Some Stability Results Related to Those
of V. M. Popov*

By 1. W. SANDBERG
(Manuseript received July 15, 1965)

In a recent paper by this writer, some new techniques are described for
obtaining sufficient conditions for the Ls-boundedness and £ -boundedness
of solutions of nonlinear functional equations. In this paper, these tech-
niques are developed further and are used to prove some stability results for
large classes of feedback systems and electrical networks that contain sub-
systems which are not necessarily representable in terms of ordinary dif-
Jerential equations.

I. NOTATION

Let, 3¢ (0, % ) denote the set of real-valued measurable functions of the
real variable ¢ defined on [0, ). Let

&0, =) = {11 eae(0, =), [ 170 P < =
forp = 1 and »p = 2. Let
Lx(0,0) = {f|fe3e(0,),sup | f(t) | < =}.
Let y ¢ (0, ), and define f, by
Ht) = f(t)  foriel0,y]
=0 fort > y
for all f £ 3¢(0,% ), and let
&§(0,2) = {f|fedc(0,=),f, & £2(0,) for all y & (0, )}

[i.e., (0, ) denotes the set of real-valued locally square-integrable
functions defined on [0, « )].

* This paper was presented at the Symposium on Network Theory, Cranfield-
Bedford, England, September, 1965.
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Finally, the integral

[ r0g a

is denoted by (f, , g) (or by (g, f,)) forall f £ £(0,% ), all g £ &(0, ), and
all y £ (0,); and || & || denotes

(f: | h(t) an)L

for all h e £2(0,0).

II. INTRODUCTION

To a considerable extent, Ref. 1 is a summary of certain results of a
recent study by this writer of the input-output properties of a large class
of time-varying nonlinear systems. The properties of a vector nonlinear
Volterra integral equation of the second kind that frequently arises in
the study of physical systems are considered in detail,* and some condi-
tions are presented for the norm-boundedness of solutions of a func-
tional equation of similar type defined on an abstract space. Much of the
material presented in Ref. 1 is drawn from Refs. 2 and 3.

In Ref. 1, some techniques other than those of Refs. 2 and 3 are de-
scribed for obtaining sufficient conditions for the £:-boundedness and
£.-boundedness of solutions of functional equations. In this paper, these
techniques are developed further and are used to prove some stability
results, related to those of V. M. Popov,? for large classes of feedback
systems and electrical networks that contain subsystems which are not
necessarily representable in terms of ordinary differential equations.{

III. THE FEEDBACK SYSTEM AND THE MAIN RESULTS

Consider the system of Fig. 1. We shall restrict our discussion through-
out to cases in which ¢, f, u, r, v, and w denote functions belonging to
§(0, ). The block labeled ¥ represents a memoryless time-invariant
nonlinear element that introduces the constraint w(t) = ¢[v(¢)] for
t= 0.

* The results for the Volterra equation are of direct engineering interest be-
cause of the central role played by a certain “critical-disk” frequency-domain con-
dition. “Critical-disk” frequency-domain conditions were encountered in connection
with related analytical questions in Refs. 4, 5, and 6. Some material related to the
results of Refs. 1, 4, 5, and 6 has been written up by G. Zames.”

+ Some interesting “Popov-like” stability theorems for systems governed by
ordinary differential equations are proved in Refs. 9, 10, and 11.
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Fig. 1 — Nonlinear feedback system.

Assumption 1: ¢ (x) is defined and continuous on (— «,= ), ¢(0) = 0,
and there exist real constants @ > 0 and B < o« such that

a 23 Y(@) 2B

for all x = 0.

The block labeled F represents a (not necessarily linear or time-in-
variant) subsystem that introduces the constraint (Ff)(¢t) = u (¢) for
i = 0.

Assumption 2: The operator F can be written as F.F; with

(1.) F,a (not necessarily linear or time-invariant) mapping of & (0, « )
into itself, and

(2.) F. the linear mapping of & (0, ) into itself defined by the con-
dition:

(Fag) (t) = j: exp I:—f‘ 5(1?)(13:] q(r) dr, =0

for all g £ §(0, % ), in which § is a real measurable function defined
on [0, ) such that there exist real constants ¢; > 0 and ¢; < =
with the properties that ¢, < §(x) = ez forall x £ [0, ).

We note that F.g denotes the convolution of ¢ with the impulse-re-
sponse function of a positive-element parallel resistor-capacitor combina-
tion with time-varying resistance,

In Fig. 1, ¢ denotes an input and r takes into account the effect of
initial conditions at { = 0. The relation between f, g, and r is

g = [+ ¥Y[FFf+ 7] (1)

Equation (1) also governs the behavior of a large class of active time-
varying nonlinear networks. A network analog of the feedback system
of Fig. 1 is shown in Fig. 2, where ¢ denotes a nonlinear conductance.

Assumption 3: r ¢ (0, ), 7 exists on [0, ) and 7 € §(0, = ).
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-u+ (f-q)

o C oL

Fig. 2 — Equivalent network.

1<+

3.1 The Main Results

The principal contributions of this paper are believed to be the tech-
niques used to prove the following results.

Theorem 1: Let Assumptions 1, 2, and 3 be satisfied. Let Fy be such that
there exist a real constant k, a nonnegative constant o, and a positive con-
stant ¢ with the properties that

(@) ¢ < 267 (8er + k)
(4) € (Fg)y, @) 2 k| g, I
e (Fug)y || = ¢l eg, |
for all q € £(0, ) and all y £ (0, ).
Let f £ £(0, ), and let
g = f + ¢[FFf + 7).

Then there exists a positive constant \, depending only on k, o, ¢, , &, B, and
¢, such that

r(0) b
M1 S Lo 1+ 1G4y +[ [ v an]

Jor all y & (0, );

Corollary 1: If the hypotheses of Theorem 1 are satisfied with ¢ = 0, @
g e £2(0,0), and if (- + or) £ £2(0,), then f ¢ £2(0,% ), and there
exists a constant A > 0, depending only on k, ¢, , a, B, and c such that

r(0)

]
N ngn+||r+aru+[ \l’(n)d’n]-
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Remarks: If F, denotes the mapping of &(0,« ) into itself defined by
t
(Fu) (1) = o) + [ o(t = Dulr) dr, 120
(1]

for all u £ &(0,% ), where v, is a real constant and v £ £,(0,% ), then

IRl = [ ol + [ Do 1a] ]

for all y & (0,0 ) and all g £ £(0,% ), and ((Fiq),,q) = k| g, | for all
y e (0,) and all ¢ € §(0, ) provided that

v + ch; e t)dt = k

for all w & (—oo,w).

Corollary 2: If the hypotheses of Corollary 1 are satisfied, if g(t) — 0 as
Il — o, and if r(t) > 0ast— =, then f(t) > 0ast— =.

Corollary 3: If the hypotheses of Theorem 1 are satisfied with ¢ > 0, if
g & £o(0,), if r and i belong lo £.(0, ), and if there exisls a constant
v such that, with F = F.F,,

| (Fq) ()| < ve ™ | €', |

for all g £ 8(0,%) and all y e (0,%), then f & £ (0,%), and there exists
a postiive constant Ay, depending only on k, e, v, &1, , B, and c such that

M sup | (FFuf) (1) | = sup | g(t) | + sup | (7 4 or) (1) |

r(0) i
+ [ "y dn] .

Remarks: Suppose that F, is the mapping of &(0,« ) into itself de-
fined by

(Fue) (t) = vou(t) + j: v(t — 7)ulr) dr, t=0

jot

for all u £ £ (0, = ), where v, is a real constant and ¢*"'v £ £,(0, ) for some

positive constant ¢. Then
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@) = [ ¢ a0
3
+ f v(t _ T)e!a(t—r)eicrqy(r)df} dt
0
1 0 0 ) ] A 2
= > l:vu —|—f v(t)ek“‘"_i'“dt].f g, (De ™ dt| duw
LT J—o 0 0
and
t
I R I S 1B | = [ oy + [ 000 = )by ) dn

s[inl+ [ oo a1 e,

forall y £ (0, ) and all ¢ £ §(0,% ). Thus Assumption (ii) of Theorem 1
is satisfied if

vy + Ref (e T g = k
[}
forall w e (—»,»).
Concerning the key hypothesis of Corollary 3, if F
ping of &(0,% ) into itself defined by

Il

F.F, is the map-

v
==

(Fu)(t) = j: w(t — 7-)u(r)dr, {

f

for all u ¢ &(0,% ), where e"'w & £5(0, ), then

—lgy
e 2!

v
| (F) () | [0y = e, () dr

IIA

1 * t % 1
e ([ Twe P i) 1, |
Jo
for all ¢ € £(0, ) and all y ¢ (0, ).

3.2 Related Results

The results stated above can be extended in many different directions
by exploiting the techniques of Section 4.1. For example, similar results
can be obtained (see Section 4.5) for the case in which the nonlinear
element ¢ of Fig. 1 is replaced by a linear time-varying element that in-
troduces the constraint w(f) = m(t)v(t) for ¢ = 0, in which m(-) is a
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positive bounded measurable function. In that case
g = [+ mF.Ff,

in which§ = ¢ — mr. .

A specific application of the material of Section 3.1 is considered in
the appendix, In particular, the result proved there implies that a rather
general type of (not necessarily lumped) time-invariant physical system
containing a single nonlinear element is “bounded-input bounded-out-
put stable” if the so-called Popov inequality® is satisfied.

Some material related to the content of Theorem 1 can be found in
Ref. 7. Our results differ in many respects from those stated in Ref. 7.
In particular, there the effect of the initial condition function r is not
taken into consideration.

The idea of using an inequality of the form stated in Corollary 3 in
order to establish the boundedness of solutions of nonlinear functional
equations evolved from the techniques of Ref. 3 and was presented in
Ref. 1. This idea has also been considered by G. Zames in very recent
independent unpublished work.

IV. PROOFS

4.1 Proof of Theorem 1

Lemma 1: Suppose that Assumptions 1, 2, and 3 are salisfied. Lel ¢ be a
nonnegative constant. Then

(@ gy + Dran) = (E‘ - "‘3) | (plFagy + 1)y [P

Ié] 2a?

— e G+ o)y || - |

. r(0)
& WRgy + Dy |~ [ vlal dn

Jor all y ¢ (0, ) and all g £ (0, ).

Proof of Lemma 1: Lety e (0, ),let g& &(0, ), and let z = Fag, . Then
2(t) +6(t)z(t) = g,(t) for almost all £ £ (0, ), and, with o & [0, ),

(€ (YFagy + 1)y, a) = (€ Wlz + 7])y, 8(z + 7))
+ e Wz + 1)y, 2+ #)
— (" Wz + 7])y , # + or).
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Thus, since
€ @Wlz + ), 8+ 1))z (/B) | e @z + 7))y |I°

(we have used the fact that x/¢ (x) = 87 for all real & # 0), and (by
the Schwarz inequality)

e @z + )y, 7 + )| = eG4+ o), [-le" Wl + )yl
we have
(€ WP, + 1Dy, 0) Z (@/8) | e @z + 1), |*
— | € G+ o)y |-l € Gz + 7Dy |
+ Wz + 1))y, 2+ ).
With » = z + r, we find that

@ Wle + Do+ B = Wl = [ vlalade

. n(t) v v palt) :
e[ talin | o [ plalane
7(0) 0 0 n(0)

n{w) 7(0)

e’ i Yinldny — , ¥[nldn

y palt)
— afo j; Ylnldne’ dt.

Thus,
. 7(0) v rn(t)
e (Wlnl)y,n) = —f Yinldy — o f f Ylnldne’ dt
0 1] 0
Since
u pnlt) v palt)
< / ol S al
0 =j; j; Ylnldye” dt = Bfo j; ndne’” dt,
and

[ty

2 ot B
ﬁf t)]edéf
-2
207

| e (el I

we have, using the fact that 9(0) = r(0),
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r(0)
€' Wz + 11),,2 +7) = — f; Ylnldn — %_i? [ e (plz + ), |
Upon combining our bounds, we obtain the inequality stated in the

lemma.

Lemma 2: Let A and B denole mappings of &(0,= ) into itself. Let & be a
real constant. Let f £ £(0, ), h = Bf, and g = f + Ah. Then

| (" (AR), , b)) + (€ BN, , fu) | < 1€, ||| 'Ry |
for all y e (0,0).
Proof of Lemma 2: 1t is clear that

(€ (AR), , hy) + (€ (BN, , i) = (" (AR), + €', hy)

= ("', hu)
= (¢"'gs, ¢""'hy)
for all y ¢ (0, ). Therefore, by the Schwarz inequality,
| (" ARy, ) + (€ By S | S ] €, || Ry |
for all y £ (0, ).

Lemma 3: Let A and B dencte mappings of €(0,= ) into itself. Let o be a
real constant. Let [ ¢ §(0,% ), and let ¢ = [ + ABf. Suppose that

(i) there exists a real constant k' such that
(e“(BQ')rf Q) 2 ]"l’ I e%“fh’ “2
Jorall g e £§(0,%) and all y ¢ (0,%)

(77) there exist a positive constant ky , and nonnegative functions k. (y)
and ky(y) such that

€' (AQy,q) = (h — k)| (Ag), | — k()] ¢ (Ag), | — kaly)
for all g € §(0, ) and all y ¢ (0, )

(i7i) there exists a constant ks > 0 such that || e"*(Bq), | = ki || e''q, ||
for all g € £§(0,=) and all y ¢ (0,0).

Then there exists a positive constant \, depending only on k', ky and ky
such that

Ml S, = ey, | + ka(y) + k()]
Jorall y ¢ (0,=).
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Proof of Lemma 3: Let y ¢ (0, ). Using Lemma 2, we have, with h =
Bf,

(€ (AR),, hy) + (€ By, fi) < | (€7 (AR), , ) + (¢ (Bf)y, fu) |
< e gy |1l e hy .
Thus,
(ky — k)| €' (AR), |* — ka(y) || ¥ (AR), |
— ks(y) + k1 P S kel €y (|- 1] €, Il
Using the fact that (Ah), = g, — f,, we have
kIl € gy — 1) I + 2k, €)= k(1&g |
— ko) | € gy = J) | = ka(y) = kol €', |11l €, |-
Therefore,
kel @ gy — 1) P S @) € (@ — £) | + k@) + k[ &g, I
+ @+ k) e'g, |1l €, |
Fa(y) || €' (gy — 1) | + ka)
+ @I |+ k) e @ — 1) 1I-lle g I
F @R | R+ k) € I
Let p = || (g, — /) . Then
kot < [ha(y) + @[k | + ki) [ €y [llo + Ea(y)
+ (2R |+ A+ k) e, |

iIA

lIA

and hence,
2% < (b () + k@ k| k) [ € ]
4 e R () + BT R | R (e ]
+ Al () 4+ @ R | 4 R+ R €, [P
Since (& + b)! = a + b* for any positive constants a and b,
p = I he(y) + k@ k" |+ k) [ e, ]
) + BT TR |+ R+ R (€
< o e (y) 4+ TN R A+ R [ e, ]
F @)+ T@ R |+ R+ k1] e,

2
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Using || €', | = p + | €'g, ||, we see that
e, || S 114k @k |4 k) 4+ T @R |+ k4 k)T €, |
+ kflkz(y) + k1_if-‘a (.TI)*

This proves the lemma.”
Theorem 1 follows at once from Lemmas 1, 2, and 3 with B = F;, A
defined by

Ah = Y[Fh + 1]
forall h e 8(0,%), k' =k, ky = ¢, by = e ' — taBa™ + k, ka(y) =
| €' G + or), ||, and

r(0)
k= [ W dn.

0

4.2 Proof of Corollary 1
Since [l g, || = [lg |l and |G+ or), || = [[7 + o |,

r(0)

M S Lol + 0+ o+ [ [T vonan]

The right-hand side is finite and is independent of y. The conclusion of
the corollary follows at once.
An equally simple argument establishes the following useful result.

Proposition 1: Suppose that the hypotheses of Lemma 3 are satisfied
with ¢ = 0. Let g € £2(0,% ), and let k2(y) and k;(y) be uniformly
bounded on [0,% ). Then f ¢ £:(0, ), and there exists a positive con-
stant A, depending only on k', ky and kg, such that

Ml =gl + sup ka(y) + sup ks ()],

4.3 Proof of Corollary 2
Since [ ¢ £,(0,% ), we have Fif ¢ £2(0,% ). Thus, for¢ = 0,

| (FoFof ) (1) | gj‘; exp [—f 6(.r)d.r:||(F1f)(r)|dr

IIA

t
f e—rl(f—ﬂ | (F1f)('r) | dT
0

* [or results directly related to Lemmas 2 and 3, see Section 5.3 of Ref. 1.
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in which the last integral approaches zero as t — « (see the proof of
Theorem 6 of Ref. 2). Hence,
gt) — WFFf+ 1)) —0 as (— .
4.4 Proof of Corollary 3

jou

Since || ', | < o ‘e sup lg(t) |, and

| &G + or), || < o e sup | G+ or)(t) |,
tz
we have

[EENDG) | ST sup |90 + o sup |G+ 800 |

+ [ orw) vff(n)dn]j

for all y € (0, ). This establishes the last inequality of the corollary.
Since

[f@t)] = sup | g (t) | + s;-ggl WFFf + 1)) (@) |,
it is evident that f £ £, (0, ).

4.5 Proof of Proposition 2

As was stated in Section 3.2, results similar to those of Section 3.1 can
be obtained for the case in which the nonlinear element ¢ in Fig. 1 is
replaced by a linear time-varying element that introduces the constraint
w(t) = m(t)v(t) fort = 0, in which m(-) is a positive bounded function.
For that case the proposition that plays the role of Lemma 1 is

Proposition 2: Let m(-) denote a positive bounded measurable function
defined on [0, ). Let 7 () exist on [0, ) with 7 ¢ £,(0,), and let
F. be as defined in Assumption 2. Let ¢ be a real constant. Then

@m(Ba)y,0) 2 int [ MO =EMD = dom D |y gty g, g

for all 4 £ (0,c) and all g € (0, ).

Proof of Proposition 2: Let z = Faq, with y € (0,% ). Then
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(€"'m(Faq),,q) = (¢"'mz, , 2 + 82)

(e"'mz, , 82) + (¢"'maz, , &),

and

(@mzy, ) = [ mOe 0O
0

= Im(t)e " 2(0)2 ) — 1 f [i(t) + em ()] 2(8)* dt.
0

Therefore, since z(0) = 0,
(€"'m(Faq)y , q) = dm(y)e™ z(y)*

+f m()a(t) — dm(t) — tom(1)]e(t)* dt
This establishes Proposition 2.

Comment:

The case in which Fy is the identity operator, m (- ) is a positive bounded
measurable function, and #:(¢) does not necessarily exist, is also of some
interest.”” Then

(€"'m(Fag)y , q) Z inf m()™" || 'm(Fog), |
120
for all y ¢ (0, ) and all g ¢ £(0,).

V. APPENDIX

As a specific application of the material of Section 3.1, we shall prove
the following result.

Theorem 2: Let  satisfy Assumption 1 of Section I11. Let g and r belong
to §(0,= ). Let w and w belong to £,(0,%) with w(t) — 0 as { — .
Suppose that there exists a positive constant ¢ such that

inf Re [(1 + &iw)W (iw) + 87'] > 0,

I=w<w

in which W (iw) = f w(l)e ™ dl. Let [ & £(0,0) satisfy

0

g(t) = f(1) + ¢ Uﬂ w(t — 7)f(r)dr + r(t)], tz0
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Then
(1.) ifge £:(0,) N £.(0,%) withg(t) = 0asl— =,
ifre£(0,2) N £.(0,2) withr(t) >0ast— =,
and if # & £:(0,), then f & £2(0,%) N £.(0,),
there exisls a positive constant \, depending only on &, e, B, and w.
such that

1

r(0) H
M s gl + 16+ a1+ [ vwa],

and f(i) > 0ast— =
(2.) if there exists a posilive constant p such that
we £4(0,0) N £(0,%) and e e £,(0, ) with
ew(t) > 0ast— =, if g, r, and i belong to
£.(0,%), then f ¢ £.(0,% ), and there exisls a positive constani
M1 , depending only on p, £, a, 8, and w such that

A1 sup [ﬂ w(t — r)f(r)dr

t=0

r(0)

< sup lg(t) | + ?gll?l (i 4+ £ () | +[ | d/(n)dn]z-

Proof of Theorem 2:
Let F be defined by

(Fg)(t) = j[: w(t — 7v)g{7)dr, t= 0.

Then F = F,F,, where F, is as defined in Assumption 2 of Section IIT
with 8(¢) = £, and

(Fa) (1) = f Wt — ) + £ w (L — lg(r)dr

%

+ ’w(O-I-)q(i), t= 0.

Let
¢ = inf Re[(l 4 &)W (i) + 87

0Zw o

Then
(F), )28 ¢ =8 lal

for all g £ £(0, ) and all y & (0, ) [see the remark following Corollary
1]. Thus conditions (i) and (ii) of Theorem 1 are satisfied for ¢ = 0.
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Therefore, by Corollary 1, the hypotheses of (i) of Theorem 2 imply
that f & £2(0,% ) and that || f || is bounded as indicated. By Corollary 2,
we have f(t) — 0 as ¢ — . Further, since f £ £,(0, ), we have F,f ¢
£:(0,% ), and, by the Schwarz inequality, FoF,f & £.(0,= ). Therefore
g — VEf + 1] € £2(0,%).

Suppose now that the hypotheses of (ii) are satisfied. Then since
both | W(iw — 2) — W(iw) | and | (fe — 2)W (iw — ) — twlW (iw) |
approach zero uniformly in w as x — 0+, there exists a positive con-
stant ¢ such that ¢ < min [2p,a’t (8¢)7'] and

inf Re {[1 + £(iw — 3a)]W (i — %0) + 7'} > 3¢

NSw<=

Hence,

(@ (Fig)y, ) 2 £ GE = 87) [ €, |
for all y £ (0, ) and all g £ §(0, ). Thus, by Corollary 3 and the re-
marks following Corollary 3, we have f ¢ £.(0,» ) with

fnt w(t — 7)f(z)dr

sup
tz0

hounded as stated in Theorem 2.

Comments:

Our assumption that f ¢ §(0, ) is satisfied if [ is locally (Lebesgue)
integrable on (0, ), since then (under the stated assumptions on g,
¢, w, and r):

t
f w(t — r)f(7)dr
0
is continuous on [0, % ) and hence,
t
g — ¥ I:f w(t — 7)f(s)dr + 1‘]58(0, w ).
0

A result closely related to the first part of Theorem 2 has been proved
by Desoer.!?
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