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The problem of optium reception of M-ary Gaussian signals in Gaussian
noise is to specify, in terms of the observable waveform, a scheme for deciding
among M alternative mean and covariance functions with minimum error
probability. Although much literature on the problem exists, a mathemali-
cally rigorous solution has yet to appear. By formulating the problem as
optimum discrimination of M Gaussian measures in function space in-
duced by the mean and covariance functions, this paper presents such a

solution.
Let mi(t) and re(s,t), k = 1, ---, M, be the alternative mean and

covariance functions of the Gaussian signal, and let my(t) and ro(s,t) be
the mean and covariance functions of the Gaussian noise. If, for each k=
1, ---, M, the integral equalions,

fmmm@@=mm

and
ff rol s (u) (vd) + (D] du do = ni(s),

admit a square-integrable solution gy (t) and a symmelric, square-integrable
solution hy(s,t), then the following decision scheme 1s oplimum: given an
observable waveform x (1),
choose my (1) and ri(s,t) if I (x) is the largest among all T;(x),
j=1,--,M, :
where Iy is defined by

I(2) = %ff e((sDe(t) dsdt + [ 2010 dt + e

in which
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1) = ael) — [ lslmo(s) + mals)] ds

and ¢ 1s a constant determined by the mean and covariance functions
mo(t), mi(t), ro(s,t) and ri(s,t) as well as the a priori probability associated
with my () and r.(s,t).

The first section introduces and defines the problem and the second pre-
sents the solution with pertinent discussions while a precise mathematical
treatment is left to the appendix.

I. INTRODUCTION

Before we formulate the general problem of optimum reception of
M-ary signals in noise, let us review a simplified version of the classical
problem: optimum reception of M-ary sure signals in Gaussian noise.
Suppose there are M sure signals m({), & = 1, ---, M, with a priori
probabilities ., 0 < e < 1 and > M, ax = 1, for transmission. The
received waveform x () consists of one of these M signals and an addi-
tive Gaussian noise n (1), i.e.

x(t) = me(t) + n(l).

In order to simplify the problem, we “represent’” the signals and noise

by certain finite sequences My , -+, My, k =1, -+, M,and ny, -+ -,
n. respectively.” Then the representing sequence z;, ---, x. of the
received waveform is given by

Ti = My + n;, t=1,+:--,n (1)
It is assumed that the signal sequences are linearly independent vectors
in an m-dimensional space R, while the elements, n,, ---, n, of the

noise sequence are statistically independent, identically distributed
Gaussian variables with mean zero and variance one. The task of the
receiver is to observe the received sequence x;, ---, 2, and to decide
which one of M signal sequences must have been transmitted. For each
possible erroneous decision, there is an associated probability, and the
average of all these probabilities weighted by the a priori probabilities
is the so-called (average) error probability. Then, the problem of
optimum reception in this simplified form is to specify in terms of the
observable sequence x;, -+ -, , a scheme for choosing the value of the
index & such that the error probability is minimum over all possible
decision schemes.

* These sequences may be regarded as the sample values of the waveforms or
the Fourier coefficients of certain orthonormal expansions of the waveforms.
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Now, from the assumption concerning the noise sequence, the joint
probability density function of ny, -+, n, is

po(n, oy m) = (2m) " exp( Zw)- 2)
i=1
Hence, through the use of the relation (1), the joint density function of
i, *+, T, becomes

pﬁ-(Vln ft Vri) = (27‘-}7(“!‘3} (‘Xp[ Z (Vi - mki :l- (3)

Note that since the observable sequence is a point in R, , a decision
scheme in terms of it is equwalent to a division of R, into M non-over-
lapping regions A,, -+, Ay so that & j is chosen if (a;, +++, @)
belongs to Aj;. Then, the error plobablhty associated with such a
division (A, ---, Au) is given by

<_1_Za;\fpﬁ(yl}..',Vn)dVl"'dynl

A

which can be rewritten as
P, =1- f [2 xXa, (v1s s w)aupi(vn, e ,vn)j| dvy =+ dv,, (4)
Ry

where x3, is the indicator function of the set A, k=1, -+, M.Clearly,
P, is minimum over all divisions if the integrand in the above is maxi-
mum at every point (v, ---, ») in K, . This can be achieved by
arranging a division (Ay, -~ Ay) so that, in the region Ax , the awpr
with the same index is the largest among all aypy, - -+ , aypuy . Namely,
the region with index £ consists of a set of points at which axp: is the
largest. If more than one axpi is the largest at the same point, that
point is to be assigned to the region whose index is the smallest of all
those k’s so that all the regions remain disjoint. That is, a division
(&, -, Su) of R, specified by

Sk = {(Vl, cety Vn):akpk("ly Tty Vn) > aﬂJ;‘(Vl, ] Vn)s ]l
j. < ’f,L
» o (B)
ak'Pk(Vl, Ty, VR) g ajpj(""ll ] Vu),
J> k

is the division which minimizes P, . Or the optimum decision scheme is
the following:
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Given an observable sequence (x;, -+, ¥»), choose the mini-
mum value of & for which awpr{®:, - -+, ®.) I8 maximum as a
funetion of k.*

Now by expanding the exponent in (3),

1 n " n 1 n
axpi (21, <+, Ta) = o €Xp (_ 3 2wl 4 Y v — 5 > mki2) '
= -

i=1

. n 1 n .
Ih= 2 xmy — 5 Z mii: + log ax (6)
= =

then the optimum decision scheme is equivalent to choosing the mini-
mum value of % for which [ is maximum.

In the special case of “equi-probable and equi-energetic’” transmitted
signal sequences, i.e.

n n
o = - = oy and zllmuE: =, 1"”3{527
= =
I, can be effectively replaced by its first term, i.e. ELl xmye: . In other
words, the optimum decision scheme in this case consists in performing
correlation of the observable sequence with M signal sequences and
choosing the smallest of the % values corresponding to the largest
correlation sums. }
In the general problem of optimum reception of M-ary Gaussian
signals in Gaussian noise, the observable waveform (received waveform)

x(t) is expressed by
z(t) = ye(t) + n()

where 1 (t) is one of M possible Gaussian signals which are character-
ized by mean and covariance functions just as n(t) is. We assume that
each Gaussian signal is statistically independent of the noise and it
cannot be detected “perfectly’” in the presence of this noise.} Again, the
task of the receiver is to observe the waveform x(¢) for a finite time,
say 0 < ¢ = 1, and to decide which one of M Gaussian signals must have
been received. Then, by defining the error probability as before, the
problem of optimum reception becomes that of specifying, in terms of the

* That is, suppose for a given (z1, -+, Za), axpe(zr, --+, T.) a8 a function
of % assumes its maximum at & = k1, ---, k; where k ; < --- < k; . Then, we
choose k = ki .

1 For classical references, see Refs. 1 and 2.
t This is the assumption of “non-singular detection”. A necessary and suffi-
cient condition of non-singular detection is given by (13) in Appendix.
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observable waveform a (t), a scheme for choosing the index k& such that
the error probability is minimum over all possible decision schemes.
One mathematical idealization of the above problem is the following:
Let {y:,0 =t = 1} be a Gaussian process whose mean and covariance
functions are one of M possible pairs of m;(¢), 0 = ¢t = 1, and r(s,1),
0=s,t=1,k=1,---, M, where m(t) and r;(s,t) are assumed to be
continuous.” Similarly, let {n,,0 < ¢ < 1} be a Gaussian process whose
mean and covariance functions are mo(t), 0 = t = 1, and ro(s,t), 0 =
s,t < 1, where mo(t) is assumed to be continuous while 7y (s,t) is positive-
definite as well as continuous. It is further assumed that {y,,0 = ¢ = 1}
and {n,,0 = t = 1} are mutually independent for every k = 1, --- , M.
Now define a new process {x,,0 < ¢ < 1} by 2, = y. + n,. Then, from
the mutual independence assumption, the mean and covariance func-
tions of |x,,0 = t = 1} are one of M possible pairs of my(t) + my(t)
and ro(s,t) + re(st), k=1, -+, M. Let P,k =1, ---, M, be the
Gaussian (probability) measure corresponding to the pair mo(¢) +
my (t) and ro(s,t) + re(s,t), and let Py be the one corresponding to mo ()
and ro(s,t). It is assumed that mo(t), mx (1), ro(s,t) and ry(s,t) are such
that the two measures Py and P, are equivalent, i.e. Py = Py, k = 1,
, M.t Denote by H, and a4, &k = 1, ---, M, the hypothesis and
a priori probability that ms(¢) and r(s,t) are the pertinent mean and
covariance functions of [y, ,0 = ¢ = 1}. Let 2 (¢) be the sample function
of {x,,0 = t = 1}. Then, specification of the decision scheme amounts
to dividing the space Q of all sample functions x () into M disjoint sets,
Ar, -+, Ay, so that, if x(t) € A, then H, is to be chosen. Moreover,
the error probability associated with such a division (or a decision
scheme) is given by

Pe = 1 - iakPk(Ak). (7)
k=1

Thus, the problem of optimum reception is to specify in terms of x (¢)
such a division of @ that its associated error probability is minimum over
all possible divisions.

Unlike the previous simple case, the sample (the observable) in this
general case is the sample function x(t) of the Gaussian process {x,;, 0 =
t = 1} instead of the sample sequence x,, - - - , x, of the finite sequence
of Gaussian variables. Thus, the sample space which is to be divided
into M non-overlapping regions, is the function space @ instead of the
n-dimensional sequence space R, . Hence, we no longer have at our

* Note: re(s,l) = Eif(x, — m;‘(?))(.r, —m()), k=1,---, M.
T This corresp()ndq to the assumption of non- smgular detectlon
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disposal the joint density functions px(v1, -+, va), &k = 1, -+, M,
through which the optimum decision scheme is constructed. Neverthe-
less, there exists a certain generalization to this basic approach. Note
from (2) that po(», -+, m) >0, —o < y; < »,i =1, --- ,n. Hence,
(4) can be rewritten as

P, f [Z XAL(”I:"' ) M] polvi, * vy wa)

pO(Vl) cee )
X dyy - dyy, .

Then, the optimum division of R, is specified in terms of ax[ps (21, - -+,
xn)/poay, - -+, xn)] instead of eups(ai, -+, ), though the two are
obviously equivalent. Now, in the general case where the sample space
is Q instead of R, , the likelihood ratio pi(x1, -+, 22)/po(@r, -+ - , Ta)
is replaced by its generalized version dP:/dP,, the Radon-Nikodym
derivative (of P with respect to P,), which is a function of x(¢), and
polvr, <+, va)dw - - - dv, is replaced by dP, . Thus, the error probability
in the general case can be expressed as

Po= 1= [ [ 3 x| arta),

where (A;, -+, Ay) is a nonoverlapping division of Q. Then an opti-
mum division of Q which is analogous to (5), can be specified by
a (dPy/dPy), k = 1, , M, and dP,/dP, can in turn be expressed in

terms of certain functionals of x(t).

II. SUMMARY OF MAIN RESULTS AND DISCUSSIONS

The foundation for solution of the general problem stated in the
preceding section consists of the two following facts:3+4
(1) If two Gaussian measures Py, and P, are equivalent for each k =

1, -+, M, then there exists random variables dP./dP, so that the
optimum division (S,, ---, Su) of the sample space © can be specified
by

). dP; i _dP,- N s .
Sk = {l(t)c kad—Po (z) > aj d-Pg (3)1.7 < kl
dpP &)
k .1
[« 73 d—Pn (-’17) = "11 dP (T):J > k}

(7%) If the integral equations

fﬂ ralst)ge(s) ds = mu(t), 0 < (<1, (9)



RECEPTION OF M-ARY GAUSSIAN SIGNALS 2193
and

11
f f ro(s,) i (up) Iro(0,t) + ri(o,t)] du dv = re(syt),
o Jo (10)

0=st=1,

have a square-integrable solution g:(¢) and a symmetric, square-inte-
grable solution A (s,t) respectively,” then

W () = pd e [ 5 [ [ tee) = mots) = muo) s
fa(t) — molt) — mi(t)] ds dt (11)

+j; [x(t) — mo(t) — tmi()]ge(t) d ]1

for almost all sample functions under all hypotheses Hy , kb =1, --- , M,
where 8, ' = [[i= A ® and A;* > 0,7= 1,2, -- -, are the eigenvalues
of the operators Ry ' (Ry + Ri)R, ™’ “and Ry and R, are integral operators
whose kernels are r,(s,t) and 7 (s,f) respectively.
Then, upon combination of (¢) and (#7), the optimum decision
scheme can be specified as follows:
Choose the minimum value of k& for which 7, is maximum
where

1 pl 1
he = % ff 2(s)hi(s,t)2(t) ds dt +f0 (1) 1) dt o
1l 1
T % f., f[, [mo(s) + me(s)] he(s,t) [mo(t) + mi(t)] ds dt
- _/; [mo(t) 4+ % me(D)] ge(t) dt + log e Bk},

in which f.(t), k = 1, --- , M, are defined by

IIA

1
fe(t) = g:(t) — j; he(st)[mo(s) + mu(s))ds, O0=Zt= 1
Needless to say, the condition for the above decision scheme to be
optimum is the existence of such g;(¢) and hi(s;t), &k = 1, -+, M, as
deseribed in (#7). It should be remarked that the existence of g, (t)

* If such solutions exist, they are necessarily unique. It should be remarked
that square-integrability of h(s,t) is in the sense of

1,1
f f k(s,ds dt < .
0 Jo
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and Ry (s,t) implies that Py and P are equivalent for each k. That is, if
these g (f) and hi(s,t) exist, then none of the Gaussian signals y; ()
can be detected perfectly in the presence of noise n(t).

Physical interpretation of the above optimum decision scheme is
straightforward, at least in principle. Suppose given mq(t), my (t), ro(s,t)
and r(s,t), k = 1, - - -, M, are such that the integral equations (9) and
(10) admit a square-integrable solution g; (¢) and a symmetric, square-
integrable solution # (s,t), then the optimum decision scheme consists
in performing the single and the double integrals involving the received
waveform x(t) as specified by (12), and adding to these integrals the
predetermined constants, the last three terms of (12), and finally choos-
ing the minimum value of & for which the sum of these integrals and the
constants is maximum.

It is instructive to consider the following two special cases:

Case 1 . my(t) = 0, re(s,t) = 0, k=1,---,M.

This is the case of ‘“M-ary sure signals in noise”, a simplified version
of which has already been discussed in the introduction, Here the integral
equation (10) always has a symmetrie, square-integrable solution for
each & = 1, -+, M, namely, the trivial solution:

hk (S,t) = 0.
Turthermore, A, = 1,7 =12, --- ;k =1, --- , M. Thus,
B =1, k=1, ---, M.

Hence, I, of (12) is reduced to
1 1 1
1= [ 2a@ = 2 [ m@a 4 tog o,

provided the square-integrable solutions g (t), k = 1, ---, M, exist
for the integral equations (9)." Note that I’ is the function-space
counterpart to I, of (6) in the sequence-space case. With additional
conditions that

a = '+ = ay and j[') ml(i)gl(t) dt = -+ = j: mu(t)gu(t) di,t

the optimum decision scheme is reduced to choosing the minimum value

* The form of I)’ agrees with the result formally obtained in Ref. 5.

t For exemple, choose mg(l) = Veorve(t), k=1, --- , M, whereoy = 02 = -+
and ¢ (1), ¢(f), - -+ are the eigenvalues and the orthonormahzed e1genfunct10m
of
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of & for which the “correlation integral”
1
fﬂ (D gelt) dt

is maximum.
Case 2 me(t) = 0, me(t) = 0, k=1,---, M.

This is the case commonly termed as “M-ary Gaussian signals in
noise”’. Here, the integral equation (9) always has a square-integrable
solution, namely, the trivial solution:

g () =0, E=1,---,M.

Hence, [} is reduced to
1 .
1" = 3 f f z()he(s,t)x(t) ds dt + log cufy'
0 J0

Thus, the optimum decision scheme consists in choosing the minimum
value of & for which [.” is maximum, provided that the symmetric,
square-integrable solutions hy (s,t), &k = 1, ---, M, of (10) exist.
(Remark)

It is interesting to note that formal substitution of ry(s,t) = 8(s — {)
into (10) yields the result which is consistent with those obtained
previously by Price.®

APPENDIX

Mathematical Supplement

In the preceding, mathematical precision has been somewhat com-
promised for intuitive appeal. It is the purpose of this appendix to
clarify the content of the preceding sections by supplying a brief mathe-
matical summary with pertinent remarks.

Tet @ be the space of all real-valued functions on [0,1] and let Py and
P.,k =1, .-, M, be the Gaussian measures induced by m, and 7,
and by my + my and 7, 4 ry respectively on a o-field generated by the
class of all intervals in Q, where my and »y. , k = 1, ---, M, are real-
valued, continuous functions on [0,1], while ro and r. , &k = 1, --- , M,
are real-valued, symmetric, positive-definite, continuous functions on
[0,1] X [0,1]." Then, without loss of generality, there exists a real,

*prr, k=1, .-+, M, can be only nonnegative-definite.
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separable (with respect to ) and measurable process {x,,0 < ¢ = 1}."
Let @& be the minimal o-field with respect to which every z,, t € [0,1],
is measurable, and Py and P, & = 1, ---, M, be the restrictions on ®
of Py and Py respectively. We assume that %y = Py, k =1, -+, M,
which immediately implies that P; = P; ;47 =1, --- , M, and {z;,0 =
t < 1} is separable with respect to P; , & = 1, ---, M, also. I'or a neces-
sary and sufficient condition for Py, = P, , we cite the following:¥}
lim tr [Re™ (R™ + Re™) ™ = 2 + (R + R) (R™) 7] < =,

1>

lim tr (Re") 7'M\ < oo, (13)

n—-<

where By, B and M,k = 1, -+, M, are n X n-matrices defined
by

(Ro'™)i = rolts, £),
(R'™)is = milt, 43, 4, =1, -+, m,
(M) 55 = my (E)me (L),
and ¢;,% = 1, --- , m, are a finite subset of any sequence dense in [0,1].

Now the two fundamental facts for solution are:

(7) Let dP./dPy,k = 1, ---, M, be the Radon-Nikodym derivatives
of P, with respect to Py, and let (S;, ---, Sy) be the partition of @
defined by

dP, apr;

|
d[)(m)> i qP. ()J<kf

Sk = {wl o

N {w % g5 dP" (w) (w) j> k}

= dP
Then, for any partition (A, - -+, Ay) of £,

M

M
Z aj,-P,';(S_{-) z Z a‘-l)k (1\;;).
k=1 k=1

(#7) TFor each k = 1, --., M, if the integral equations (9) and (10)
admit a square-integrable solution g, and a solution A satistying

1 p1
hi(s,t) = h(t,s), fofn hi(t) ds dt < oo,

* For a detailed justification, see Ref. 4.
t See Ref. 4.
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then
(a) such solutions g; and k. are unique,
(b) ‘Pﬂ = Pkik = 11 e ,ﬂ[)
(e) there exist eigenvalues Y > 0,1 =1,2 ---, of
Ry '(Ro + RRy™
such that II:Z. A converges to B, 0 < B < =, and

(]P;- - 1 L . . - .
P, = B’ exp [2.[‘ fﬂ [ — ma(s) — m()he(s,0)[x: — ma(t) — mu (1)) ds di

\
+ fo [x; — mo(t) — Sme()]ge(t) dt:|, a.e. (Py).

Hence, specification of S;, &k = 1, ---, M, is obtained by combining
(7) and (#7), and the hypothesis in (¢¢) is the condition that such a
partition (S, -+, Su) exists and minimizes (7).
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