Growth of Oscillations of a Ray about

the Irregularly Wavy Axis of
a Lens Light Guide

By D. W. BERREMAN
(Manuseript received July 20, 1965)

If a ray is launched in a divection coincident with the axis of a lens light
quide whose axis is somewhat wavy, the ray will soon begin lo oscillate aboul
the axis. The amplitude of these oscillations will grow in proportion to the
square root of the product of the distance from the origin and the natural
wave number of the oscillations, on the average. The growth rate is propor-
tional to the amplitude of the components of the spectrum of the waves in
the guide axis in the immediate vicinity of the natural wave nwmber of the
ray oscillations. The rest of the spectrum of waves in the guide does not
contribute appreciably to the growth of ray oscillations after the first few
oscillations. A tractable analytic expression with four adjustable parameters
1s used to approxvimate the wave spectrum of the shape of the guide axis. The
expression is used to illustrale the relations between various factors such as
mechanical stiffness of the guide, spectrum of external forces, over-all am-
plitude of waves in the guide, elc., and the rale of growth of the ray oscilla-
tions. Estimates of the order of magnitude of the oscillation growth rate in
some realistic models of light guides are made from these relations.

I. INTRODUCTION

The possibility of guiding a beam of light over a long distance through
a series of lenses or a continuous lens-like medium has recently received
considerable attention because such a system might be useful in com-
munication. One problem that has only recently come under investiga-
tion is the statistical growth rate of the oscillation of an initially paraxial
ray about the axis of such a guide when the axis is crooked in a some-
what random but partially coherent way.!* In this paper I will show
that the ray will oscillate about the axis with ever-increasing amplitude,
on the average.

The oscillations of the ray about the axis are analogous to the os-
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cillations of an undamped mechanical oscillator subject to a particular
steady ‘“noise spectrum” of forces. Spherical aberration in the guide
would be analogous to anharmonicity in the mechanical oseillator,
Distance in the optical problem corresponds to time in the mechanical
problem.

The dominant term in the expression for the amplitude of ray oscilla-
tions is proportional to the square root of the distance from the origin,
if the amount and spectral form of the crookedness is constant and if
the lenses have no spherical aberration. The oscillations of the ray about
the axis have a natural wave number, k.. The growth rate of ray os-
cillations is also proportional to the square root of k.. The third factor
governing the growth rate is the amount of crookedness of the axis. A
major portion of this paper is devoted to a mathematical description of
the amount of crookedness of the axis of the guide. Only those compo-
nents of the crookedness having approximately the same wave number
as the natural oscillations of the beam have an appreciable influence on
the growth of the oscillations beyond the first few oscillations.

Some numerical examples of growth rates of oscillations in guides
having reasonable amounts of crookedness or waviness are given at the
end of the paper and in Table I. The amount of erookedness in the
examples was obtained by estimating the variation of forces on a pipe of
reasonable stiffness lying on a rough surface. See Iig. 1. The pipe was
assumed to be relatively straight before the irregular forces due to the
rough surface were applied. This specific method of estimating crooked-
ness does not limit the generality of the relations between the crooked-
ness spectrum and the growth rate of the oscillations.

The results indicate that, unless such a light guide could be kept ex-
tremely straight or free of waves on a scale approximating the wave-
length of natural oscillations of the beam, the beam would have to be
recentered at frequent intervals® or the guide would have to have a very
large aperture to avoid vignetting of an initially paraxial ray.

1I. EQUATIONS OF THE RAY TRAJECTORY

In order to keep the analysis simple, T will suppose that the axis of
the guide is wavy only in one dimension, y. The distance from a straight

* There is no physical reason why we could not redirect the beam down the axis
of the guide at intervals with almost no loss of beam energy. For example, the
position and direetion of the main beam could be located at one point by reflect-
ing a very small fraction of it into a photoelectrie analyzing device with a very
weakly refleeting mirror. The analvzing device could be used to control some
prisms which would change the direction and displacement of the beam. The
analyzing deviee could be a simple null device if the beam passed through the
prisms shortly before reaching the analyzer. L. U. Kibler of Bell Telephone
Laboratories deseribed this idea in an unpublished memorandum in March, 1962.
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Fig. 1 — A guide on a rough surface that produces an irregular distribution
of forces with a characteristic separation Ap. This results in waves with a charac-
teristic length X, .

coordinate axis, z, to the axis of the guide will be called y(z) and the
distance from the axis of the guide to the ray or any point in the guide
will be called 4(z). See Fig. 2.

For the case of the continuous lens-like medium, suppose that the
refractive index can be described as a function only of distance, 3, from
the axis of the guide. A medium free of spherical aberration will be
defined as one obeying the relation

n(8) = ngexp (— C8*/2) = ny(l — C8°/2). (1)

(' is the specific convergence’ of the guide, which is approximately the
convergence, in diopters or reciprocal meters of a one-meter segment of
the guide if that convergence is small compared to one diopter.

The equation of the trajectory of a ray in a medium of slowly, smoothly
varying isotropic refractive index is*

d dr
7 (n d_s) = grad n. (2)

In this equation ds is an element of length along the path of the ray,
r is the vector position of a point on the ray and n is the (isotropic)
refractive index at that point.

LENS GUIDE

CONTINUOUS GUIDE

.
/ LIGHT RAY _§(x) _-—"

L/’_A_XTS_O_F_ r
GUIDE

ylx)
..-'-‘-‘—-_-——'
I—.‘c—:- l—a:n=nL—>

Fig. 2 — Symbols used to describe a continuous guide (left) and a thin lens
guide (right).
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If the slope of the ray, dé/dx, and the slope of the guide axis, dy/dz,
both remain small, then (1) and (2) may be combined to give the fol-
lowing differential equation for the trajectory of the ray,

d’s , d’y
) + 05 = — L (3)
This is like the familiar forced, undamped harmonie oscillator equation.

For a guide composed of a series of thin, aberration-free lenses of
equal convergence, ¢, separated by a distance L, we can obtain the fol-
lowing analogous difference equation for the trajectory from simple
geometrical construction.

Fou 4 802) — b0+ T b0 = — Gl +90) — ) (&)

6, is the displacement of the ray from the axis of the nth lens and yn,
is the displacement of that lens axis from the straight z-coordinate axis.
(See Fig. 2.) Note that the product nl is equal to x. Hence, once we
define a shape, y(z), for the guide axis, the right-hand side of either (3)
or (4) can be written down.

111, SOLUTIONS IN TERMS OF GUIDE SHAPE

Suppose we pretend that the shape of the guide is periodic with a
length, A, for the periodicity. The path of the axis of the pipe can be
represented by the Fourier series:

y(z) = 3 Y(?Aﬂ) sin (2%3“3 - w)- (5)

=1

The phase factor ¢; is used to avoid writing cosine terms in the series.
We can avoid a constant term (7 = 0) by proper choice of the position
y = 0. Making the substitution k; = 2xj/A, we may write

y) = 2 Y (k;) sin (kjz — ¢;). (6)

3.1 The Case of a Continuous Lens-Like Medium

By substituting a trial solution of the form

L]

§(x) = 2 A(k;)sin (ke — ¢;) + B(k;)sin (v/Cz — &) (7)

=1



2122 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1965

into (3), along with the shape spectrum (6), we obtain the results

A(k;) = % and  ¢; = ¢;. (8)
If we add the boundary conditions

5(0) = (da/dx)e—p = 0 9)

we find that
B(k;) = —A(k;) sin p;/sin §; (10)

where
cot & = JTC—j—cot @i - (11)
AC T

Note that 4/C is the natural angular wave number of oscillations of
the ray about the axis of the guide if the guide is straight.
Inserting these results into (7) we finally obtain

Sl h ks
é(x) = ,; % [cos ©; (sin kix — \/_J(f' sin \/Ca:) -

— sin ¢;(cos k;x — cos \/E:c):l .

At this point in the derivation we introduce the random, statistical
character of the problem by asserting that the phase factors, ¢;, are
random. Then we can no longer specify 3 (z) or &(z) but we can specify
a mean square value of each and relate one to the other. Since the mean
square value of a sinusoidal function is half the square of its absolute
value, we can rewrite (5) as

8

W)=y =32 Yk (13)

=1

Similarly, from (12) we obtain
2y wy S ka(kj))z[(. ki a)z
(8" (x)) = o (x) = QZ(W sin kja Vo sn Oz

(14)
+ (cos kjxz — cos \/533)2].

If we make the substitution
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and do quite a lot of algebra and trigonometry, we find that (14) can
be written in the following form: (Remember that e; ranges from —1 to
+ )

2 onr o (1 4 )[4 sin®(e,4/Ca/2)
‘; Y (Ej) (2 + é,‘)z[ Ej2 (16)
4 si11(e,\/_6’$/2) _sin /Cu .sin 24/Cx o+ sin’ \/ar:l

€j €j

Fa) =,

+

If the length, A, of the periodicity of the shape of the guide is allowed
to become very large, we may replace the summation signs in (13) and
(16) by integrations over the variable ¢, and we may drop the index j.

If €'Y*(e) remains finite as e approaches infinity, then large values
of e will not cause the integral for (3 (x))* to diverge. (Slightly weaker
conditions could be applied.)

Tor large values of x, the first of the four terms in square brackets in
(16) will dominate if ¥ (¢ = 0) is nonzero. Thus we obtain the following
result

(6) (1 + e)“_flsin2 e/ Cx/2 de

g 1r°
8 (x) %—f ¥* -
2J 2 €)? e
(2 +¢) (17)

T
— -

3 ¢ Y?(e = 0) for large x.

The proper normalization of the function Y (e) can be obtained from
the following relation:

= 1 [%
7 =1 [ viode (18)

(Compare (13). Tt is assumed that the relative spectral distribution
for ¥ (¢) is known, and we may also assume that the mean square value
of i is known. See Section V for examples.)

3.2 The Case of a Series of Lenses

An exactly analogous but slightly more complicated procedure can
be followed for the case of a series of lenses. We can keep the same
funetion, (6), to deseribe the displacements of the lens centers if we let
a be an integral multiple, n, of the lens separation, L. (See Fig. 2.) Equa-
tion (7) for the ray trajectory may similarly be retained with the same
expression replacing a.

However, when (7) is substituted into (4) rather than (3), we obtain
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a somewhat different expression for A (k;). The phase factors ¥, are
the same.

cos kL)Y (k;)
i‘ — (1 — cos kL)

Alk;) = and ¥ = ;. (8"

We use boundary conditions analogous to (9),
dn=0)=8n=1)=0 9"

and we obtain expressions for B and £, :

Blk;) = — Alk;) T (10)

and

cos kL. — cos k. L + sin kL cot ¢;

’
sin kL ar)

cot & =

In (11"), k. is the natural angular wave number of oscillations of the
ray about the axis, corresponding to 4/C in the case of a continuous
lens. In this case it is the first positive real solution to the following
equation, if such a solution exists.

coslsL—l—%L (19)
The denominator in (8') may be written cos k;L. — cos k.L. (When
¢, > 4 the lenses are separated by more than four times their focal
length and they will not guide the beam.)

The analog of (12) would be like (12) except that terms from (8",
(11") and (19) replace the terms from (8) and (11). It is not worth-
while to write it out here.

Equation 19 has an infinite number of real roots if ¢ < 4. We have
chosen to deseribe the ray trajectory using only the first root, but we
cannot ignore the rest entirely. If the pipe containing the lenses has an
appreciable amplitude of waviness near one or more of these higher
wave-number roots, the ray oscillations will grow because the lenses
will be displaced as if there were additional amplitude in the funda-
mental, long wave-length component. These higher roots correspond to
waves in the pipe with length less than 2L or twice the lens separation.
In choosing the lowest root for k. we are following Brillouin’s example’
and restricting values of k to the “first Brillouin zone” of the periodic
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array of lenses. Remember that k; = 2xj/A where A is the length of
the periodicity in the shape of the guide, which will ultimately be made
very large. We can rewrite (6) in the following form in order to limit
the range of k; from zero to /L.

A/2L e

y(nL) = ; hz:;) [Y(? + A',-) sin (kinL + on,j.1)

+Y (2”“‘]+—1’ - fr-j) sin (kL + m.j.g)]

(6")

(nL is the x coordinate of lens number n. See Fig. 2.) Then the analog of
(13) may be written as

= AINEE & [ ef2nh | af2x(h + 1)
’=§-=M§,[Y I Tk "”(ﬁ—_“ ,
(13)

When written in terms of S rather than ¥, the analog of (14) looks

like this:
A/2L 2
1 — cos k;L
Sz '] :
; (k;) (cos kL — cos kuL)

-[(qin bor — M}_y
B sin el

+ (cos kjx — cos k.x

8 (r) =

[T

(14")

sin kv
sin kL

(cos k.L. — cos L‘;L))-:I .

It is easy to show yourself that if L approaches zero then k. — /¢
and (14") approaches (14).
Next, we make the substitution

g =21 (15")

in (14") and neglect terms of order (ejk.L)* or smaller in the result.
The neglect of these terms is justified because the result we are seeking,
as before, turns out to depend only on extremely small values of e
when x is large. The result of this and a large amount of manipulation
is the analog of (16) which follows:
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1R 8 (e) (1 — cos Ich)
2 3 k2L2 \1 4+ cos kL

. 2 i
.|:4 sin (Ejkc.’b/Z) kL (cot k L(

€ fr

Sl
. kcL
— 2sinka) — tan kL |1 + cos 5 2 cos k.x

1 (1 — coskL) Afs (e) (u(e, ’i)

= 2k212 \1 + cos k.L €

As before, we let A go to infinity and change the sum to an integral.

R | 1 — cos k.L f”“"”_l 2 (u(e) v
¥ (z) & 2k 2L? (1 + cos ksL) 1 5°(e) & € de

Although the integral of v/e has a logarithmic divergence at e = 0,
the divergent part is an odd function of ¢ and the integrand over a small
finite range around zero is small. The domumnt term in the integration,
for large values of x, comes from the u(e)/€ part. Thus we find that
for large x

& (2) ~

(16")

5200 AL 1 — cos kL f(r/k,r,)—l . 4 sin®(ekuz/2)
0 (.1) ~ 2’1'-52]_,2 (1 + cos kcL) S (E) ____ez___ d (17")
1 (1 —coskL e
T 2k2L (1 + cos kcL) 2k (e = 0)

where, from (13'),

2 o of 2m of 27
S(e=0)=ZY(Ih—|—kc)+Y(r(h—l—l)—k,,).

Again, when L — 0 we obtain the same result as from (17).

IV. THE SHAPE OF THE AXIS OF THE GUIDE

We might arbitrarily guess a spectral distribution for the Fourier
components, Y (k), of the shape of the somewhat irregular pipe. It may
be somewhat more meaningful, however, to guess a spectrum of forces
on the pipe and to obtain the shape from that. The latter procedure
enables us to see the effect of stiffness of the pipe, and of the spectrum
of applied forces, on its shape. For simplicity we will assume that the
pipe would be perfectly straight, or at least relatively very straight, in
the absence of the forces that are to be applied to it.

Suppose the pipe has a modulus of rigidity ¢ = EI where E is Young’s
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modulus and 7 is the geometric second moment of a cross section of the
pipe about a transverse axis. The curvature of the pipe is related to
the local moment of torque, M (), through the equation®

@ _ M(;I‘)
A

) (20)

The second derivative of the torque moment is the transverse force
per unit length, p, applied to the pipe, so that

‘'y(e) 1
WD = L. (21)

If the net force per unit length on the pipe is represented by the expres-
sion

p@) = X Plky) sin (bt — o), (22)

we obtain the following expression for the Fourier transform of the shape
of the pipe by comparing (6), (21) and (22):

P(k)

ke

Y(k) = (23)

A convenient analytic expression that can be used to approximate a
reasonable spectrum of forees is the following, where Py, ky, m and n
are adjustable parameters.

P(k) = Po((k/ke)"/ (1 4+ (k/ke)™))". (24)
In this case (23) becomes
Y (k) = (Po/ke'a) ((k/ke)" ™/ (1 4+ (k/ke)™))". (23")

Curves of ¥ and P as functions of k/k, are shown in Fig. 3 for the spe-
cific values m = 11 and n = 8. The factors outside the square roots are
omitted. (If necessary we could use a sum of several such expressions
with different parameters in each without greatly complicating the
results, but we shall restrict the analysis to one.)

We will make use of the following formula several times in the follow-
ing analysis.”

K x .
fn T+ = . ((r T 1)1)' (25)

S

Let K represent the ratio k/ky .
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1.0
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AN
AN

0.4

RELATIVE AMPLITUDE

i k A\ \“*--____
Ker c
t ko /( k_: \ I
0 |
o 0.5 1.0 L5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k/ko

Fig. 3 — Relative amplitudes of sinusoidal components of forces applied to
the guide (P), and of the shape of the pipe (¥), as a function of relative wave
number, k/ko . kei/ko i8 the ratio of k. to ko used in the examples on the left side of
Table I, while k.s/ko is the ratio used in the examples on the right.

The mean square value of P(K) is
=2_1f°°2 _P 7 K"
p=35 PY(K)K = 5, 1+K’"dK
N (26)
— 7I’P0
9m sin ((n + Dw/m)’

The mean square displacement on the guide axis from the straight x
axisis (ef. (23))

O O 1 Po”f‘” K"
7 _§fﬂ Y(K)dK_ﬁ(m) et

N (27)
- (ﬂ) dmsin ((n — 7)w/m)

Hence 7 and  are related through the expression

- /‘/sin (n £ 1)"'r/sin (= Thx, (28)

We will also define characteristic wavelengths, A, and A, for p(x)
and y (z) since they are more tangible than the parameter k. The char-
acteristic wavelengths will be taken as 2r divided by the angular wave
number corresponding to the “center of gravity” of the integrands of

=
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(26) and (27). Thus we obtain
_ 2z

* K" N
k”_Efo l-I—K"‘dK/jc; T+ KK )
_ 2rsin ((n + 2)m/m)
" ko sin ((n + 1)x/m)
and similarly
O sin ———(n :n 6)x
M= ke . (n—7T)r’ (30)
sin ~———=

For very narrow force spectra A, and A, are both equal to 2x/ky, but
when the spectra are broad, A\, tends to be larger than )\, , since short
wavelength forece components are unable to bend the stiff pipe much. See
Fig. 1.

V. NUMERICAL ILLUSTRATION

The following numerical illustration serves mainly to show how the
preceding results could be used. The parameters chosen are the ones
that one is likely to know in a real situation. The actual numbers might
vary considerably, but it is not hard to estimate how much changes in
various parameters would affect the results. What is most important is
to know the order of magnitude of the effects using reasonable param-
eters. The following example forms the left half of Table I.

5.1 Shape of the Guide Axis

Let us suppose we have a guide composed of a series of lenses or a
lens-like medium perfectly centered in a cylindrical pipe. We will sup-
pose that curvature of the pipe axis is due largely to strain from ex-
ternally applied forces. FFor purposes of illustration, we will suppose
that the main force on the pipe is due to its own weight. We shall sup-
pose that it is lying on an irregular bed which supports the weight of
the pipe at more or less random intervals averaging about A, meters
apart. See Fig. 1. (The spread in the intervals is determined by m and
nin (24).)

Suppose the pipe is made of steel whose density is p = 7.8
kg/meter’ and whose Young's modulus of rigidity is £ = 2.0
newtons/meter’.

3

X 10
x 10°
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Let the pipe be 10 em OD and 9 ¢em ID. Let the distance X\, be one
meter.

Let us use the smallest integer values of m and » that are consistent
with the conditions on (25) for all the applications of that equation
(see (26) to (29)). We find that these values are m = 11 and n = 8.
(This gives a rather broad spectrum of wavelengths of applied force.
See Fig. 3. Larger values would give narrower spectra, which would be
appropriate if the pipe were supported at regular intervals.)

Using these numbers in (29) we find that ky = 3.27 meters .

Equation (30) then gives A\, = 3.G8 meters.

The stiffuness of a cylindrical pipe is related to its OD and ID through
the equation

m™ 4 4 P
o= aE((OD) — (ID)H (31)

which gives ¢ = 3.38 X 10" newton meters® for our example.

We shall assume for simplicity that the mean square amplitude of
force variations, 7, is equal to the linear density of the pipe times the
gravity constant, which is correct to within a small numerical factor
when the weight of the pipe determines all the forces. We thus obtain

P = pg((OD)* — (ID)*) =/4. (32)

For our pipe we get p = 114 newtons/meter.

Equation (28) then gives us 7 = 0.407 X 10~ meters.

We shall need to know P, when we compute the beam oscillation
growth rate. Equation (26) gives us Py = 222 newtons/meter.

5.2 Beam Oscillation Growth Rate

Let us first suppose we have a continuous lens-like guide with spe-
cifie convergence C' and the shape defined in part A of this section. We
use (23') to evaluate ¥ at k = /€ = 0.5 meters ', which is the value
at € = 0. If we let ¢ = 0.25 diopters per meter, we get ¥ (1/C) =
0.572 X 10~* meters. The ratio /C/ko is 0.153 in this example. 1t is
labeled k.i/ko on Fig. 3. -

Inserting the value of ¥ into (17) gives 8(x) = +/z-(0.358 X 1079
meters. In 100 meters, the root mean square amplitude of oscillation is
3.58 mm and in 10 kilometers it is 3.58 em.

Next let us consider a series of thin lenses that are separated by twice
their individual focal lengths, (L = 2/¢), and that give the same
angular wave number for ray oscillations as in the preceding example,
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ke = 0.5 meters ", From (19) we find that cos kL. = 0, which gives
L = = or 3.14 meters and ¢ = 2/7 or 0.637 diopters.

Now we evaluate the sum for S*(e = 0) in (17'), using (23'), as in
the first example. The first term of the sum is equal to V* at 0.5 meters ™,
whose square root we already evaluated in the first example. The
next term is ¥* evaluated at 1.5 meters™, the next at 2.5 meters ', ete.
The terms rapidly diminish in size. Equation (17') gives § = +/z-
(0.830 X 10™") meters, which is not much larger than the result for the
continuous lens-like medium with the same ray oscillation wave num-
ber.

The preceding examples illustrate the fact that the results are essen-
tially the same for a series of lenses or a continuous lens-like medium of
equal k. when the characteristic wavelength, A, , of irregularities in the
pipe axis is longer than the separation of the lenses and when the lens
separation is not too near to the limiting value of four focal lengths.

The input parameters and results of the preceding examples are listed
on the left side of Table I.

The right side of Table I shows what happens when the characteristic
distance between bumps on the ground, A, , is increased to 4 meters,
keeping other parameters the same. There is a catastrophic inerease in
rate of growth of beam oscillations because the root mean square am-
plitude of waves in the pipe is greatly increased while the value of ¥ at
k. remains near its maximum. See Fig. 3. The ratio v/C/ko or k./ke in
these examples is 0.611 and is labeled k./kq on Fig. 3.

A short FORTRAN computer program is available upon request to
anyone who may wish to enlarge on Table I using other values of the
input parameters.

VI. CONCLUSIONS

The results are strongly dependent on some of the input parameters,
but we hope the examples represent the general magnitude of the factors
one might have to work with if such a light guide were built. By using
a suitably spaced periodic set of supports for the guide, we could prob-
ably make Y? or 8? very small at /€ or k.. The peak or peaks in the
function Y*(k) or S*(k) could lie elsewhere. Thus, the contribution to
wave growth due to forces on the pipe might be considerably reduced.

The computations did not consider waves in the pipe axis due to
tolerance limits that would arise in manufacture of the guide or in linking
sections, but these waves could obviously be incorporated as an addi-
tional term in Y?(k) if they could be estimated or measured.
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It seems probable that the beam would have to be recentered at

rather frequent intervals along the guide unless the aperture were very
large or the pipe were extremely stiff and straight.
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