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PART I

Let ® denote a Banach space over the real or complex field F. Let
0(®) denote the set of (not necessarily linear) operators that map ®
into itself, with I the identity operator, and let | 7' | denote the
“Lipshitz norm” of T for all T ¢ 6(®) (ie,

T 2 sup
T2 swe =]

llz=ul1%0

Observation:

Let A and B belong to ©(®), and let g ¢ ®. Suppose that there exists
¢ & § such that (i) (I + ed)™" exists on ®, (ii) || A + ¢4 )| and
| B — I || are finite, and (iii) | A (7 + ¢A)7'||-[| B — ¢l || < 1. Then
® contains exactly one element f such that ¢ = f + ABf. (It can be
verified that under our assumptions, f ¢ ® satisfies ¢ = f + ABf if
and only if f satisfies

g=F+AU+cA) (B —ecf + cgl)

For the special case in which A is a linear operator, this result is well
known* and has been applied often in the engineering literature [see,
for example, Ref. 2]. The fact that it can be generalized as indicated
suggests that the scope of its range of applicability to engineering prob-
lems can be extended significantly.

* The linearity of A plays an essential role in all of the previous proofs known
to this writer. See, for example, Ref. 1.
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PART II

Let & denote an abstract linear space, over the real or complex field
%, that contains a normed linear space £ with norm | - |[. Let © denote
a set of real numbers, and let P, denote a linear mapping of X into £
for each y £ @, such that || Ph|| < ||A| forall h ¢ £ and all y £ Q.
We say that a (not necessarily linear) operator 7' is an element of the
set © if and only if T maps X into itself and P,T = P,TP, on X for
all 4 £ Q. The symbol I denotes the identity operator on X.

Proposition: t

Let A belong to 6, and assume that A maps the zero-element of £
into itself. Let B map X into itself. Let f ¢ &, and let ¢ = f + ABf.
Suppose that there exists A £ ¥ such that

(i) (I + AA)isinvertibleon X, (I +AA) "¢ 0,and A (I 4+ A4)~"
maps £ into itself
() masup{| AT +NA)TR| /| h]:he,h#0 <
(iii) there exists a nonnegative constant &y and a function p,(y)
with the property that

[ Py(B = MOf | = I || Puf || 4+ pa(y) for all y £ @
(iv) mh < 1.
Then
[PS] = (1= mk)TA + [N m) [| Pug || + mon ()]
for all y ¢ Q.

Proof:

Let y £ Q. Then, since Bf = (I + A )7'[(B — A)f + \g], we have
Pjf=Pg— PAI +2)[(B — N)f + M]
= Pyg — P,A(I +XA)7'P,[(B — M)f + M),

and hence

” Pvf” = “ P ” + m ” Py[(B - )\I)f+ 7\9]”
| Pug || + m || P,(B—=ADF||+ |N|m| Pyl
L+ X[ Pyl + mba || P || + mpoa (),

which establishes the proposition.
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_ T This proposition is a generalization of a result proved in Ref. 3, and is of con-
siderable utility in stability studies of nonlinear physical systems.
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Comments:

Consider the important special case in which: X denotes the set of
real-valued locally-square-integrable functions on [0, ), £ denotes the
space of real-valued square-integrable functions @ on [0,% ) with norm

el = ([ ewrar),

Q = [0,% ), and P, is defined by
(Pyh)(t) = h(t), te]0,y]
=0, t >y
for all b e ®. Suppose that A is defined on X by

(AR)(1) = keh(D) + f lea(t — 1) + kot — 2)Ih(r)dr

for all h ¢ X, where kg is a real constant, &, and k. are real-valued meas-
urable funetions on [0, ), with k; bounded on [0, ) and k. integrable
on [0, ).

Let

K = kot [ " D) + (0] dt

for ¢ A Re[s] > 0, and, with X a real constant, assume that
K(s)
1 4+ AK(s)

Then, with the aid of some known results’ from the theory of Fourier
transforms, it can be proved that

(i) I +24)" e 0,and A (T + A4)™" maps £ into itself,
(i) there exists a zero-measure subset 9 of [0, ) such that

lim K(o 4+ iw)
eiop L+ AK (o + tw)
exists for all w £ 5t & [0, ) — €,

sup < ®

a>0

and

.. A T : Ko + iw)
(1) m & ([ AT + )T = ess sup | lim 350 |-

These facts can be used to extend some of the results of Ref. 3 to a more
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general class of integral equations. For example, let B denote the map-
ping of & into itself defined by the condition that (Bh)(t) = b(t)A(¢)
for all t = 0 and all h ¢ X, where b(-) is a real-valued measurable func-
tion with the property that there exist real numbers « and 8 such that
a =b(t) £Bforalt=0 Withge £, let g =f+ ABf with [ ¢ %.
Let %, be a constant, and let

K(s) = ko + 5% + f fo(1) 6"l

forall se 84 {s:s # 0,0 = 0}. Suppose that

14+ 3(a+ Bk #0 (1)
14+ 3(a+ B8)K(s) #0 for all s ¢ 8§,

and

1/a _ K(iw)
3B = ) sup | R Gy | < (2)

Then, an application of the proposition shows that f ¢ £. This result,
which is concerned with feedback loops containing a pure integrator,
cannot be proved as an application of the result similar to our prop-
ositions given in Ref. 3, because there A is assumed to map £ into itself.
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