Properties of Periodic Gas Lenses

By D. MARCUSE
(Manuseript received June 18, 1965)

Gas lenses are being considered as focusing elements of beam-waveguides.
Since very many lenses are needed to form a long waveguide, it is reasonable
to consider periodic arrangements of gas lenses. Such periodic structures
might operate with a gas stream which flows through all of the lenses in
succession. A periodic temperature distribution in the gas results which is
different from that of single gas lenses considered in two earlier papers®+*

This paper analyses the ray optics properties, such as focal length and
principal surfaces of the gas lenses, of two types of alternaling gradient
focusing systems. One system consists simply of a succession of hot and
cold tubes. The other system resulls from the first by insertion of heat in-
sulating tubes of equal length between the hot and cold tubes.

I. INTRODUCTION

The beam-waveguide described by Goubau! appears as a promising
device to transmit light over long distances. However, to reduce the
power loss due to absorption and reflection, which is inevitable with
lenses made of solid dielectrics, gas lenses have been proposed??® instead
of the solid lenses used by Goubau.

Two earlier papers?* discussed the properties of a particular type of
gas lens. This tubular gas lens consists of a warm tube into which a
cooler gas is blown. The thermal gradients in the gas lead to density
gradients which give the structure the properties of a positive lens.

Ref. 4 discusses the focal length and principal surface of this gas lens
for the case that the gas enters the lens at a constant temperature. It
was shown that this device, when operated under optimum conditions,
acted as an optically rather thin lens with moderate lens distortions.

The present paper extends the earlier analysis in several ways. We
consider periodic lens structures. Such a structure results if hot and cold
tubes are alternated to form a long, periodic structure. The gas is heated
and cooled periodically giving rise to periodically arranged positive and
negative lenses. A periodic structure of this type represents an alter-
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nating gradient focusing system.’ In general, the temperature of the gas
entering the hot or cold tubes will not be constant over the cross section
of the tube so that the earlier results are no longer applicable. The gas
temperature in the periodic structure will also be periodic and will de-
pend on the temperatures of the hot and cold tubes as well as on the flow
velocity.

Tt is our aim to compute the temperature distribution in such periodic
structures and use it to determine the properties of the equivalent
lenses which deseribe the ray optics of the alternating gradient focusing
systems.

The equivalent lenses are rather complicated. They are neither op-
tically thin nor free of distortions. Further investigations are required
to determine the guidance properties of an alternating gradient focusing
system with imperfect lenses of this type.

We discuss two types of periodic gas lens systems. In one case we
assume that hot and cold tubes of equal length are directly adjacent to
each other. The other type is an alternating gradient beam-waveguide
which consists of hot and cold tubes which are separated by tube sec-
tions made of an ideally heat insulating material. For simplicity it is
assumed that the insulating sections are as long as the hot and cold
tubes. The assumption of a perfectly heat insulating material is an over-
idealization since hardly any material conducts heat more poorly than
gases. It is intended as an approximation to the real situation of im-
perfect heat insulators.

In the insulating tube sections, the gas has a chance to equalize its
temperature. As it does so rather rapidly, we again have the case of hot
and cold tubes being fed by an input gas at a constant temperature.
However, the insulating sections act also as lenses in the same sense as
the hot or cold tubes by which they are preceeded. Therefore, it is not
surprising that some improvement of efficiency results if heat insulating
tube sections are used to separate the hot and cold tubes. But this ad-
vantage is not very striking; and, since this analysis assumes ideally
insulating tubes, it is not certain how much of a real advantage can be
gained by using this construction. Considerably more experience is
needed before a decision can be made.

This analysis again neglects all convection effects in the gas lenses.

To be able to distinguish which of the two structures is being dis-
cussed we will call the structure using hot and cold tubes without heat
insulating tube sections the simple periodic structure while the second
case which includes insulating sections will be called the extended periodic
structure.
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II. RAY TRACING

Before entering into a discussion of the simple and extended periodie
structures, the ray tracing technique used to determine the focal length
and principal surface of the lenses will be explained.

The trajectory of the light ray in the gas lens is given by the ray

equation®
d dr
(—E—S-(nd-—s)—gradn (1)
r = the position vector leading from an arbitrary origin to points
on the ray.

Il

index of refraction.
length coordinate measured along the ray.

S

We limit ourselves to rays which are very nearly parallel to the axis
of the structure which is used as the z-coordinate so that we can replace
s by z." Assuming angular symmetry it is sufficient to consider the vector
component in radial direction r perpendicular to the z-axis. Finally, we
neglect the term

(on/0z) (dr/dz)

because dr/dz << 1 for rays which are nearly parallel to the z-axis and
also because the variation of n in the z-direction will generally be smaller
than that in the r-direction.

(n/oz) < (an/ar).
With these assumptions we obtain from (1)
dr 1an
—_— = — — - 2
dz* nmor (2)
However, since we are only interested in gases where n — 1 <« 1 we can
safely write

d'r _ an )

Je = o (3)

The index of refraction depends on temperature in the following way:
T

n—1=(n0—1)?" (4)

T, is the absolute temperature at which n, is measured while 7' is the

* The error caused by this approximation is estimated in Ref. 4.
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absolute temperature for which we want to determine n. It follows
from (4) that

an T(] 6‘T
M (e — 1) 25,
ar (no ) T or
The value of the absolute temperature varies only slightly through-
out the gas so that 7 can be replaced by a suitable average temperature.
It is convenient to choose T, equal to this average temperature which

should be chosen as
To=3(Th+ T.) (5)

T, = temperature of hot tubes
T. = temperature of cold tubes

This leads us to the ray equation

d’r ng — 19T
dz* Ty or' (6)

Equation (6) is our starting point for the ray optics of the gas lenses.
Since a7 /dr is a complicated function of r and z, it is difficult to solve
(6) analytically so that we content ourselves with numerical solutions
obtained by means of an electronic computer.

Rather than expressing our results as functions of z, we want to ob-
tain them as functions of the on-axis gas velocity v, normalized by a
suitable constant V. (This representation was also used in Refs. 3 and
4.) We define V (L) by

v/ V(L) = a/oL (7)
with
o = k/avepc, (®)

a = tube radius
L = tube length
% = heat conductivity of the gas
p = (average) gas density
¢, = specific heat at constant gas pressure.

Equation (7) shows that vo/V (L) is inversely proportional to the length
of the tube. Therefore, it is convenient to introduce a variable

u(z) = alez ©)
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which at z = L equals

W =u(L) = V?‘}J) : (10)
Using
T =r/a (11)
equation (6) becomes
2 .
Tt T T T (12)

Equation (12) is used to obtain a and dx/du as a function of W from
which the focal length f and principal surface p can be computed.

As shown in Tig. 1(a), we follow the ray from a point z = 2z to 2z =
2y , corresponding to = u; and ¥ = w., through the tube anticipating
the case of lenses which are not bounded by planes through the ends of
the tube but by surfaces inside of the tube to be defined later.

The definition of focal length and principal surface can be seen from
Fig. 1(a). The principal surface is obtained by following a ray, which is
incident parallel to the axis (dv/dz = 0 at z = #), through the lens.
If we extend the direction of the ray entering the lens and the direction
of the ray leaving the lens at z = z by straight lines back into the lens
we obtain a cross-over point which defines a point on the principal
surface, The distance p of this point measured from the beginning of the
tube as a function of x,, the input position of the ray, deseribes the
principal surface. The distance p., for rays traveling in the same direc-
tion as the gas flow is given by (Fig. 1(a))

;1'(22) — ;]:(21)

pr=mt L= (13)
dz =29
or, expressed in terms of w and W rather than L
Py _ & x(us) — x(w)
L=ttt (dr) W (14)
[25] -
du u=iin

We define the focal length as the distance from the intersection of the
incoming ray (extended in a straight line)} with the principal surface
to the point at which the outgoing ray crosses the axis of the structure.
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Fig. 1 — Geometry of a single gas lens showing the definition of focal length
and principal surfaces.

Therefore, we have

B x(z1)
f+ = - @ (15)
dz z=29
or, in terms of w and W,
| F— ()
L= 2(d:.;) ' (16)
U2 -
du u=Ug

Similarly, we obtain from Fig. 1(b) the principal surface and focal
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length for the ray traveling in opposite direction to the gas flow

P-_a_ x(ue) — ax(w)
L L g(d:c) (17)
Uy —_
du ) umu,
and
I )
r="" ug(d.r) ' (18)
! du u=u

The prineipal surfaces p; and p_ do not, in general, coincide. If they
are identical the lens is called optically thin. The separation between
the two principal surfaces is an indication of the optical thickness of the
lens.

III. THE SIMPLE PERIODIC STRUCTURE

3.1 Temperature Distribution

The simple periodic structure consists of alternating hot and cold
tubes (Fig. 2). In order to compute the equivalent positive and negative
lenses of this structure we first have to determine the temperature
distribution.

The temperature distribution is given by a series expansion’ which,
in the hot tube, reads

L]

Ty(xu) = Th — 2 ALR.(x) exp (=B, /u) (19)
n=0
. Uy
o >u> W= o)

with 7', being the wall temperature of the hot tube and w = a/ez; and

I_ HOT I coLp l HOT ‘ coLp I
| | I | !
] | | |
Z=0 z=L z=2L Zz=3L z=4L

Fig. 2 — Sequence of hot and cold tubes comprising the “simple periodic
structure’.
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in the cold tube
Tolzu) = T, — 2 B.R.(x) exp {— 5"2.(1 - &,—)} (20)
with
W >u>3iW

T. = wall temperature of cold tube
W = a/eL.

Il

The functions R, and the eigenvalues 8, are discussed in the appendix.
The coefficients 4, and B, have to be determined so that the temperature
is a periodie function in the simple periodic structure of Fig. 2.

To simplify the determination of A, and B, we limit ourselves to
sufficiently long tubes or slow enough flow velocities so that the first
term of the series expansions (19) and (20) are sufficient to describe
the temperature distribution at the end of each tube accurately. This

condition is expressed by the requirements
o
¥ = <1
W = VD 0. (21)

The periodicity condition requires that the temperature at the end of
the cold tube (z = 2L or u = 3W) equals the temperature at the be-
ginning of the hot tube (2 = 0 oru = =)

Ty(x, ) = TalegW). (22)

In addition, we have to require that the gas temperature passes con-
tinuously from the hot to the cold tube

Ty(z, W) = Ta(x,W). (23)

The conditions (21) to (23) allow the determination of the constants
A, and B,

4. = 2 =T ) don 1 o
DL T )
and
B, = — A, (25)
with
P {1 n=10
" 0 n # 0.

The eigenvalues 8, and the derivation dR/88 are given in the appendix.
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The temperature distribution in the hot tube is shown in Fig. 3(a)
for »o/V (L) = 5 and in Fig. 3(b) for v,/V (L) = 10 as a function of
normalized radium x = r/a. The various curves in each figure correspond
to different positions along the tube axis. At z = 0 the temperature
distribution is identical to that at the end of the cold tube. The tem-
perature is cold on the wall and warmer in the center of the tube. As
we follow the temperature distribution deeper into the hot tube we see
that the temperature on the wall changes instantly from its value equal
to the wall temperature of the cold tube to that of the hot tube. How-
ever, the slope of the temperature distribution close to the tube axis
remains negative for quite some length. This means that the gas in the
hot tube acts like a negative lens close to the input end of the tube. It
takes some distance to reverse the negative temperature gradient which
the cold tube imparted to the gas. In fact, there exists a neutral surface
in the hot as well as the cold tube which is defined by the points where
the temperature gradient 87'/dx = 0. On this surface the gas acts neither
as a positive nor negative lens. The neutral surface separates the region
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Fig. 3(a) — Temperature distribution in the simple periodic structure as a
function of normalized radius @ = r/a at various eross sections z/L in the tube.
The normalized flow veloeity is vo/V (L) = 5and (T — T.)/T s = 0.155,

Fig. 3(h) — Same as Fig. 3(a) with vo/V (L) = 10.
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of the positive from the negative lens. It has the same shape in the hot
as well as the cold tube and the distance between corresponding points
of these surfaces in either tube is L, the length of the hot and cold tubes.
The temperature distribution 7/T% in the cold tube is obtained by
reflecting each point of the temperature distribution of Fig. 3(a) or
3(b) on the line parallel to the z-axis at T/Ty = T» + T./2Ts. The
neutral surfaces, z/L as a function of x, for various values of flow veloe-
ity are obtained by rotating the curves of Fig. 4 around the z-axis. At
high gas velocities (vo/V (L) = 10) the neutral surface extends almost
to the half way point into the hot and cold tubes.

3.2 Focal Length and Principal Surface

To calculate effective lenses which describe the ray optics properties
of the hot and cold tubes it is not permissible to trace rays through each
tube and compute focal length data from the ray trajectory since each
tube functions as a combination of positive and negative lenses. It is
more reasonable to trace rays from one neutral surface to the next
since the gas between two neutral surfaces acts entirely in one sense
either as a positive or negative lens.

0.5
0.4
Vo _
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0.3
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C \
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0 0.2 0.4 0.6 0.8 1.0
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Fig. 4 — Shape of the neutral surfaces for various values of vo/V(L).
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We inject a ray at a point 2, , x(2;) on the neutral surface with a slope
(dx/dz)._., = 0 and follow it to the point zz = z; + L, x(z2). This point
does not, in general, lie on the next neutral surface since the ray moves
from its entrance position, x(z;) # x(z:). However, this point 2, 2 (2.)
lies sufficiently close to points on the next neutral surface that this ray
tracing procedure seems justified.

Our present discussion explains the meaning of the points z and z
(or correspondingly %, and w.) introduced in (13) through (18) and
shown in Fig. 1.

The slope and positions of rays entering at z = 2 with dax/dz = 0
were computed at z = z by numerical integration of (12). The tem-
perature distribution entering into (12) is given by (19) and (20).
The values of the slope and the ray position were then used to calculate
the focal length and principal surface from (14) and (16). The rays
traveling in the direction opposite to the gas flow were launched at
2 = 2,x(2) on the neutral surface with the slope (dz/dz)._., = 0
and their slope and position at 2, = 2 — L, v(z) was used to calculate
p_/L and f_/L from (17) and (18).

It is apparent from (12) and (24) that all of our results depend on a
parameter

ny — 1 Cph - 710

0'2 T(_] )
However, we like to plot our results as functions of W = v»,/V (L) which
is contained in . It is therefore convenient to write

Yo ! L
2= (i) (@) 27
C(L)'= (o — 1) T~ T. (L>2 (28)
a Ty a

to characterize the focusing power of the lens.” Fig. 5 shows the focal
length f divided by the length L of the tubes as a function v,/ V (L). The
solid curves represent the positive, the broken curves the negative lens.
The focal length of the negative lens is shown as a positive quantity.
These curves were computed setting x(z) = 0.1. The positive and
negative lenses have almost equal focusing power for small values of
('(L/a). The negative lens has more focusing power for larger values

D= (26)

and use

* In reference 4 C'(L/a) was defined slightly differently. There, 7, — T. was
replaced by 7', — T'; (T'; temperature of input gas).
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Tig. 5 — Normalized focal length f/L of the positive (solid lines) and negative
(broken lines) lenses of the simple periodic structure as functions of the normal-
ized flow veloeity vo/V(L).

of this parameter. The temperature gradients are equal but opposite in
sign for either of these lenses so that one might expect that they should
have equal focusing power. The discrepancy is explained by considering
that the rays travel through different parts of the lenses. In the positive
lens the ray starting at x(z) = 0.1 moves closer towards the lens axis
while the ray in the negative lens, starting at the same point, moves
away from the axis and toward the wall.

The minima of the focal length curves are explained by the fact that
we have no lens action if the gas is stationary, ve/V(L) = 0. The lens
begins to function with increasing gas flow. But, if the gas finally flows
so fast that the on-axis temperature does not have time to follow, lens
action ceases again. Interpolation of curves for parameter values other
than those shown in Fig. 5 is facilitated by noting that the focal length
is nearly proportional to [C'(L/a)].

The focal length of an ideal lens does not depend on the input position
x(z) of the ray. Plotting f/L as a function of x should result in a straight
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line parallel to the x-axis. That gas lenses are not ideal lenses is shown
in Figs. 6(a) through 6(e). These figures contain three different types of
curves. The solid curves represent the positive lens for rays traveling in
the same direction as the gas while the dotted curves represent rays
traveling opposite to the gas flow. The dash-dotted curves give the
results for the negative lens and rays in the positive gas direction. The
rays opposite to the gas flow in the negative lens have been ommitted.
They can be visualized by the fact that the curves in the two directions
coincide at x = 0. At & = 0.9 the curves for the negative lens join up
with the dotted lines of the positive lens. The lines for the negative lens
do not all extend to * = 0.9 because the ray in the negative lens moves
toward the wall and may hit it before it travels its full length if the lens
is too strong and if the ray started out sufficiently close to the wall.

I'igs. 6(a) through 6(e) show that there are focal length distortions for
smaller values of vo/V(L). For vy/V (L) = 6 and 8 the focal length curves
are substantially parallel to the x-axis. (We see, furthermore, that the
focal length for the two directions of propagation coincide more closely
for smaller values of C'(L/a) and x.

The principal surfaces are shown in Iigs. 7(a) through 7(e). The
meaning of the solid, dotted and dash-dotted curves is the same as ex-
plained above. The dash-dotted lines for the negative lens for the low
values of ('(L/a) coincided very nearly with the solid line for the positive
lens and was omitted. Also not shown are the corresponding curves for
the negative lens for rays traveling against the gas flow. The principal
surfaces are far from being plane. It is also apparent that for most
values of C'(L/a) and x, the two prineipal surfaces for the two directions
of the beams don’t coincide too closely. This shows not only that the
lenses comprising the simple periodic structure have considerable dis-
tortions but also that they are not optically thin under all conditions.

Fig. 8 shows the dependence of the point 2 = 0.1 of the principal
surfaces on the flow velocity vo/V(L). The principal surfaces move to
z = 0 for vanishing flow velocities and extend far into the tube for large
values of v,/ V(L).

IV. THE EXTENDED PERIODIC STRUCTURE

4.1 Temperature Distribution

The extended periodic structure is shown in Fig. 9. It consists of
alternating positive and negative lenses which are separated by pieces
of insulating tubes of equal length.

The temperature distribution, 7%, in the hot or cold tubes is well
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3,7 - . .
known™" if we can assume that the input gas is at a constant tempera-
ture.

= R.(: 2
‘I'3(.r,u) =Tw +2(Tw — T:) z—:o ’#“EXP (_'Bu‘/"')
= (a_‘;)hl

(29)
B8,

o >u>W

Tw = either T, temperature of hot tube, or 7., temperature
of cold tube.

= input temperature to the hot or cold tubes.

vo/V (L) with L length of hot or cold tubes.

=3
I

The temperature distribution, 7', in the insulating sections is given in
terms of U-functions and their eigenvalues v which are defined in the
appendix.

) 1 1
Tq(.‘t’,Z) = Aﬂ + "221 AnUr:(-T) e‘\'p [_7r12 (E - W)}

(30)
W >u> W

The expansion coefficients have to be determined from the condition

Ty(x, W) = Ty(x,W). (31)

Since the exponential funetions appearing in (29) and (30) decrease very
rapidly with decreasing values of u, it is sufficient to consider only the
first term in the expansion at the end of each tube. This is justified if

0= W <10 (32)
Condition (31) leads to
Ry/(1) exp (—B*/W)

3 (9Ro (33a)
pe (6:3 )z=1

8=po

Ao = Tw — 8(Tw — T:)

and forn # 0

¥aRo'(1) exp (—Bs*/W)
N (33b)
Balyw — Bo) (fﬁ F ),_.

4‘1" = —4(_7‘|r - T,)

where we have used the notation F' = dF /dz,
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The temperature distribution in the hot and cold tubes can be in-
ferred from curves shown in Ref. 3. The temperature distribution in
the insulating tubes is shown in Fig. 10(a) foro (L/a) = 0.15 (W = 6.67)
and in Fig. 10(b) for o(L/a) = 0.05 (W = 20) for various values
of o[(z — L)/a). z — L is the length coordinate counting from the be-
ginning of the insulating tube. The curves show the temperature as a
function of radius at different distances from the input to the insulating
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Fig. 9 — The hot, cold and insulating tubes comprising the “‘extended periodic
structure’’.
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Fig. 10{(a) — Temperature distribution in the insulating tubes of the extended
periodic structure following a hot tube. ¢[(z — L)/a] is the normalized length
measured from the beginning of the insulating tube. The ratio of input tempera-
ture to the preceeding hot tube T'; over its wall temperature 7' is T':/T» = 0.857.
The normalized length of the tubes is oL/a = 0.15.

Fig. 10(b) — Same as Fig. 10(a). ¢L./a = 0.05. The dotted line is the actual tem-
perature distribution at the end of the hot tubewhile theline with a [ (z — L}/a] = 0
is the temperature distribution at the end of the hot tube which results from
dropping all but the first term in the series expansion of (29).
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tube. At 2 — L = 0, the temperature distribution is identical to that
at the output end of the hot tube feeding the insulating tube. It is
apparent that the temperature equalizes rather rapidly. For practical
purposes we can say that the temperature has reached a constant value
at ¢[(z — L)/a] = 0.1. If we consider insulating tubes of length I,
equal to the length of the hot or cold tubes feeding them, we obtain
constant output temperatures of the insulating tubes for values 0 <
W < 10. The hot and cold tubes are fed by gas at a constant tempera-
ture as long as these conditions are met. Therefore, we are justified
in using (29) which has been derived for the case that the gas at the
input end of the tube is at a constant temperature.

In the periodic structure of Iig. 9, the input temperature T to the
hot and cold tubes are not arbitrary. They adjust themself to satisfy
the periodicity condition

(Ts(wu))emo = (Tola,u))ca. (34)

With the help of (34) we can calculate the input temperature T
of the hot or T';, of the cold tube from (29), (30) and (33).

We obtain from (30) and (33a), for the constant output tempera-
ture of the insulating tube following the hot tube, (W < 10 is assumed
so that all exponential terms exp (—v.2/1) can be neglected)

_ Ry (1) e — B/ W
(1‘4(-1') )z=='H. = Tu’u = T‘h - S(Th - Tl’h) “( ) P ( ﬁU/ )
B 3 aRD
‘ aﬁ =1

B=80

and also

' _pe

(T4(2))osy = T = T — 8(T, — T Ro'(1) exp (—B*/W) '
8’ ("R“)
3

B8

=1
=80
Here we have two equations which allow us to determine the two quanti-
ties Ty and Ty, .

It is convenient to express them in the form

Thw = Ta _ Ri'(1) exp (—g2/W) ™
7, —71 LT E ﬂ”(@) ’ (35a)
o 6,8 =1
B=Ao J
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and

T\'C_Tc_Th_'Tﬂl -
T, —T. T, =T, (35b)

A plot of (35a) as a function of W = »¢/V (L) is shown in Fig. 11.

4.2 Focal Length and Principal Surface

The following graphical representations show the focal length and
principal surface of one hot and insulating or one cold and insulating
tube. The extended periodie structure is thus transformed into a system
of equivalent positive and negative lenses in the same way as in the case
of the simple periodic structure. Fig. 12 shows the dependence of the
normalized focal length f/L on the normalized flow velocity vo/V (L) for
a ray entering at r/a = 0.1. The length L is that of the hot tube and not
the total length of the combination of hot and insulating tubes which
has the length 2L. The solid curve in Fig. 12 shows the focal length of
the combination of hot and insulating tubes while the dotted curve
shows the focal length of the hot tube alone for comparison. It is obvious
that the insulating tube adds to the focusing power of the gas lens. We
terminated the curves at v,/V(L) = 10 since we wanted to remain in
the domain of (32) where our simplifying assumptions used to calculate
the temperature distribution are valid. Fig. 13 shows the corresponding

1.2

* \\
Th~Tin o8
Th_TC \.-‘N‘___'

0.6

0.4

o 2 4 6 8 10
Vo
V(L)

Fig. 11 — Temperature difference between the hot tube T and the input tem-
perature to the hot tube T divided by the temperature difference 7'y — T
between hot and cold tube as a function of normalized gas velocity vo/V (L).
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Fig. 12— Normalized focal length f/L of the positive lenses of the extended
periodie structure (solid lines) and of the hot tubes alone (dotted lines) as fune-
tions of normalized flow veloeity vo/V (L).

curves for the cold tube resulting in a negative lens. A comparison of the
two figures shows that the negative lens is more powerful than the
positive lens for corresponding values of C'(L/a).

Tigs. 14(a) and (b) show the dependence of the focal length (measured
from the principal surface) on the input position, x = r/a, of the ray for
the hot plus insulating tubes. The solid lines represent rays traveling in
the same direction as the gas while the dotted curves show the focal
length of rays traveling in opposite direction to the gas flow.

The shape of the principal surfaces for the hot plus insulating tube
are shown in Iig. 15(a) and (b). The distance p of points on the principal
surface is measured from the gas input end of hot tube. The solid and
dotted lines again represent rays traveling with and against the gas flow
respectively. The principal surface is far from being a plane for larger
values of vo/V(L). The two principal surfaces do not coincide exactly
which means that the lens has some optical thickness for larger values
of C'(L/a).

The corresponding negative lens shows very similar distortions and
has therefore been omitted.
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I"ig. 13 — Normalized focal length /L of the negative lenses of the extended
periodic structure (solid lines) and of the cold tubes alone (dotted lines) as funec-
tions of the normalized flow velocity vo/V (L),

100

80 (a) (b)
60 Vo
40 L\ = v~
C(E)* /g//
005 |
20 = L =
6.45 £ e =
. 0.05 o= 005 _p o=z
E 10
8
6 Yo _yo
2 b vl
4 03 L W
6.45 | - -
03 | cmmt==""1— 03 L---~
2 =F===cr ====q77 —
1
0 02 04 0.6 08 10 0 0.2 0.4 06 o8 1.0
x T

Fig. 14 — Dependence of focal length on the ray’s input Position for the
positive lenses of the extended periodic structure for rays trave ing with the gas
flow (solid lines) and against the gas flow (dotted lines).
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Fig. 15 — The principal surface of the positive lenses of the extended periodie
structure for rays traveling with the gas flow (solid lines) and against the gas
flow dotted lines.

V. COMPARISON OF THE TWO PERIODIC STRUCTURES

In order to compare the two periodic structures let us assume that
their equivalent lenses are spaced at the same distance D. For the simple
periodic structure D, the distance between a positive and the next nega-
tive lens is equal to the length L of the individual tubes. In the extended
periodie structure ) = 2L. It seems fair to compare both structures
under the condition that the actual gas velocities in either one of them
are identical. However, this assumption requires some rescaling of the
data of the extended structure. If we operate the simple structure at
a certain value of »o/V(D) the corresponding value for the extended
structure will be different sinee », is the same but in the extended struc-
ture D = 2L. It is apparent that

( Yo ) = — 9 _
V(L) Jextented 1 (D) TSV (36)
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A similar transformation has to be done on C. A certain value of C (D/a)
of the simple periodic structure corresponds to a value of

L D 1 D
C (E)cxlcuded - C (%) - Z C (ﬂ) . (37)

Since f/L is nearly proportional to ¢~ for small values of €' it is
convenient to compare the values of

D\ | _ L\ J
¢ ((;.) T) =2 [C (E) Lilz-anded )

This comparison is shown in Fig. 16. For the same values of T» — T
and v, the extended structure has the longer focal length because its
active hot (or cold) tube is only half as long as that of the simple
structure. The curve of Fig. 16 for the extended structure is not very

2.0

IS
]

c D\ f EXTENDED
al D kTRUCTURE
’ | \
1.0 \ \-.
—
SIMPLE B—
STRUCTURE /
0.8 = —
0.6
¢} 2 4 6 A 10
Vo
v(D

Fig. 16 — Comparison between the focal lengths of positive lenses of the
simple and extended periodie structures as functions of the same normalized gas

veloeity vo/V (D).
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accurate for values of vy/V (D) > 5 because the value of »,/V (D) = 10
corresponds to v/ V (L) = 20 for the extended structure. For such a
large value of the normalized flow velocity, our assumption of a constant
input temperature to the hot (or cold) tube is incorrect.

To be able to compare the efficiencies of the two systems we need to
know the power consumption of one positive lens of either of them
assuming that it requires no additional power expenditure to keep the
cold tubes at the temperature 7. .

This power consumption is given by

P = 2mpe,d’ fn (T ()]s — [TCe)lo)av(z) de (38)

v(x) is the gas velocity as a funetion of x. For viscous, laminar flow
v(x) = vp(l — 2%). (39)

Using (19) and (24), we obtain for the power consumption per hot tube
of the simple periodic structure

16R'(1)

(40)

2P, W 1- oR
TkD(Ty = To) ~ V(D)| 8 (65") _ (1 exp (80°/17))

and with the help of (29) for the corresponding power consumption
in the structure composed of extended tubes (assuming that the first
term in the series of (29) describes the temperature distribution at
z = L sufficiently well), we obtain

21)(-“ _ _1)9_ Th - T{n _ _j‘_lfﬂ’(l)
wkD(Ty—T.) V(D) Tw—T. Buﬂ(a_&) exp (—82/T) b, (41)
86 r=1

The expression (T — T'u)/ (T, — T'.) has to be substituted from (35a).
The quantities represented by (40) and (41) are plotted in Fig. 17 as
functions of vy/V (D). The positive lenses of the extended structure
consume less power than those of the simple structure for equal amounts
of gas flowing through them. This is not surprising considering that
the hot tubes of the extended structure are only half as long as those
of the simple structure.

To compare the two structures we require that their lenses have equal
focal length which we achieve by adjusting the temperature difference be-
tween the hot and cold tubes. We then plot the ratio of the resulting
power consumptions. This plot is shown in Fig. 18. The extended struc-
ture requires less power than the simple one and this ratio improves as
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Fig. 17 — Comparison between the power consumptions of the positive lenses
of the simple and extended periodic structures as funetions of the same normal-

ized gas velocities vo/V (D).
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Fig. 18 — The ratio of the power consumption of the positive lenses of the
extended periodic structure over the power consumption of the positive lenses
of the simple periodic structure for equal focal length as a function of normalized
gas velocity vo/V (D).
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the flow velocity increases. It should be remembered, however, that the
focal length of the extended structure (Fig. 16) is inaccurately repre-
sented for values vo/V (D) > 5. This inaccuracy carries over to Fig. 18.
Nevertheless, it is clear that the efficiency of the extended structure is
more than 20 per cent higher than that of the simple structure for
vo/ V(D) > 6. The additional focusing which the insulating tube sections
provide pays off to some extent to make the extended structure more
efficient. The improvement is not as large, however, as one might have
hoped and it may be considerably poorer if the insulating tubes have the
finite heat conductivity of a real material.
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APPENDIX

The functions to be discussed in the appendix are solutions of the
differential equation

'F | 1dF

dF , 1dF

x dr

d + k(1 — 2")F = 0. (42)
da?
The solutions of (42) are related to Whittaker’s functions W, , by

1., 9
F = ? 1I (3[4)'0(_k;l'n).

The differential equation (42) stems from an approximate formulation
of a heat transfer problem.” Assume that a gas at a different tempera-
ture is blown into a tube with a cireular cross section. The gas is sup-
posed to flow as a viscous fluid in laminar flow with a velocity profile

v(r) = v (1 - gz) (43)

r = distance from tube axis
tube radius.

=
Il

The stationary state of the temperature distribution 7' is obtained from
aV'T = v-9T (44)

with e being a constant which contains the heat conductivity, density
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and specific heat at constant pressure — all of which are assumed to
be temperature independent which, strictly speaking, is not true.

The velocity has only a longitudinal component v, given by (43).
In polar coordinates r, ¢, z taking 8/d¢ = 0 (44) can be written

2 m 2 2 1
af{a—'“rl‘”Jrir}=wu(1—’")‘9"r (45)

or? r ar 922 at) oz

It is often permissible to neglect 9*T /92" compared to the term on the
right hand side of (45). Taking

r = ar (46)
and
T(rz) = F(x) exp (—Az2) 47)

we get from (45)

d'F | 1dF | a'vo\ i
T - (1 —2)F =0. (48)
Finally, taking
2 O
M=, (49)

we recognize that (48) is identical to (42).

We are interested in two types of heat transfer problems:

(1.) The tube through which the gas flows may be kept at a constant
temperature T, . We then have the boundary condition 7' (a,z) = T, .
It is more convenient to introduce a new variable

0(riz2) = T, — T(r,z). (50)

We can replace 7' by 8 without changing any of equations (44) through
(47). However, the boundary condition now becomes simply

f(a,z) = 0. (51)
The functions satisfying this boundary condition are designated by
F(z) = R(z) (52)
and (51) becomes
R(1) = 0. (53)

. . . . T.B
The R functions have been studied in some detail.

(2.) The second type of problem involves a tube which is a perfect
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heat insulator. That means that no heat flows into or out of the walls.
This assumption requires that

aT -
(g)rﬂ = 0. (54)

A second class of functions is obtained by setting F(x) = U(x). The
U-functions satisfy the same differential equation but are defined by

the boundary condition
J
(&) =0 (55)
dr /-

['or convenience, both functions are normalized so that
R(O) =U(@©) = 1. (56)

The U-functions have not been studied to the knowledge of the author.
For series expansions of arbitrary heat distributions in terms of either
the R or the U functions we need their orthogonality relations and any
numerical evaluation of heat transfer problems requires the knowledge
of the eigenvalues and numerical values of these functions.
The eigenvalues belonging to the R functions R, (x) will be designated
as

]l'n = BR (57)
and those of U/, (x) will be designated by
'{I‘u = Yn - (58)

Orthogonality Relations

Let I, with eigenvalue k, designate either an K, or a U, function.
We proceed to show that

fol (1 — 2P (x)F,(x)dv = 0  forn = m. (59)
We have
R4 DR 4 A= a)F, = 0 (60)
and

Fm” +%Fm’ + km?(l - -I'E)Fm = 0. (61)
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We multiply (60) by 2F. and (61) by zF, , subtract and integrate:

(kn2 - kmz) »/: JU(]. - Iz)Fn(:E)Fm(I) dx

f‘ s 1o s 1
=— | 2{{F, (F,” +=F,)) — Ful F,” +=F,, );dx.
0 T x

We perform partial integrations and obtain for the right hand side of
this equation

1
_[meFn’ - -TFInFm’]% + f [leli‘nl - FnFm, + ZE(F,,.,’F,.,’ - Fn’Fm’)
0

- (FmF", — F‘nFm,)} dex = (Fanl - FnFm’)::=l = 0.

The last part of the equation follows from the boundary condition (53)
or (55), depending whether ¥ stands for an K or a U function. This
calculation proves (59).

Next, we calculate the value of (59) in the case n = m.

1 n ! _ r
f 2(1 — ) [F ()] de = lim (M)
0 z=1

b \ T T — Fo?
aF, 0 ’
- (% Fﬂ F?l ﬁ F'H)
2 i
For F, = R, we get
1 0 P ]. [BR f:|
e —_ 12 —_ P
[ = DR do = o |57 B | (62)
and for ¥, = U,
: ] 1 d '
[ 2(1 — AU de = —— [Un— U. ]z=l . (63)
Y0 27“ 67 ¥Y=7n

Finally, we need to determine the value of the integral over the prod-
ucts RpUnm :

(64)

Il
(=}

R + %Rn' + 8,21 — 2*)Ra

I
N

U + % Un' + a2 (1 — 2*) U (65)
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n a9 1 D
(B — 7)) [ 21 — ) Ru2) Un(2)de
o

1
- f (2(R Un” — UnR,") + R.U, — U.R, }dx
0

.= [RnUm' - U-mRn’];r=1
or using (53) and (55),

f (1 — P)VR () Un()de = —l—ﬁi [UnR,Tomr - (66)

2

m

Caleulation of the R and U Functions and Their FKigenvalues

We make the series expansion
F(x) = > Cha™. (67)
=0

For the problem of interest to us F (x) has to be an even function of z,
for that reason only even powers of 2 appear in (67). The normalization

F()=1
requires that (68)
Cy = 1.
The substitution of (67) into (42), using (68), leads to
Oy = —1 I
and
JE
Co = @ {Caps — Cays) forv =z 2. (69)

The parameter k has to be chosen so that either (1) = 0 or F'(1)=0
results, depending whether k and F shall represent 8 and R or y and U
respectively.

The fact that &* enters all coefficients (', makes the determination
of 8, and v, very tedious.

A further difficulty results from the fact that the coefficients Cb,
grow to very large values particularly for the larger values of 8, and
v» before they decrease again. The series (67) does not converge readily
for values of x close to 1. In fact, it proved impossible to compute more
than the first eight B and U functions from (67) on the IBM 7094 com-
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puter even using double precision since the absolute value of R and U
remains between zero and one but the coefficients C'y, grow to values
above 10*. The series (67) can be used to compute B, and U, for x
in the range 0 < x = 0.5 since the powers of & decrease rapidly enough
to keep the value of the product (', 2™ within manageable proportions.

However, in order to cover the whole range 0 = 2 = 1 it proved
necessary to use the following series expansion:

F(x) = > Dy with y=1—ua (70)
=0
to calculate R and U in the range 0.5 = x = 1.
Equation (42) expressed in terms of y reads
d'F _ dF
dy*  dy
The coefficients Dy and D, have to be properly chosen to satisfy the

boundary conditions at @ = 1. For ' = R we require B(1) = 0 so
that

(1—y) + K2y — 3y" + o )F = 0. (71)

Dy=0
results. For F = U we require U’ (1) = 0 so that
Dl = 0

results.
The substitution of (70) into (71) yields

D2 = %Dl ] Da = %Dl — %f(!EDU, D4 — (_11 _ 'E-)JT\?E)Dl

D= — Y (0= 1) Doos — K(2Ducs — 3Dues + Dyes)].

v(iv — 1)
The eigenvalue & = 8 or k = v and the coefficient D; or Dy must be
‘chosen so that F as well as F' are continuous at x = 0.5 where both series
expansions should coincide.

By breaking the range of z into two parts and using different series
expansions to cover both parts of the range it was possible to compute
the function and their eigenvalues. Table I shows the eigenvalues
8. and v, as well as the values of dR,/d8, —D, = R.). (9 /GT)Un' and
Do = U, all taken at = 1. These values are needed to evaluate the
integrals (62), (63) and (66).

The values of dR,/88 and aU, /@y were obtained from differentiation
of the series (67) and evaluating it at ¥ = 1. The terms of the differ-

(72)



PERIODIC GAS LENSES 2115

entiated series grow very large so that only the first eight values of
aR/aB and the first six values of al -‘"/ dv could be obtained. The remain-
ing values of aR/38 were calculated from the approximation®

oR . r _
(%):\El = (=1) 673 T (2) 8,13 (73)

B=Bn

which is in good agreement with the values obtained by machine calcu-
lation for larger values of n. An approximation of dU/dy can be obtained
by using approximations similar to the ones used for the B functions
in Ref. 8. One gets

at’ 3 v
(W)ml = - = 6‘1‘ @ " (74)

YT=7n
However, this approximation is not very good for n = 15 so that we
used the equation

al’ ay! S 4
= — (—=1)* _"r S
( ™ )le (—1) &T @ + ,,§=1: v (75)
T=7Yn

The coefficients A, were determined from the first six values of aU"/ay
which were obtained from a machine caleulation. Their values are given
at the bottom of Table I.

TasLE 1
, dR(1) al‘(1)
" Bn Ry’ (1) ( B8, n Un(1) ( —
0 2.70436 | —1.01430 | —0.50090 0 1
1 6.67903 1.34924 0.37146 5.06750 |—0.492517 0.97816
2 10.67338 | —1.57232 | —0.31826 9.15760 0.395509 | —1.24720
3 14.6711 1.74600 0.28648 | 13.1972 |—0.345874 1.43522
4 18. 6699 —1.89090 | —0.26449 | 17.2202 0.314047 | —1.58486
5 22.6691 2.01647 0.24799 | 21.2355 |—0.291252 1.71127
§ 26. 6686 —2.12814 | —0.23491 | 25.2465 0.273806 | —1.82164
7 30.6682 2.22038 0.22485 | 29.2549 |—0.259853 1.92042
8 34.6679 —2.32214 | —0.21548 | 33.20615 0.248332 | —2.01037
9 38.6676 2.40274 0.20779 | 37.2669 |—0.238591 2.09330
10 426667 —2.489092 | —0.20108 | 41,2714 0.230199 | —2.17045
11 46. 6667 2.56223 0.19516 | 45.2752 |—0.222863 2.24275
12 50. 6667 —2.64962 | —0.18988 | 49.2785 0.216371 | —2.31088
13 54,6667 2.70216 0.18513 | 53.2813 |—0.210569 2.37539
14 58.6667 —2.76421 | —0.18083 | 57.2837 0.205216 | —2.43671
11 —4.881355 A4 2.838701 104

1.536461 10% A5
—2.838383 10° As

—1.420240 10®
2.728875 10°

et b
=
I
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An approximate formula for g is
Bn = 4n + §. (76)

The 38 values of Table I for n = 11 have been computed from (76).

The lowest order U function is a constant
Uyo=1 with ~ = 0. (77)

The v values should converge to
Yo = 4n + 3. (78)

This expression can be derived by methods analogous to those used in
Ref. 8. For unknown reasons this approximation is much poorer than
that for 8. . However, it appears from the values of Table I that v,
will converge to (78) for very high values of n.
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