Light Propagation in Generalized
Lens-Like Media

By S. E. MILLER
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This paper provides a preliminary assessment of electromagnetic wave
propagation in focusing media which departs from those previously studied,
ideal lenses and continuous media with square-law index variation. New
approximate methods are described for obtaining the transverse beam width,
phase constant, and ray trajectory in continuous lens-like media, and for
determining stability conditions in lens waveguides, where the lenses con-
tain spherical aberration and the continuous media contain fourth-order or
higher-order terms of variation in index of refraction.

It 7s proven that only in aberrationless-lens waveguides or in a con-
tinwous medium with square-law index variation will the shape of a beam
tngected off axis or with an angle to the medium’s axis remain constant
about a beam axis which oscillates about the axis of the medium. In non-
square law media the beam will spread, but knowledge of the coefficients
describing the mediwm and the position and angle of the injected beam en-
ables one to specifly the maximum radius within which all of the energy
will be confined.

The following is an example of the type of solution obtained for non-
square law media: for a medium characterized by the transverse index varia-
tion

n=n, (1 — 3aa’)
and assuming no index variation exists in the direction of propagation, the
radius lo the 1 /e point in field is approximately
w, = 0.666 Zl_ijﬁ
and the phase constant s
2r 0256 (aM)'3(m 4 1)°

B = N (m T 2"5)213
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where the free-space wavelength \o = na\ and m is the order of the mode,
m=0,1,2 - . Quite generally, non-square law media show dispersion,
and unlike the square-law media the various modes travel with different
group velocities. Expressions are given to allow these effects to be evaluated
for small perturbations on a square-law medium as well as for higher-order
index variations.

The transverse beam shape associated with any law of index variation
is shown lo be as well approxvimated (in the region of significant power
density) by a cosine function or Gaussian function as is the field for an
ideal lens-waveguide approvimaled by a Gaussian function in the presence
of typical diffraction losses.

Normal mode shapes are obtained for resonalors with fourth-order and
eighth-order mirrors by the method of Fox and Li; diffraction losses for a
few Fresnel numbers are also given. In a certain range of Fresnel numbers,
fourth- and eighth-order mirrors give lower diffraction losses than spherical
mirrors.

An approximate method for solving the paraxial ray equation for rather
general (non-square-law) media is outlined. Requiring only reciprocity
and symmetry about the medium’s axis, it is shown that the radial position
of the ray (x) is related to distance (z) along the axis of the medium by

x = Zb., cos mpz

where m = 1,3, 5,7 -+ . Moreover, it is shown thal this series converges
very rapidly, making it possible to get a good approximale representation
with only a few terms. For example, for the fourth-order medium described
above, an approrimale solution is

z = T {0.959 cos Bz + 0.041 cos 38z}

where 8 = x0 \/1.44a, . It is characteristic of all non-square law media
to have a ray period 2w /B which is a function of the peak ray displacement,
Zo .

Lens waveguides with fourth- or higher-order terms in the focusing or
index function can of course exhibit increasingly strong focusing for energy
departing farther from the medium’s axis, and if the lenses are suitably
spaced might be useful in reducing the magnitude of beam wander due to
imperfections or guide-axis curvature. However, for a given beam spot size,
non-square-law lenses must be placed closer together than square-law
lenses.

Use of non-square law lenses or distributed media in transmission systems
will most probably require repeater-system techniques which are operable
with multi-mode signals at the receiver input.
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I. INTRODUCTION

Although a great deal of work has been done to describe electromag-
netic wave guidance using a sequence of ideal aberrationless lenses, little
has been done with more general lens-like media. The objective of this
paper is to provide a beginning understanding of what happens to the
important descriptive parameters of a light waveguide—wave phase
constant, wave spot size, ray trajectory, stability restrictions—for
general lens-like media, either continuous or formed from a sequence of
focusing elements. Exact solutions for these parameters are difficult or
impossible, a possible reason for little having been done.* A second result
presented herein is a series of analytical techniques for obtaining useful
approximate solutions representing a broad class of lens-like media;
some of these techniques are most clearly presented by giving examples,
which unfortunately leads to a rather large number of equations. To aid
the reader in finding the section dealing with a particular topic, an out-
line and brief resume is given below.

As pointed out by J. W. Tukey, there is no a priori reason why ideal
aberrationless lenses are best for use as a communication medium. We
would like to know what does happen to wave guidance as we depart
from aberrationless lenses, which is the case studied extensively in
earlier work. Gas lenses have nearly constant focal length but their
“prinecipal planes” are actually curved surfaces.! E. A. Marcatili and
D. H. Ring have pointed out that these curved principal planes have
effects similar to those expected in plane lenses with spherical aberration.
Thus the present work relates to existing gas lenses as well as to the
question of whether or not to attempt to create a different form of
inhomogeneous medium for light-wave guidance.

Some of the present work dates back more than a year; impetus to
putting it on paper was given by recent caleulations planned by E. A.
Mareatili and D. Mareuse.? These calculations showed that ray optics
an accurately predict the loss even when half of the beam falls off the
edge of the lens. Many of the conclusions drawn here are based on ray
optics but since the controlling transverse variations take place over
distances that are large compared to the wavelength, ray opties should
give a correct conclusion.

The subject is developed in this paper in the following manner. Sec-
tion II covers ray optics for aberrationless lenses of any thickness, in-

* As this paper goes into print, S. J. Buchshaum points out the existence of an
exact solution for a particular non-square-law f(x) originally derived with refer-
ence to a quantum-mechanical problem. J. P. Gordon will report on this in a later
publication.
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cluding the case of a continuous medium. A ray-optic method for de-
termining stability conditions applicable (using results of later sections)
with generalized focusing elements is also covered here. Proof that the
transverse field distribution of a normal mode beam injected off the
medium’s axis (or which goes there due to curvature, or displacement of
the medium) is preserved only when the index of refraction decreases as
the square of the distance off axis is presented in Section IIL Section IV
develops the proof that in a wide class of continuous focusing media,
the ray paths are representable by a series of odd-harmonic cosine or
sine terms. A definition of the focal length of a segment of an arbitrary
medium is covered in Section V. Section VI discusses a new technique
for obtaining approximately the wave phase constant and spot size for
generalized lens-like media, stated generally and illustrated for fourth-
order and eighth-order media. A characteristic ray angle and a charac-
teristic ray period is defined for the generalized medium. Calculations
for field distribution and diffraction losses in resonators and lens wave-
guides using non-square-law elements are derived in Section VII. These
calculations are the only ones available on fields and losses in non-square-
law resonators. Section VIII discusses a solution for ray paths in pure
fourth-order, or a mixture of second- and fourth-order, media; the ap-
proach for extension to other media is indicated. Some further discus-
sion and acknowledgements are presented in Section IX.

II. TRANSMISSION IN AN IDEAL LENS-LIKE MEDIUM

The medium referred to as ideal is one in which the index of refrac-
tion has the form? (see Fig. 1a)

n=n, (1 — lax’) (1)

where
n. = index of refraction on axis, 2 = 0
x = transverse dimension
as = a constant.

The index is independent of z,

an/dz = 0. (2)

We can obtain a solution for the path of a light ray in such a medium
using the well known paraxial ray equation

32
2

]

1 dn
=5 (3)
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Here, z is the position of the ray at some value of z. Equation (3) is
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TFig. 1 — Ideal lens-like medium, (a)—two-dimensional continuous medium
with index of refraction independent of z and varying with x according to (1),
(b)—light ray paths in medium a for parallel input rays, (e)—light ray paths
in medium a with non-parallel input rays.

valid over a broad range of conditions provided only that the ray path
makes a small angle to the z-axis. For a medium of the form of (1)

an
— = —NalsT (4
v NallsT )
and with the restriction
| 1a®| < 1 (5)
we can write
' 1on
_— = - — = — (s, (6
az* n ox aat )

The general form of (6) indicates an exponential solution for z as a
function of z, and it can be verified that



2022 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1965

x = A cos Vayz + Bsin Va2 (7)

is a solution, A and B being constants to be determined.
Using the boundary conditions at z = 0,

x = r; = input ray position (8)
(;—: = r; = input ray slope. (9)

We have
= 7008 Vaz + ri V1/a; sin Va2 (10)

This is very interesting in that it corresponds exactly to the ray be-
havior in a sequence of equally spaced aberrationless lenses.”® It is
important that all rays have the same oscillatory period regardless of
input displacement or input slope, as sketched in Figs. 1(b) and 1(c).
It is likewise significant that the effects of input ray slope and position
are separable with respect to x, subsequent ray position.

If a, is negative, the cosine and sine of (10) become cosh and sinh
and a divergent medium results.

A short segment of the distributed medium characterized by (1)
may be assigned an equivalent focal length, even when it is not a “thin”
or “weak” lens. With reference to Fig. 2, the most general case is one
in which the index on axis, n, , is different from that of the surrounding
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Fig. 2 — Diagram defining focal length and principal plane for an ideal dis-
tributed lens.
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medium 7, . The path of input ray with zero slope and displacement
r; ean be obtained from (10).
The general equation for the ray slope, derived from (10), is

g—:= =7 Vas sin Vas z + 7 cos Va2 (11)

At the lens output the displacement is

ro = ricos Vat (12)
and the ray slope is, from (11),

re = —ri Vas sin Vs t. (13)

Because (5) holds, the refraction at the lens output surface is (see
Fig. 2)

To Mo
ML 14
[1 7] Na ( )
Hence,
d=|"= "_.____0"0'“‘/‘72“. (15)
a2 Na \/ﬂ_z

The distance from the focal point to the principal plane where an equiv-
alent thin lens may be placed (Fig. 2) is

7 Mo

f=t;‘1:'na'\/ﬂ_gsin'\/ﬂ_2tl (16)

This result was excerpted from the present work and given previously®
with the approximation appropriate to gas lenses 7o =2 n, .

With the continuous focusing medium according to (1), there is no
limit to the strength of the focusing effect; a stronger index gradient
merely confines the normal mode energy more closely to the axis. How-
ever, when a series of segments of the distributed medium are used as
a waveguide, with gaps of a homogeneous medium in-between, there is
a cut-off effect which occurs if the lenses are too strong in relation to the
lens spacing. This is a well-known effect with thin lenses,* and the limit-
ing conditions were derived from wave optics for the medium according
to (1) by J. R. Pierce’ and E. A. Mareatili.” A ray-optic derivation is
given here for the medium (1) to show the method which can be extended
to arbitrary focusing media, including fourth-order or higher-order
terms in x, which has not yet been handled by wave optics.
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With reference to Fig. 3(a), we assume an input ray of zero slope
and a displacement r; at the center of the first lens, where the longitudinal
axis z; = 0. At z; = /2 and restricting our attention momentarily to
the region 0 < 4/a»t < 7/2, the output of lens ¥ 1 is

T = T;COS (’\/C;z 1/2) (17)
roo = —7r, Vassin (Vs 1/2). (18)

Taking the approximation appropriate to gas lenses, ny = n,, the ray
output of lens 1 intersects the axis at a distance b/2 from the end of
lens ¥1 (Fig. 3a).

b/2 = | ra/ror’ |- (19)

Using our knowledge that (1) is symmetrical about x = 0 and reciproc-
ity holds, we can construct the remainder of Fig. 3 (a) with a ray maxi-
mum r; at the center of the second lens. The value of b corresponding
to this condition is

2 _
h = 7{—1—2(:01: (Vas t/2) . (20)
=}
Z,=0 z,--%‘- Zo=0
Lg;%*r !I 4__%___)|
gl ¥ NO. 2
! ry \ T2
Pt :
Toy \ z
NO. 1 T T ]
DR b - < R >
(a)

Fig. 3— Ray path at one maximum lens spacing, (a)—weakest lens case,
(b)—second stability band (stronger lenses than 3a).
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It is clear that this is the largest permissible ray displacement at the
center of lens # 2, since a larger value there would represent displace-
ment growth without limit as z —» =. We can show that larger values
of b violate this stability condition by writing the expression for the
displacement at the center of the second lens. The input to the second
lens is

Il

slope T o’ (21)
displacement s = ro + bro. (22)

Then, from (10) and using a new origin of the longitudinal axis zs = 0
at the input to the second lens,

Ty = ri2 (c0s Vay 22) + % sin Vag 2 - (23)
2
Using (21) and (22)

jf— = cos (Vay 2) {cos (\/as £/2) — b vV a. sin (V/ay 1/2)) (24)
— sin (Vay 22) sin (Vag t/2).
Making the substitution

2

= - 1, £/2 25
b= 7 eot (Vs t/2) + 8 (25)
and evaluating (24) at 2z, = /2 we find
Ta . — —
ol —[1 + 8 sin (\Vas 1/2) cos (\Va, 1/2)]. (26)
zio=1t/2

In the region 0 < v/as t/2 < 7/2 both sin (v/a, /2) and cos (\/a, t/2
are positive; hence for & positive, the ray at the center of the second
lens is displaced more than the input ray and a divergent path is followed
in such a sequence of lenses. For & negative the propagation is stable.
For 7 < A/a.t/2 < 3x/2 another passband occurs with the limiting
value of b having a ray path as in Fig. 3(b). This leads to the stability
conditions

2

b= Vo cot (\/as t/2) (27)

applicable in the regions of lens length
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nmr < Vaa t/2 < nw +g (28)

where n = 0, 1, 2, 3, ete.

For other permissible values of lens length we derive the stability con-
dition with reference to Fig. 4. The input ray at z, = 0, center of lens #1,
has zero displacement and a slope of ;. Fig. 4(a) shows the ray path
for the limiting value of b when =/2 < 4/a, /2 < m, constructed using
symmetry and reciprocity as before. This yields

b= — "ga=tan (vas t/2) . (29)

This gives a positive value for b because the tangent is negative.
Following the lines indicated above we can derive an expression for the
ray path in lens #2

Iz = CO8 (\@ z2) {rT'; sin (‘\/Ez i/2) + by cos (\/t;z ?5/2)}

, (30)
+ o= eos (Var 1/2) sin (Va 2)

NO. 1

Fig. 4 — Ray path at another maximum lens spacing, (a)—weak lens case
(b)—second stability band (stronger lenses than 4a).
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We want the slope at the middle of this lens, which is obtained by putting
= 1/21n

dxy - - ri’
-_— = - 9§ 2 e 2
7 Va, sin (\a, 2) {vagsm (Vas t/2)

(31)
+ b/ cos (Va. t/2)} + 7 cos (W aa t/2) cos (A az 2) .

Letting
2 _
h=— \/—{I_atall (Vast/2) + & (32)

we obtain

Tlgziﬂ 1 — s+v/msin (Vapl/2) cos (Vat/2).  (33)

z2=t/2

In the region 7/2 < (v/a2t/2) < , the sine term is positive and the
cosine term is negative; hence a positive § indicates instability, a slope
at the center of the second lens greater than the slope at the eenter
of the first lens and (as may be verified in (30)) a displacement at
z = t/2 adding to the subsequent ray divergence.

Higher order passbands occur, one sketched in Fig. 4(b). Thus, in
the region

(ne + 7/2) < Wat/2) < (n+ )=
n = 0,1,2 3,4, etc., the permitted range of lens spacing b is
2

b= — Wtan (Vast/2). (34)

Equations (27) and (34) are identical to the relations obtained from
wave theory.”

The above method for determining stability of lens waveguides can
be applied for arbitrarily shaped lenses, as long as symmetry about the
z axis and reciprocity exist. Numerical integration can be employed
where the lens cannot easily be represented by functions in closed
form.!

1II. WAVE BEHAVIOR IN INHOMOGENEOUS MEDIA
We will now consider media which are of the form

n=n,[l + f(z)] (35)
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where
f(z) = —iax® — taa* — lag® - -- (36)

in which @s , a4, a¢ - - - are constants which may be positive or negative.
Positive values represent convergent focusing and negative values
represent divergent focusing. This represents a general medium re-
stricted only to symmetry about the axis * = 0 and uniform with
respect to the direction of propagation.

The normal mode for such a medium is characterized by the index
variation. We will presently discuss the field shapes and losses for
several special cases of (35); for now it is sufficient to note that a differ-
ent equation for the index n means a different normal mode.

An interesting general conclusion can be drawn by expanding the
index n of (35) about some off-axis radius r; as in Fig. 5:

n(z —r) _ n(@) nlz=mn)
Na N Na N Na

! 3 b
+ 2§ —aw — 2a0y — 3agry -0}

+ )" [ —as — Bag’ — 15ag’ -+ -}
2 2 411 6/'1 (37)
713
+ (‘Lﬁ) {—12&.41‘1 —_ 60&57“13 .. }
|’ 4
+ (;4:) {_120,4 — 180&3?‘12 . }
in which
d = (x—mn).
With the approximation
flr) K1 (38)

the first term of (37) is unity. Then for as, as, and all higher order
coefficients equal to zero, (37) becomes

n@) = na {1 — ez’ — aa(x')?). (39)

This is sketched in Fig. 5. Thus, for the medium according to (1),
the effect of entering off axis at @ = r; instead of at x = 0 is to intro-
duce a term in the index which is linear in 2. This term has the effect
of delaying or advancing every region of the transverse cross section
an amount proportional to the displacement from the axis; this term
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n(x) —

T —

Fig. 5 — Expansion of n(z) about point « = r;.

acts the same as a dielectric wedge and tilts the wave front. The path
of any ray is described by ray optics in the continuous medium accord-
ing to (10). The remaining term of (39) is identical to the original
equation at r, = 0; hence the normal mode for a wave entering at = r,
is the same as at x = 0, with a direction change superimposed.” Thus,
the beam follows a path sketched as in Fig. 6(a); a pure mode intro-
duced into the square-law medium travels without change of shape
if the change in position and direction of the beam axis is taken into
account. If a plane wave is introduced, Fig. 6 (b), the field is concen-
trated periodically at the points where the beam axis crosses the axis
of the medium.

We can also see immediately that these properties are not charac-
teristic of any medium in which a4 or higher order terms are present.
In the expansion (37) there are, in addition to the term linear in 2,
additional terms in (z')* and (2")* brought in by as, as, ete., which
change the normal modes in a manner dependent on the particular
value of r; . When any one or more of a4, ag, ete., are non-zero, the

* This was previously proven for a sequence of ideal lenses independently by
H. E. Rowe and J. P. Gordon.
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Fig. 6 — Ray path representation of beam flow in the ideal square law-medium,
(a)—normal mode off-axis input, (b)—mode mixture off-axis input.

modes for a region off the axis of the medium are different from those
on axis and the rather simple and attractive situation sketched in Fig. 6
no longer exists. It also follows that ray paths also differ importantly
from those sketched in Figs. 1(b) and 1(c).

IV. RAY PATHS IN NON-SQUARE-LAW MEDIA

When f(z) of (35) and (36) contain non-zero a4 or higher order
terms, the general shape of f(z) can be something like that of Fig. 5,
even though a; or some other terms are negative yielding a defocusing
tendency. We shall be concerned now with arbitrary values of a.,
a4, g, ete., within the limits on x such that

df(zx) <0 foraz > 0
da >0 forz <0’

This assures that all rays will be bent toward the axis at any =, per (3).

We can observe several additional features of the general case:

(1.) As a consequence of (40), any ray will monotonically go through
a maximum and return to the axis, as sketched in Fig. 7. Due to sym-
metry about the z axis and reciprocity, the curve z = g(z) will have
even symmetry about 2, 24, etc. and odd symmetry about 23, 25, etc.
The period of g(z), (s — 2 ), will depend on the coefficients az, a4, - - -
in (36).

(40)
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Fig. 7— Ray paths in a generalized lens-like medium.

(2.) It will be instructive to note that

m
T

fla) = — p (41)

with m — = is the special case of (36) which corresponds to a step change
inindex at |z | = a:*

f(z) - 0 and n= M, for |z | < |a|

(42)
—flx)>»0 and (n — 1) K (na — 1) for |z | —|al.

We will see that this is a convenient bounding condition on non-ideal
focusing media. In Fig. 7, the dotted line represents the ray path for
such a medium.

(3.) As already noted, the paraxial ray equation (3) is valid. Since
f(x) in (36) is to be kept very small compared to unity, the solution
for the position of the ray as a function of z, v = g(2), is related

d 1dn d
e [g(z)] = n a_él, = E [f(l)] (43)
or
i@ = [ &g am. (44)

* We will want to continue to use the paraxial ray equation and the associated
condition, f(r) <« 1. We shall use the region 0 < | z | < abut allow | z | to approach
a so closely that f(x) > 0.
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(4.) Due to symmetry about the z axis,
gd; [g(2)] = 0 at values of z where x = g(z) = 0. (45)
Obviously,

g1 =0 (46)

periodically at maxima for g(z), which will occur at values of z midway
between the places where g (z) = 0, I'ig. 7.

(5.) It follows from the preceding notes that the function g(z) must
have even symmetry about the values of z for which (46) holds, and odd
symmetry about the values of z for which g(z) = 0, a consequence of
reciprocity and the known symmetry about 2 = 0 for f(z). Hence, the
most general ray trajectory will be of the form

r = 2, by cos mbz (47)
1

where m = 1, 3, 5,7, - - - etc. We will proceed presently to find a par-
ticular solution of the form (47).

In all functions (35) where a; or some higher a, is present, the period
of the ray trajectory depends on the peak amplitude. That is, if the
medium characterized by (35) starts at z = 0 (as in Fig. 8) and if a
series of rays enter parallel to the z axis but at different values of z,
the ray trajectories will have different periods. If as, a4, ete. are all
positive, the rays farther from the z axis will be bent more sharply and
the picture qualitatively will be as sketched in Fig. 8. However, if a:

o

—

\ N\ ~z—

Fig. 8— Ray paths in a generalized focusing medium for various parallel
input rays.
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is positive and a4 negative (other @, = 0) the rays entering farther
from the z axis will have a period longer than those entering near the
z axis. As previously noted, all rays have the same period (Fig. 1)
only when all a, except a. are zero.

V. FOCAL LENGTH OF A SEGMENT OF AN ARBITRARY MEDIUM

Suppose a ray at radius x passes through a section of arbitrary medium
(Fig. 1a) of length {. We can ascribe a focal length to each x position
as follows: the phase difference A¢ between a ray on-axis and a ray at x
is given by

Ap = i—r nat{Lasz® + Lagxt- ). (48)
0
We require ¢ in (48) to be so small that
Ap K % (49)

and we represent the segment of focusing medium as a thin lens; for
any thin lens the focal length f is

2
T
= Aodg (50)
Then, combining (50) and (48),
1
f= (51)

Nalaz + ax® + asxt- -]

It a» = 0, the focal length approaches infinity as | x | — 0.
If the medium is represented mainly by the square law term a, with
a small a4 perturbation

1

— =
I= natax(l + R) (52)
where
R =% (53)
(3

The ratio (53) appears repeatedly in describing slightly non-ideal media.

VI. NORMAL MODE PROPERTIES IN ARBITRARY FOCUSING MEDIA

It would be nice to have solutions to Maxwell’s equations for a medium
according to (35) and (36) but this has not yet been achieved. E. A,
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Mareatili has solved Maxwell’s equations and found normal mode field
properties for the ideal square-law medium (only a, present),” and for
a perturbation thereon (small a4 in & medium principally characterized
by as).}

In this section, an approximate method for obtaining some of the
properties of the modes of an arbitrary medium (pure fourth order, for
example) is described. This is of interest as guidance on whether or
not to put the effort into getting better solutions.

We use as limiting cases the solutions found by Mareatili when only
a» is present, and the known solutions for a step transition in dielectrie
constant, which as previously noted in connection with (42) corresponds
to a very high exponent on the " term of (36). These two cases can be
viewed as limits to the possible solutions for arbitrary (36), within the
bounds of (40), and useful results inferred about the intervening cases.

We note that the transverse field distribution for the first-order mode
with the step-change of index, Curve I of Fig. 9, is of the form

T
E = cos (4) (54)
2a
o T << v,
—l N 14
~I \
- \
—oz ~N \\E
Ry
N
-04 \\ %\\‘\
Ny o
o ) .
+ \ -
o 06 0 N
ﬂ" CURVE INDEX \ N
S & _oal 1 n = n,[1-(z/8)%) ) \‘
= ————1 n=n,[i-528x1020z8) ‘l\ \‘ ]
—_— = - T4 \
I n =ng[i-1975 x107x4] ‘\ \\
10 —ee I N = ngfi-2x2] “ \ 5
1
PLOTTED FOR @ = 0.419 X 103 METERS ! \
-1.2 1 “
-1.4
a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 !

T/a

Fig. 9 — Index of refraction versus normalized transverse position (z/a) for
several media.
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where the index change occurs at + = Za. From Marcatili’s wave solu-
tion,” the transverse field shape for the lowest order mode in a medium
characterized by

n = n. (1 — Laxx’) (55)
is given by
2 2
E = exp[—(g):l (56)
where
- 1/&;
TN @)
(57)

A= ho/’n,,
o = free space wavelength.

We now match the fields given by (54) and (56) by setting (54) equal
to (56) at x = ; this yields
a. = 1315 % (58)

where a, is an “equivalent” or effective half-width for the square-law
medium. The corresponding field shapes and plots of index variation
are given by Curves I and IV in Figs. 9 and 10.

1.0
NORMAL MODE FIELD DISTRIBUTIONS
CURVE INDEX_ FIELD EQUATION
08 1 n=n,[-(xra)®] cos (rx/2a)
w —===1 n=n[1-528x1020x8] (MACHINE)
a
2 —— W n=ng[i-1e75x107x4] (MACHINE)
3 o6 —-— N n=ng[i-212] e- (T/0.762)2
3
< PLOTTED FOR & = 0.419X 1073 METERS
4 A = 0.6328 X 10”8 METERS
204 R o
<
} S 1
w N
N\
_ w — — S
0.2 — N
N\ RNE
m\_____“
o "%;?-:‘L 1 —
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
x/a

Fig. 10 — Normal mode amplitude vs normalized transverse dimension
(x/a) for media of Fig. 9.
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As already indicated, these two cases are limits on the index varia-
tion. It is inferred that an arbitrary index distribution (35) will have a
field distribution similar to that of Curves I and IV of Fig. 10 when =
is related to the effective width a, to yield an index variation approxi-
mating Curves I and IV of Fig. 9. This idea has been carried through
to specify a procedure for defining a, for arbitrary media, and to yield
particular solutions for several specific index variations. Approximate
phase constants for the various modes of arbitrary media are also
found.

To document the inference on normal mode field shape for the non-
ideal medium, two specific cases were considered in a little more detail.
These were represented by Curves IT and III of Figs. 9 and 10. Pure
fourth order and pure eighth-order index variations were taken, the
constant @, in (36) being selected to give an ‘“‘eye-ball” fit to Curves I
and IV of Fig. 9; the actual numbers for (a.,/2) are on Fig. 9. Then,
using the computer-simulation of a resonator as first employed by Fox
and Li,’ the normal mode field distributions were computed. More will
be said about these calculations presently, but for now we note the
conclusion on the normal mode field distributions for the eighth-order
and fourth-order index variations, Curves II and III of Fig. 10. The
choice of a, for these curves was a first guess, not an optimized choice.
Nevertheless, the fields do correspond very well to the limiting cases,
Curves I and IV. We shall see that differences between Curves I, II,
ITI, and IV in the region x < 0.9a are comparable to the differences
between the true fields in the system of ideal lenses and the Gaussian
approximations commonly used to represent them.

The effective medium width a, can be defined for a more general
non-ideal medium as follows: the normal mode in the medium charac-
terized by (35), (36) and (40) will have a shape similar to that of the
associated square-law medium or step-change medium when a, is defined

by
flz = a) = —r%i):zi) b (%,) (59)

This comes from making f(z) of (35) for the arbitrary medium equal
to r times the same quantity for an equivalent square-law medium, both
at 2 = a, , and then using (57) and (58) to eliminate the as of the equiv-
alent square-law medium. The constant b is unity for the lowest order
mode, and is shown in Appendix I to be

b= 4/“—:?"5@ (60)
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for the TEM,, mode.” The constant r varies slightly depending on the
exact form of f(r); in the examples plotted in Fig. 9, r is 1.72 for the
fourth order case and 1.43 for the eighth order case. When considering
a medium which is very nearly square law, » may be taken as unity,
and for fourth or higher order media a value »r = 1.5 is a good value.

TFFollowing known theory for metallic waveguides, the normal mode
for the step-change index can be represented by two plane waves travel-
ling at an angle « to the axis of the medium, where

. A
S = — 61
s o Ac ( )
and A, is the cutoff wavelength in the guide containing everywhere the
index n,. Restricting our interest to the region A\/A. < 1, the phase
constant is given by

2 o .
B = ;Vl—mmal‘“—{l— 1o’} (62)
Higher modes are accounted for by noting
4a ;
ARETESY )
giving
o 1 AY |
g =f{1 —4() (m 4+ 1)
A 32 \a J (64)
A= )\u/ﬂa .

Since the principal part of the field distribution has been shown to be
essentially the same for all f(x) restricted by (40) provided a, is defined
as in (59), we can expect that the expression (64) will give a good ap-
proximation for the phase constant in a medium characterized by any
J(@).

We proceed to write down the expressions which result.

For the medium deseribed by

no=n, (1 — ar’ — Lag*) (65)

the application of (59) leads to

_ A
= 1.31ab[ a +RJ 1/ (66)

S F U”U“ ing Fox and Liand Boyd and Gordon™ the mth order mode has (m + 1)
field maxima in the transverse cross section.
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with B = asa.’/a: . The ratio R is the ratio of the fourth order term 0.5
aw* to the second order term 0.5 ax2” at z = a,, the equivalent half-
width of the medium. Thus the expression (66) gives a, implicitly.

When R «< 1, we can rewrite (1 4 R)* = 1 + % R; under this con-
dition, putting (66) into (64) gives for the medium characterized
principally by a square-law distribution with small fourth-order varia-
tion, (taking r = 1),

2 [ (m+ 1) 02750m + 1)%a)
B =" — 0357 Ve 1(?71 + 2.5) + a,*"? J " (67)
25

We can compare this result to Marcatili’s direct wave solution’ in the
limit of @y = 0. The functional dependence on A and a, is identical;
the coefficient of 4/a, in (67) compares to the correct one as follows:

Coefficient of '\/;z

m Marcatili? Eq. (67)
0 0.5 0.357
1 1.5 1.02
2 2.5 1.78
3 3.5 2.6
4 4.5 3.43
m — oo m 0.892 m

Thus, the approximate value of the phase constant is correctly given for
all modes at any wavelength by the approximate theory outlined above,
but the unique integral relationship for the phase differences between
the modes in the square-law medium is not given.

A comparison between (67) and some unpublished results Marcatili
obtained using a direct perturbation solution of Maxwell’s equations
shows identical dependence upon a, , a; and X with comparable but some-
what different constants.

The above comparisons lead one to have confidence in other results
obtained from (59) and (64) for which there is no previous information.
For example, we can get the phase constant corresponding to medium
(65) with aa = 0. Equation (66) leads to

r7(1.315)"° s A

ST} PRL

m + 2.5)”" AV

2.5 a/®

e =

(68)

0.876 (

for the equivalent half-width of the medium, and
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27 = ya _(m +1)2
=T _ 0.2 S Ll I
B8 x 0 06(0.4)\) m 4+ 25 2/3 (69)
2.5
for the phase constant.
Likewise, for a medium
n = na(l — 3asz®) (70)

the application of (59) and (64) gives

a, = (?')0'1 ﬂ-315)0'4 Bo-4\0-2

(Ig ‘;'I'O‘2 (71)
A" (m 4+ 25\
= 0925 — | —————
0-925 ag"? ( 2.5 )
and
_ 2r ey 06, 02 (M + 1)°
B = -?T — 0.323\ ag m + 2‘5)0.4- (72)
25
Tor the limiting case of a step change in index
e = @
_ 2r T A 2 (73)
B = T E a_2 (m + 1) .

Looking at the change in 8 as the exponent in variation of index of
refraction changes from 2 to 4 to 8 to =, (see (67) with as = 0, (69),
(72) and (73)), we observe that the 8 dependence on A goes smoothly
from A" to A, A%, and A", Tt seems certain that the square-law medium
is unique in having beats between modes being independent of A.

There is a physical explanation for the increasing 8 dependence on
A for increasing exponent in the index variation. For the step change in
refractive index the modes are all contained in the same transverse
space, illustrated by Curves I of Figs. 11 and 12; by definition no energy
can exist at x > a. However, with the square-law variation in refrac-
tive index, Curve IV of Tig. 9, energy can and does exist at * > a,
and the penetration of the field at * > a. increases as the mode index
m increases. This is illustrated for m = 0 and m = 2 as Curves II in
Figs. 11 and 12 respectively. Since the higher order modes occupy
more transverse width for increasing m, A, decreases more slowly for
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the square-law medium than for the step-change refractive index. That
is the basie reason for the factor b, (60) appearing in (59). Similarly,
the increased field penetration at z > a, for the square law compared
to the step-change index makes the angle a smaller for the square-law
medium than in the step-change medium, and consequently the g is
less altered from the value 2x/X\. As the exponent in the terms of f(z)
increases from 2 toward <« the behavior in 8 and A, approach those for
the step-change medium because the more rapid variation in index at
x > a, prevents the field from penetrating that region as much.

One can write explicitly an expression for the half-width w, of the
lowest order mode’s field for the various non-square-law media using the
relation

ae

1.315

where a, is again defined by (59). As a consequence of the method of
defining a,, (74) gives the exact spot size for the pure square-law me-
dium. For the medium which is principally square law with a small
fourth-order term, (65) with R < 1,

N 1
w,—,/‘/; 7 {14055 m} (75)

For the pure fourth-order medium,

(74)

W, =

)\1.’3
w, = 0.666 T (76)
4
and for the pure eighth-order medium,
A
= 0.703 il (77)

It is possible now to specify unique rays to consider characteristic
of the particular mode in each of the media. These rays are the normals
to the two plane waves which in combination give approximately the
transverse field distributions in the manner outlined above. Each of these
normals makes an angle a to the axis of the medium as in equation
(61). Again confining our interest to waves far from “cut-off”

~ AMm 4+ 1)

PRk
4q,

where a, is again defined by (59). IFor the medium (65) with B < 1

(78)
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,___,1315 m + 2.5 m + 2.5 | Aas
- a /'/ / { — 0.55 ’: 25 :] a 3!2} (79)

‘\/Xazl'u (m + 1)

¢ T Ta07 m+25 [ gssha (m+ 2-5) " (80)
2.5 a2\ 25

and

This expression also gives the characteristic ray angles for the square
law medium by letting as = 0.
For the fourth-order medium, (68) gives @, and the characteristic
ray angle is
ws_ as_(m A1)
= (.285\ a4 |:m + 2.5]1/3 - (81)
2.5

For the eighth-order medium, (71) gives a, and the characteristic ray
angle is

+1
a = 0.2712"%as’" [min—fTE’ju (82)

2.6

Having a characteristic half-width e, and ray angle « for each me-
dium, we can easily calculate a characteristic ray period for each me-
dium. With reference to Fig. 13, the ray at an angle & with the z axis
has a period A,

4a,
Ap = —. (83)
[24
For the pure square-law medium, using (66) and (80)
4 X 1315 X297 1 [m+25] 1
e = Vr ag’[ 2.5 ] (m + 1) (84)

se /\ /
I ~_—

Fig. 13 — Diagram for determining an equivalent ray period in non-square-
law media.
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or

_ 88 (m + 25)

Ap = ol 25m T 1) (84a)

We can compare this ray period to that derived from the paraxial ray
equation; that solution is (10) from which the ray period is seen to be
2r/+/a, . Equation (84a) corresponds quite well to 2x/4/a, for the
lowest order mode (m = 0) including independence of A! Equation
(84a) is also relatively independent of mode order, m.

For the pure fourth-order medium the ray period from (83) is

123 [m 42577 1
- NE AL 25 (m + 1)'

There is no previous theory for comparison and, as already noted,
ray theory alone does not define a unique period; unlike the square-law
case, it depends on the initial ray slope.

Ao (85)

VII. FIELD DISTRIBUTION AND DIFFRACTION LOSSES IN RESONATORS AND
LENS WAVEGUIDES USING NON-SQUARE-LAW ELEMENTS

In this section there are recorded new computations of normal mode
field distributions and diffraction losses for a few resonators using non-
spherical mirrors. The results are applicable to lens waveguides using
non-square-law focusing elements. No other information is known to be
available on these configurations.

The motivation for the work was to determine the normal-mode field
distributions for non-square-law continuous waveguides to support the
approximations made in the preceding section. Thus, most of the con-
ditions selected represent relatively close spacing of weak lenses. A few
instances are cited where cutoff effects associated with too great spacing
of lenses were observed.

The resonator whose descriptive dimensions are given in Fig. 14 is to
be used to represent the lens guidance system of Fig. 15. The equiva-
lence is exact if one includes the absorbing screens in Fig. 15; if the dif-
fraction losses in the resonator are not large very little effect is expected
from omitting the absorbing sereens. Fig. 15, in turn, can represent a
continuous guidance medium when the focal length of the lenses is ap-
preciably greater than the lens spacing. Then the beam size is very
nearly the same at the lens and at the plane midway between lenses,
and the electrically thin lenses of Fig. 15 can be representations of
segments of the continuous medium of length s. For the square-law
medium, this approximation is that the focal length expression (16) is
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Fig. 14 — Definition of parameters in a resonator for use in Fox-Li type calcu-
lations.

well represented by

To

f = (86)

Tallol

when vV, t < 1.

In representing a continuous medium by a resonator it is important
to have a measure of the accuracy of the approximation. We obtain
this and observe an interesting outcome by comparing the phase shifts
along equi-power contours (i.e., contours within which the fraction of
the total power in the beam is constant) for the resonator with spherical

_ABSORBING
l&~~ SCREENS

_ BEAM
_{-~""conTouR

\ :" r—-—LENSES

Fig. 16 — Transmission medium analogous to Fig. 14.



LIGHT PROPAGATION 2045

mirrors and for the square-law continuous medium,
n = n. (1 — Lax®). (87)

For the square-law medium of length s, the phase difference for a ray
following the axis and one at radius 2y is
27 2
Ap, = — s(—Lasry ). (88)
Mo
For the resonator with spherical mirrors the phase difference between a
ray on axis and one following an equi-power contour is

Apmggf (—2a). (89)
Ao
By making
A = ‘%“‘ 2 (90)

it is apparent that (88) and (89) are identical when x = w, . It may be
shown that the beam spot size at the center of the resonator is the same
as the spot size of the continuous medium when

/‘/ B (91)
™ az 27

where R, is the field curvature at the confocal spacing of mirrors asso-
ciated with the mid-plane spot size wo.” The equi-power contours are
given by

- =VITE (92)
§
£=E (93)

w, = spot size at the mirrors.
Using (91), (92), and (93), the value of both (88) and (89) is

47 2 8
Apm = Ape = — o =+
@ @ ™ 0 o
Thus by choosing the continuous medium and spherical mirror system
to have the same mid-plane spot size, the phase shift along any contour
enclosing equal powers is identical, regardless of lens spacing.f

~ * See Ref. 10.
t+ Within, of course, the region of stability for the resonator.

(94)
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For reference it may be noted that the mirror radius of curvature
b’ and focal length f are related to R. and s by™

v op . (1+E)R,
R = — = /2’ — g
¢ = \/&-‘2 = 2s — 8. (96)

Useful forms giving the mid-plane spot size w, and spot size at the
lens w, for the lens system of Fig. 15 are:

wy = 1/% (4fs — )} (97)

wo = 1/ f (fs)} (1 - i}) (98)
o /h st

Ty

It seems certain from (94) that the normal mode field distribution
for a continuous medium will be well represented by the normal mode
of a resonator having the proper correspondence between A (Fig. 14)
and the coefficients of (36), provided that the mid-plane of the resona-
tor field does not differ appreciably from the field at the mirror.

The proper value for A of Tig. 14, to represent a general medium (35)
and (36), is obtained by taking x = xo (Fig. 14) and letting Apm = A,
as was done in connection with (88) and (89). This yields

1 3 1 1
A =g (é ast” +§a4:v4 +§a5.1;6 ) (100)

Selection of a mirror spacing suitably small can be done for the square-
law medium with the aid of (92). For example, with

@z = 4 (meters)™

s 0.2 meters
wo = 0.319 X 107 meters
R. = 1 meter

one computes w,/wo = /1.04. This is based on the Gaussian function
approximations for the actual fields. A computer determination of the
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actual field distributions® has been carried out using the method of Fox
and Li and the results are plotted in Fig. 16 for a Fresnel number N =
1.38.1 These are true normal mode field distributions for the resonator;
some perturbation from the Gaussian shape is caused by the 5.27 per
cent power diffraction loss on each reflection but this does not account
for the fact that the midplane 1/e width is approximately 7.5 per cent
less than the mirror field instead of 2 per cent less as predicted by (92).

1.0
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AN \ MIRROR SPACING = 0.2M
0.8 \\ AN N = 1.38
\ ‘ LOSS PER REFLECTION =5.27%
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0 [eX] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo 1.1 1.2 1.3

Fig. 16 — Computed normal mode fields at the mirrors and at midplane for a
spherical mirror resonator.

See Fig. 17, where the diffraction loss is increased by reducing the mirror
size; the mirror spot size changes very little. Also see Fig. 18, where the
fields, both the real fields developed on the computer simulation and the
Gaussian theoretical approximation thereto, are plotted. We see here,
with N = 1 where diffraction losses are less than 0.1 per cent per re-
flection, that the Gaussian approximation is too narrow at the mirrors

* In all of the computer determinations of field distributions and losses, 100
radial intervals were employed in representing the transverse field distribution.

t In the terminology of this paper, N = r?/s\ where 2r is the mirror diameter
and s is the mirror spacing.
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Fig. 17 — Computed normal mode fields at the mirrors for the resonator of
Fig. 16 with two mirror diameters.

and too broad at the midplane; whereas w,/w, = /2 from the Gaussian
approximation, the actual ratio of widths at 1/e is about 1.58. The
prolate spheroidal wave functions give computed results in much better
agreement with the Iox-Li machine computation’" and we presume
the latter to be more accurate than the Gaussian approximation.

The transverse fields corresponding to the fourth-order index variation,
Curve IIT of Fig. 9, is shown in Figs. 19 and 20. The mirror spacing,
losses and Fresnel numbers are listed on the figures. The midplane field
corresponds as well to the mirror field as did that for the square-law
case, Fig. 16, and the spacing s is judged adequately short. For the same
Fresnel number, N = 1.38 and the same spot size, the fourth-order
medium had 3.91 per cent loss per reflection compared to 5.27 per cent
for the square-law medium. This is because the field at z = a, falls off
more sharply as shown on Fig. 10. The field plotted in Fig. 10 as Curve
III was obtained from the computer data which produced Fig. 20,
with the reflection number selected to minimize the amplitude of the
higher modes still present in the data for Curve I of Fig. 20.
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Fig. 18 — Comparison of normal mode fields in a confoeal square law resonator
as determined by (1.) Fox-Li type calculations and (2.) Gaussian analytical
approximation.
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Fig. 19 — Computed normal mode fields at the mirrors and at midplane for a
fourth-order mirror resonator.
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Fig. 20 — Computed normal mode fields at the mirrors for the resonator of
Fig. 19 with two mirror diameters.

Figs. 21 and 22 show computed field distributions for a resonator
with eighth-order mirrors chosen to match the medium of Curve II,
Fig. 9, at the same mirror spacing used for Figs. 16-20, 0.2 meters.
The value of A is computed from (100). In Fig. 21 we note the midplane
field is quite unlike the mirror field, and in Fig. 22 we note the loss
does not decrease smoothly for increasing mirror size, but remains more
or less independent of mirror size. This is due to the fact that the focal
length, which is a function of radial position on the mirror aceording to
(51), is too small compared to the mirror spacing at the outer edge of the
mirror. For example, for the Curve III of Fig. 22, the focal length is
0.077 meters at the edge of the mirror. For larger mirrors than those
represented in Fig. 22, it was found that both the loss and field distri-
bution became constant, independent of mirror size. The fields striking
the outer edges of these mirrors are radiated because they are reflected
through the axis of the resonator at such a sharp angle as to miss the
opposite reflector. Fig. 23 shows a rough sketch of this situation. (Note
that the midplane fields resulting would be composed of a mixture of a
propagating field and a radiated field.) An analogy can be made to the
unstable region which oceurs for all rays in a resonator with spherical
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Fig. 21 — Computed normal mode fields at the mirrors and at midplane for an
eighth-order mirror resonator.
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Fig. 22 — Computed normal mode fields at the mirrors for the resonator of
TFig. 21 with three mirror diameters.
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Fig. 23 — Diagram illustrating over-focusing losses in a resonator.

mirrors when f < s/4 or f < 0.05 meter when s = 0.2 meters as in Figs.
21 and 22.

The corresponding situation in a lens guidance system is shown in
Fig. 24. The energy near the beam axis is weakly focused leaving a rather
large spot size. The energy extending to larger and larger radii is even-
tually focused too strongly and misses the next focusing element, illus-
trated by the dotted lines of Fig. 24. Thus, ordinary field spreading,
causing the usual diffraction losses, is mixed with over-focusing losses
in a certain region of the parameters for a non-square-law resonator.
It is believed that this accounts for the loss differences tabulated on
Fig. 22,

The objective of determining the normal mode field for Curve II of
Fig. 9 can be met by making the mirror spacing in the equivalent
resonator smaller. This has been done in Figs. 25 and 26. In Fig. 25,
the midplane field and mirror field are shown to agree quite well. In
Fig. 26, some variation in field shape results with reduction in mirror
size, but this is in part due to higher order modes still present in the
field plotted for Curve I where the loss is extremely low. For the normal
mode shape plotted as Curve II in Fig. 10, a careful selection of the
resonator reflection number was made to minimize the higher-order
mode amplitudes.

Using very closely spaced mirrors with so little curvature over the
area where most of the beam energy is located, as in Curve II of Iig. 26

Fig. 24 — Diagram illustrating over-focusing losses in a lens guidance system.
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Fig. 25 — Computed normal mode fields at the mirrors and at midplane for an
eighth-order mirror resonator representing a shorter segment of the same medium
as in Fig. 21.
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Fig. 27 — Computed normal mode fields at the mirrors and at midplane for a
plane parallel mirror resonator analogous to the resonator of Fig. 25.

and the associate medium curvature curve II of Fig. 9, one might wonder
whether the guidance is caused by diffraction as with plane parallel
mirrors or really by the curvature of the mirrors. Fig. 27 shows the fields
and loss for the plane-parallel mirrors corresponding exactly to Curve 11
of Fig. 26 for the eighth-order mirrors. The loss is <0.45 per cent for
the eighth-order mirrors and 1.4 per cent for the plane parallel case.
Evidently the guidance is importantly determined by the curvature.

VIII. RAY PATHS IN NON-SQUARE LAW MEDIA

In this section, the general properties of media described by (35),
(36) and (40) are exploited to obtain approximate solutions for the
paraxial ray equation (3) in several non-square-law media, and to indi-
cate an approach which reduces to straightforward algebra the problems
of getting similar solutions for other media.

It has been shown that (47) gives the general form of the ray path
for the media of interest, and it was noted in connection with Fig. 7
that the limiting case of a step-shift in index of refraction results in a
triangular waveform for the ray path. For a triangular waveform the
coefficients b,, in (47) are in the ratio 1, 1/9, 1/25, ete. form = 1, 3, 5,
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ete. For the square law medium, a simple cos 8z represents the ray path,
as given in (7). Hence, we know that for any medium of interest the
series (47) will converge very rapidly. We can hope to get a good ap-
proximation with only a few terms of (47). We now outline the results
of such a solution for a medium described by (65). We set

T = ¢ €08 Bz + ¢» cos 38z (101)

which is equivalent to

A A
To {(1 + 4—) cos Bz — 4 cos 362} (102)
x = {1 + A sin’ Bz} cos Bz

Il

r

with
4

A=—-__& _ (103)

(1+2)

C1

Co _ A

6w i1 4 (104)
e+ ¢ = 2. (105)

In form (102) it is seen that the maximum x is xo, occurring at z = 0,
for any value of A ; this is a useful form in visualizing the effect of a4 as
a perturbation on a medium mainly controlled by a. .

Using (101) we find

2
gz— () = —e¢8° cos Bz — 9e:8” cos 38z. (106)

Also, from (65)
i) = —amw — 2ai (107)
dz

We can get the solution to the paraxial ray equation in the form (43)
by equating (106) to (107) with = replaced by (101). Equating the
coefficients of the cos 8z terms yields

8 =+/a{l + R(15+ 03764 + 0.18754%)}} (108)

where

R = M0 (109)
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We note that the restriction (40) requires (107) to be greater than
Zero, or

1
R= —1.

This is a limitation on x, if @, is negative.
Equating the coefficients of the cos 38z terms gives

—0.894

R = 37 -
[1.15A + 0222 (1 + g) ] (110)

Thus, with known E which is fully defined by the medium (g and a4)
and the point of entry (zo) for the ray, one can compute A and 8. The
plots of Figs. 28-30 show the interrelations between A, R, and g as
given by (108) and (110). For R < 1,4 = —R/4 and f = v/a. (1 +
1.5R/2). The principal effect of a small a, term in the index variation
is to change the period of the ray oscillation. This is illustrated in Fig. 31
for several values of R compared to the B = 0 (square law) case. Posi-
tive £ means a4 has a focusing effect, and the ray period is shortened.
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Fig. 28 — R vs A according to (110).
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Fig. 31 — Ray position path z/ro vs normalized distance for a particular
non-square-law medium.

With a renormalization of the abscissa, the curves of Fig. 31 are re-
plotted in Fig. 32 to show that the cos 38z term is indeed small and the
ray path differs little from a sine wave.

However, the period 2x/8 does depend on the peak ray-path am-
plitude (or ray-path slope at the axis), and hence the nice separation
between the input-ray slope and input-ray position which was found in
(10) does not exist for non-square law media.

Because the ray period depends on the peak ray-path amplitude, a
group of rays entering a non-square law medium at z = 0 as in Fig. 33
will fall out of step and at some large z one ray will be at a positive
maximum when another is at a negative maximum. These rays can
represent parts of a beam of light injected into the medium off-axis
when the beam spot size is very large compared to a wavelength. This
shows that the injected off-axis beam will spread out and occupy the
region 4w, about the guide axis. However, the beam will never
occupy any more than the region -w, if it is injected parallel to the
guide axis.

One can obtain solutions analogous to the one given above if the
input ray is on axis but at some slope x by noting

z = Ze, sin nfz (111)
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the way an input beam breaks up as the wave propagates.
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n = 1, 3, 5, ete. This follows from the same considerations which led to
(47). Since we already have solved for the coefficients ¢, and ¢. of (101),
we can get the solution for (111) by transforming (101), letting x; (Z) =
z(z — 7/28) which yields

T = ¢ sin fz — ¢ sin 38z (112)

The parameters ¢; and c» are related to xo, the maximum of z;, as in
(105) and we define a new parameter B

12 (“_’)
B=— X/ (113)

1—3 (9)
C1

which allows the ray slope to be written

doy _ c18 cos Bz — 3eaB cos 36z
dz
O PR S

= z,{1 + B sin® Bz} cos Bz.

The initial slope ;" is the ray slope at z = 0, and it is related to ¢; and
¢z by

z = cf {1 - ?ﬁﬂ} (115)

5]
The previous interrelations between ¢, , ¢z, 4, 8, and R still hold. We
seek a method for getting 8 and x,, knowing only 1, @ and as. To do

so ', is rewritten in the form
\/— VR (14 A){1 + R(L5 + 03764 + 0.18754%)}%. (116)

Hence, given z;’, (116) determines ;" 4/a./a: in terms of R (since R vs
A is given in (110)); knowing R, @, and a4, we can compute xo and 3
using (109) and (108). Fig. 34 shows 2, /as/a; vs R to facilitate this
process.

For an input ray with both slope and displacement, the proper match-

ing to (101) with a suitable transformation can in principle be done,
but has not been attempted.
An approximate solution for the pure fourth-order medium

n = n.(l — laz') (117)
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i obtained by letting a» — 0 in the equations which led to (108) and
(110). This yields

B = z0+/1.44a, (118)
Q933 (119)
A = —0.165 (120)

for the solution corresponding to (101) and
' = 2 Vau (121)

for the solution corresponding to (114). Equation (121) gives the ray
slope at the axis z = 0.

Better approximations would of course be obtained by including
higher order terms in (101) but the large ¢;/e; ratio produced by in-
cluding only the cos 38z terms suggests that the cos 58z term would
have a negligible coefficient.

We can combine (121) and (118) to express the ray period for the
fourth-order medium in terms of the ray slope at the x-axis; this gives

B = ad 144z, . (122)
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We can now compare the ray period from (122) with that previously
derived, (85). We let 2, equal the characteristic ray angle defined by
(81) with m = 0. Then the ray period from (122) becomes
2 _ 981
F - ?\*041 )
The constant in (123) differs slightly from the value 12.3 found in (85)
but the dependence on A and a4 is identical.

(123)

I1X. DISCUSSION AND ACKNOWLEDGEMENT

The abstract contains a summing up review of the contents of this
paper. One might add that a remarkably small step change in index is
required to contain completely (for practical purposes) a light beam.
As shown in Fig. 9, at A = 0.6328 g, a step change in index of refraction
of a few parts in 10% is adequate for a beam radius of a = 0.419 mm,
and this change need only be maintained from z = a to * =2 2a where
the energy is certain to be too small for that region to influence the
wave propagation.

The author would like to thank Mr. Tingye Li for the use of his
computer program which was modified to make the computations repre-
sented in Figs. 16-27. Without Mr. Li’s previous work the author would
not have included those figures which help justify the inferences leading
to (59). Mrs. C. L. Beattie made the modifications and very effectively
saw through all of the computations, for which the author is most
appreciative. Mr. E. A. Marcatili on numerous occasions gave learned
reactions to the newly developed ideas.

APPENDIX

We seek here to account for the expression (60)

b= 1/%2—5 ' (124)

As noted in connection with Figs. 11 and 12, in a medium with a
continuous variation in index of refraction, the fields of the higher
order modes extend farther from the axis than do the fields of the lowest
order mode. The technique used here to determine the phase constant
and characteristic ray angle for rather general media is to establish an
equivalent width of medium in which the energy is completely confined
—as in guides with perfectly conducting walls or with zero permittivity
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walls. It is clear then that this equivalent width must be different for
the lowest-order modes than for higher-order modes.

When the author was casting about for a method of expressing this
change, E. A. Marcatili pointed out. that there is a characteristic radial
distance at which the function describing the square-law medium’s
modes changes from an oscillating function to an exponentially decaying
function. These functions are the parabolic cylinder functions and the
value of 2 for the transition is*

(125)

where m is the mode index.

This was tried as an equivalent width, but was found to change much
more rapidly at small m than the actual increase in extent of the field
illustrated in I'igs. 11 and 12. By examining the radii at which the field
decreased to about 1 per cent of the peak value for various low-order
modes, it was found that (124) represents the variation quite well. Thus,
the general form (125), which is supported by the function theory for
the square-law medium, was modified to fit actual known field width
variations at small m. For large m, (124) and (125) do have the same
variation.

The method of defining the equivalent width, outlined in the body
of the paper in connection with (59), causes media with higher than
square-law variations in index to merge smoothly into the known be-
havior of the step-change index variation including the gradual disap-
pearance of the factor b.
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