity of the substrate is only 1% as large in Fig. 4(d) as in Fig.
4(a).

The dashed curves in Figs. 4 and 5 correspond to the approximate
formulas (31) for large o. If (¢) is given by (52), these approximations
read:

Us(pats €) ~ eaP(p) 1%"5*’3
1| sin B¢ 9 :I
— — e 1 — ,
+,B|: 5 feos B — & cos ) (59)
0=p<],
Ur(pat; ) ~ eaP(p) 1#_;—05'“8, p>1,

where p = £/a. As expected, the approximations are discontinuous at
the edge of the beam, p = 1; and they are not much good when a = 2
(worse for the larger value of ¢). They are remarkably good, however,
for @« = 10 and o = 20; the dashed curves essentially coincide with the
solid ones except on the surface of the film in the immediate neighbor-
hood of the beam edge.

Contour plots for the temperature distribution in the film are given
in Fig. 6 for « = 2 and @ = 10 with ¢ = 1/40, and for a« = 2 with
¢ = 1/4. Contour plots were not made for & = 20, because the numerical
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Fig. 4 — Normalized temperature rise at upper and lower surfaces of film:
(a)a= 2,6 =1/40; (b)a = 10,6 = 1/40; (c)a = 20, £ = 1/40; (d) @ = 2, € = 1/4.

integration is slow for large a (the integrands oscillate more rapidly);
but it is clear that for large « the approximate formulas (59) would
yield accurate contours, except very close to the beam edge.

We may also compare the bound on the first-order correction term
for small £, as given in Section IV, with the exact results. At the center
of the film-substrate interface, (48) and (52) give

U, (0,0) < ea(l — cos B)/8 = 0.713¢a,

(60)

which leads to the following comparison with the exact solution U, (0,0).
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In order to relate the dimensionless temperature rise U; to the physical
temperature rise T, it is convenient to introduce the power density
(i.e., per unit area) in the incident beam. For a uniform beam of radius
ac with depth-dose function ¢(z/c), the dimensional factor @o, which
normalizes the heat input per unit volume (Section II), is related to
the incident power density Pg by
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m(ac)’Py = 27Qo j: fuuc o(z/c)r dr dz, (61)

P.;,/cj:qv(i‘)df. (62)

Hence, the actual temperature rise at the point (r,z) of the film is given
by

Il

Qo

Ti(r2) = (€°Qy/K)Uy(r/e, z/c)
= (1.403¢Py/K,) Uy (r/e, 2/c),

(63)
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Fig. 6 — Isothermal contours. (a) @ = 2, & = 1/40; (b) & = 10, £ = 1/40; (c)
a=2¢=1/4.
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where the numerical coefficient corresponds to the depth-dose function
(52). Consistent, units for (63) are:

T, = temperature rise in °C
r,2 = coordinates in em
¢ = film thickness in em
P, = incident power density in watts/cm’
K, = film conductivity in watt/ecm °K
0.239 K, = film conductivity in cal/sec em °K.

We shall now look at a numerical example. It turns out that the
constant-conductivities model which has been analyzed in the present
paper is not a very good approximation to the real problem of a silicon
dioxide film on a silicon substrate, because the thermal conductivities
of both materials depend strongly on temperature. In fact, the conduc-
tivity" of Si0, increases from about 0.015 watt/em °K at room tempera-
ture (various values are reported —not for thin films — which differ
among themselves by as much as 2:1 depending on the erystalline orien-
tation of the sample) to about 0.03 watt/cm °K at 900°C. For Si, on the
other hand, the conductivity™ decreases from about 1 watt/cm °K at
room temperature to about 0.03 watt/ecm °K at 900°C. For purposes of
calculation we shall more or less arbitrarily assume the values

K, = 0.03 watt/em °K

K, = 1.2 watt/em °K

e = 1/40 (64)
05 =5X 10" cm

Py = 10° watts/cm’.

Il

Since these conductivities may be somewhat larger than the actual
conductivities, the temperatures which we shall compute may be some-
what lower than the actual temperatures. For a 5-kv beam, the assumed
power density corresponds to a current density of 200 amps/cm’.

Table I gives the total beam current and the maximum temperature
rise (i.e., on the axis) at the top and bottom of the film, for beams of
diameter 2 g, 10 u, and 20 u, corresponding to the previous computations
with @ = 2, 10, and 20, and a conductivity ratio of 1/40. It appears,
therefore, that in each case at least a part of the irradiated spot would
be raised to the temperature at which the oxide hardens (900°C), but
in no case would the substrate melt (1415°C).

It is probably worth repeating that the physical problem of interest
is nonlinear, because of the dependence of conductivity on temperature.
Bounds on the solution may be obtained from linear models, by using
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TaBLE I
Diameter Current ' U1(0,1) ’ U1(0,0) | T1(0,0) ’ T1(0,0)
2p 6.28ua 0.3857 0.0314 902° 73°
10u 157ua 0.5799 0.1771 1356° 414°
20u 628ua 0.7589 0.3556 1775° 832°

the theorem that with a fixed heat input the steady-state temperature
is not increased anywhere (usually, it is decreased everywhere) if the
conductivity is increased anywhere, and vice versa. However, only a
full-dress numerical treatment of the nonlinear partial differential
equation, assuming that one knew the temperature dependence of the
conductivity, would be likely to yield really accurate results.

VI. TRANSIENT EFFECTS

It is of interest to know how long it will take to reach the steady
state if the electron beam is suddenly switched onto the film, since this
gives an idea of how rapidly the beam may be scanned in laying out a
mask. There have been some published analyses™*' of transient heating
effects in electron beam machining, but we shall content ourselves with
a crude estimate of the time scale in the present problem.

Consider the case of a film on a perfectly conducting substrate, with
the film initially at zero temperature, and with a time-independent heat
input starting at ¢ = 0. Then the instantaneous temperature distribution
satisfies the heat flow equation

1aT Q CéaT -
_‘l";g azﬂ__fl—i_za, ((L))
where K, is the thermal conductivity, C' the heat capacity, and § the
density. The total temperature 7' (r,z,¢) may be written as the sum of a
steady-state part and a transient part,

T(I",Z,f) = Tl(T,Z) + 9(-r,z,t), (66)

or?

where T, (r,z) satisfies Poisson’s equation (cf. Section II) and 6 (r,z,t)
satisfies the homogeneous equation

30 , 190 90 _ (590

— — - — =0 67
ar " rar 92 K, ot ’ (67)

and vanishes as { — =.
A sufficiently general solution of (67) may be written in the form
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00r20) = 3 [ Aulw) exp [~ (Ko/COl* + (m + 3w/l
m=0 Y0 (68)

1
X Jo(wr) sin M dw.

The initial condition requires that the total temperature vanish at
t = 0; that is,

T.(r,2) + 6(r,20) = 0. (69)

Hence, from a knowledge of the steady-state temperature one can in
principle use the properties of Fourier series and Fourier-Bessel integrals
to determine the functions A, (w) and the transient solution O (r,z!).

We would like to know how fast ©(r,z,t) approaches zero with in-
creasing time. It is clear that (68) cannot be characterized by any single
exponential decay; but we observe that the most slowly decaying ex-
ponential is

exp [— (Kin°/4¢Cd)1],
and it is therefore reasonable to define a crude “transient time” as
T = 4¢°Cs/7'K, . (70)

We assume the following numerical values for the SiO; film:

¢ =5X10"em
C = 1 watt sec/gm °K
5 = 2.2 gm/em® 1)
K, = 0.03 watt/em °K.
Then
r = 3.0 X 107" sec, (72)

so the transient time is a fraction of a microsecond.
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APPENDIX

Asymptotic Expansion of a Class of Inlegrals

In this appendix, the asymptotic expansion of
T(o) = [ () T2(ew)To(perw) o (73)
is derived, where

h(w) = ,,.Z B (0)w™/m!, (74)
fora> 1and a |1 — p|>> 1, that is, for p not in the neighborhood of
1. It is clear that the asymptotic expansions will break down in the
neighborhood of p = 1, since then the integrand will contain a term
which is not rapidly oscillating,

We start from a result given by Tranter.” Namely, if we have the
expansion

j‘: exp (—yw) Flaw)dw = 20 An(a)y", (75)
then, formally,
[ m@)stapdn ~ T (=1 a0, (70)

In the case at hand,
F(aw) = Jy(aw)Jo(paar). (77)

Assume first that p is fixed and 0 < p < 1. Then if (o’ + 4! > pa + 7,
we have®

_ m 2m
fn exp (yw) Ji(aw)Jo(poaw)dw = ,.,Z—n ( 22’1"2”[11(?1:’*(2?‘”1_;22)

aZ )m+l . a2
.(ﬂ72 F(m-’rl, —m+'§,2,a——2+72).

Using standard transformations,™

(78)
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fw exp (—yw) Jilaw)Jo( paw )dw

1A (=D)"MT(2m + 2) (f)"‘“
Caam 2H[T(m + DEF

2
XF(m+1,m+%;2;—g§)
Y

1y s (=D)""T(2m + 2)T(— $)
=aT 220 2 H[T(m + 1)FTG — m)

2
xdm+%m+a%—§) (79)

2y 5~ #"T(m 4+ HT(m + §)
Ta? m=o [C(m 4+ 1))?

2
XF(m+%,m+%;%;—g§)

(_l)nw‘-l_yinl—‘(n +%_)
xa’ 7=0 a*T'(n + 1)

X Fin+3,n+41;0),

1
o

IJ

Lt

where in the last step we have expanded the hypergeometric function
in a power series and interchanged the order of summation. Comparing
(79) with (75), we see that
1/a if n=0,
A (a) = ) (80)
0 if n>0,
(=D)""'T(n + 3
o HT ()T (n+1)

It follows from (76) that

Appla) = F(n + Hn+ 51 PE) .

fm h(w)J1(cw)J o paw) dw

h(O) (=1D)Tr + %
X e T (81
(2n+1)
X F(n+'§)n+%r IJP)EITE.M'

for0 < p < 1.
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An entirely similar derivation, the details of which will be omitted,
leads to the expansion

i (="' + 9

j;] h(’LU)Jl(MU)JO(Pm‘))dw ~ — P(%)P(ﬂ + 1)p+3 (82)
h(2n+])(0)

o?nt? !

X F(n +4n +%;2;1—2)
p
forp > L
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