B.S.T.J. BRIEFS

An Observation Concerning the Application of the Contraction-Mapping Fixed-Point Theorem, and a Result Concerning the Norm-Boundedness of Solutions of Nonlinear Functional Equations

By I. W. SANDBERG

(Manuscript received July 20, 1965)

PART I

Let \mathfrak{B} denote a Banach space over the real or complex field \mathfrak{F} . Let $\Theta(\mathfrak{B})$ denote the set of (not necessarily linear) operators that map \mathfrak{B} into itself, with I the identity operator, and let ||T|| denote the "Lipshitz norm" of T for all $T \in \Theta(\mathfrak{B})$ (i.e.,

$$||T|| \triangleq \sup_{\substack{x,y \in \mathfrak{B} \\ ||x-y|| \neq 0}} \frac{||Tx - Ty||}{||x - y||}$$
).

Observation:

Let A and B belong to $\Theta(\mathfrak{B})$, and let $g \in \mathfrak{B}$. Suppose that there exists $c \in \mathfrak{F}$ such that (i) $(I+cA)^{-1}$ exists on \mathfrak{B} , (ii) $||A(I+cA)^{-1}||$ and ||B-cI|| are finite, and (iii) $||A(I+cA)^{-1}|| \cdot ||B-cI|| < 1$. Then \mathfrak{B} contains exactly one element f such that g=f+ABf. (It can be verified that under our assumptions, $f \in \mathfrak{B}$ satisfies g=f+ABf if and only if f satisfies

$$g = f + A (I + cA)^{-1} [(B - cI)f + cg].$$

For the special case in which A is a linear operator, this result is well known* and has been applied often in the engineering literature [see, for example, Ref. 2]. The fact that it can be generalized as indicated suggests that the scope of its range of applicability to engineering problems can be extended significantly.

^{*} The linearity of A plays an essential role in all of the previous proofs known to this writer. See, for example, Ref. 1.

PART II

Let $\mathfrak K$ denote an abstract linear space, over the real or complex field $\mathfrak K$, that contains a normed linear space $\mathfrak L$ with norm $\|\cdot\|$. Let Ω denote a set of real numbers, and let P_y denote a linear mapping of $\mathfrak K$ into $\mathfrak L$ for each $y \in \Omega$, such that $\|P_yh\| \leq \|h\|$ for all $h \in \mathfrak L$ and all $y \in \Omega$. We say that a (not necessarily linear) operator T is an element of the set Θ if and only if T maps $\mathfrak K$ into itself and $P_yT = P_yTP_y$ on $\mathfrak K$ for all $y \in \Omega$. The symbol I denotes the identity operator on $\mathfrak K$.

Proposition:†

Let A belong to Θ , and assume that A maps the zero-element of $\mathfrak L$ into itself. Let B map $\mathfrak K$ into itself. Let $f \in \mathcal K$, and let g = f + ABf. Suppose that there exists $\lambda \in \mathfrak F$ such that

- (i) $(I + \lambda A)$ is invertible on \mathfrak{K} , $(I + \lambda A)^{-1} \varepsilon \Theta$, and $A(I + \lambda A)^{-1}$ maps \mathfrak{L} into itself
- (ii) $\eta_{\lambda} \triangleq \sup \{ \| A (I + \lambda A)^{-1} h \| / \| h \| : h \in \mathcal{L}, h \neq 0 \} < \infty$
- (iii) there exists a nonnegative constant k_{λ} and a function $p_{\lambda}(y)$ with the property that

$$||P_y(B - \lambda I)f|| \le k_\lambda ||P_y f|| + p_\lambda(y)$$
 for all $y \in \Omega$

(iv) $\eta_{\lambda}k_{\lambda} < 1$.

Then

$$||P_{y}f|| \le (1 - \eta_{\lambda}k_{\lambda})^{-1}[(1 + |\lambda| \eta_{\lambda}) ||P_{y}g|| + \eta_{\lambda}p_{\lambda}(y)]$$

for all $y \in \Omega$.

Proof:

Let
$$y \in \Omega$$
. Then, since $Bf = (I + \lambda A)^{-1}[(B - \lambda I)f + \lambda g]$, we have $P_y f = P_y g - P_y A (I + \lambda A)^{-1}[(B - \lambda I)f + \lambda g]$
= $P_y g - P_y A (I + \lambda A)^{-1} P_y[(B - \lambda I)f + \lambda g]$,

and hence

$$|| P_{y}f || \leq || P_{y}g || + \eta_{\lambda} || P_{y}[(B - \lambda I)f + \lambda g]||$$

$$\leq || P_{y}g || + \eta_{\lambda} || P_{y}(B - \lambda I)f || + |\lambda| \eta_{\lambda} || P_{y}g ||$$

$$\leq (1 + |\lambda| \eta_{\lambda}) || P_{y}g || + \eta_{\lambda}k_{\lambda} || P_{y}f || + \eta_{\lambda}p_{\lambda}(y),$$

which establishes the proposition.

[†] This proposition is a generalization of a result proved in Ref. 3, and is of considerable utility in stability studies of nonlinear physical systems.

Comments:

Consider the important special case in which: $\mathfrak X$ denotes the set of real-valued locally-square-integrable functions on $[0,\infty)$, $\mathfrak L$ denotes the space of real-valued square-integrable functions x on $[0,\infty)$ with norm

$$||x|| = \left(\int_0^\infty x(t)^2 dt\right)^{\frac{1}{2}},$$

 $\Omega = [0, \infty)$, and P_y is defined by

$$(P_y h)(t) = h(t),$$
 $t \in [0, y]$
= 0, $t > y$

for all $h \in \mathcal{K}$. Suppose that A is defined on \mathcal{K} by

$$(Ah)(t) = k_0h(t) + \int_0^t [k_1(t-\tau) + k_2(t-\tau)]h(\tau)d\tau$$

for all $h \in \mathcal{K}$, where k_0 is a real constant, k_1 and k_2 are real-valued measurable functions on $[0, \infty)$, with k_1 bounded on $[0, \infty)$ and k_2 integrable on $[0, \infty)$.

Let

$$K(s) = k_0 + \int_0^\infty [k_1(t) + k_2(t)]e^{-st} dt$$

for $\sigma \triangleq \text{Re}[s] > 0$, and, with λ a real constant, assume that

$$\sup_{\sigma>0}\left|\frac{K(s)}{1+\lambda K(s)}\right|<\infty.$$

Then, with the aid of some known results⁴ from the theory of Fourier transforms, it can be proved that

- (i) $(I + \lambda A)^{-1} \varepsilon \Theta$, and $A(I + \lambda A)^{-1}$ maps $\mathfrak L$ into itself,
- (ii) there exists a zero-measure subset $\mathfrak N$ of $[0,\infty)$ such that

$$\lim_{\sigma \to 0+} \frac{K(\sigma + i\omega)}{1 + \lambda K(\sigma + i\omega)}$$

exists for all $\omega \in \widetilde{\mathfrak{N}} \triangleq [0, \infty) - \mathfrak{N}$,

and

(ii)
$$\eta_{\lambda} \stackrel{\triangle}{=} ||A(I + \lambda A)^{-1}|| = \operatorname{ess \, sup}_{\omega \, \varepsilon \, \widetilde{\mathfrak{I}}} \left| \lim_{\sigma \to 0+} \frac{K(\sigma + i\omega)}{1 + \lambda K(\sigma + i\omega)} \right|.$$

These facts can be used to extend some of the results of Ref. 3 to a more

general class of integral equations. For example, let B denote the mapping of \mathfrak{K} into itself defined by the condition that (Bh)(t) = b(t)h(t)for all $t \geq 0$ and all $h \in \mathcal{K}$, where $b(\cdot)$ is a real-valued measurable function with the property that there exist real numbers α and β such that $\alpha \leq b(t) \leq \beta$ for all $t \geq 0$. With $g \in \mathcal{L}$, let g = f + ABf with $f \in \mathcal{K}$. Let k_1 be a constant, and let

$$K(s) = k_0 + s^{-1}k_1 + \int_0^\infty k_2(t)e^{-st}dt$$

for all $s \in S \subseteq \{s: s \neq 0, \sigma \geq 0\}$. Suppose that

$$1 + \frac{1}{2}(\alpha + \beta)k_0 \neq 0$$

$$1 + \frac{1}{2}(\alpha + \beta)K(s) \neq 0 \quad \text{for all } s \in S,$$
(1)

and

$$\frac{1}{2}(\beta - \alpha) \sup_{\omega > 0} \left| \frac{K(i\omega)}{1 + \frac{1}{2}(\alpha + \beta)K(i\omega)} \right| < 1.$$
 (2)

Then, an application of the proposition shows that $f \in \mathcal{L}$. This result, which is concerned with feedback loops containing a pure integrator, cannot be proved as an application of the result similar to our propositions given in Ref. 3, because there A is assumed to map \mathcal{L} into itself.

REFERENCES

- 1. Anselone, P. M., Nonlinear Integral Equations, Univ. of Wisconsin Press, 1964, pp. 152–153.
- Sandberg, I. W., On Truncation Techniques in the Approximate Analysis of Periodically Time-Varying Nonlinear Networks, IEEE Trans. Ckt. Theory, CT-11, June, 1964, p. 195.
 Sandberg, I. W., Some Results on the Theory of Physical Systems Governed by Nonlinear Functional Equations, B.S.T.J. 44, May-June 1965, p. 871.
 Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Oxford University, Pages 1962, pp. 1951, 1989.
- University Press, 1948, pp. 125, 128.