Energy Reception for Mobile Radio

By E. N. GILBERT
(Manusecript received July 2, 1965)

Statistical properties are derived for mathematical models of the multipath
Sfading encountered in mobile radio. These properties are used to compare
some recewing systems which use several antennas to combat fading. Par-
ticular attention is given to a system of J. R. Pierce which has eleciric
and magnetic dipole antennas and computes the electromagnetic energy
density at a point. The statistical properties considered here include energy
density distribution functions, correlation coefficients, and the power spec-
trum of the energy densily observed al a moving point.

I. INTRODUCTION

A radio signal may reach a receiver via several paths because of
reflections from nearby objects. If the receiver is a mobile radio instal-
lation, the received field strength may fluctuate wildly because the
reflected waves add with changing relative phases as the receiver moves.
J. R. Pierce* has suggested a way to combat these fluctuations by
using three antennas.

As background for Pierce’s idea consider the standing wave pattern
produced when a plane wave is reflected at normal incidence from a
large wall. An electric dipole antenna moving toward the wall finds
nulls in the electric field repeated at half-wavelength intervals. However,
these nulls occur at maxima of the magnetic field. In fact, the total
electromagnetic energy density & (¢ | B |* + u | H |*) is constant through-
out the pattern.

In Pierce’s scheme, the transmitter radiates a vertically polarized
wave. The receiver carriers a vertical electric dipole antenna and also
a pair of loop antennas with axes perpendicular to each other and to
the dipole. These three antennas receive the three nonzero field com-
ponents K,, H., and H,. The three antenna signals enter separate
square-law detectors and the three detector outputs are added to

* Private communication,
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obtain L (e | B. |* + p | H.|" + u| Hy ") = ¢r, the total energy den-
sity. If the signal is amplitude modulated, the receiver may compute
¥7* in order to achieve linear detection.

The output of this energy receiver remains constant as the receiver
moves through the above-mentioned standing wave pattern near a
wall. In more complicated interference patterns the total energy density
does fluctuate, although hopefully not as much as the electric energy
density alone. This paper examines some superpositions of vertically
polarized plane waves in order to compare the energy receiver with a
receiver which observes only the electric field. Two other receivers
are examined briefly in Section V. One is a diversily receiver which has
two or more electric dipole antennas and a switching system to select
the antenna with the strongest signal. The second squares and adds
the outputs of several electric dipoles.

Most of the analysis in this paper applies slightly more generally
to a weighted energy detector which combines the electric and magnetic
energy densities with weight factors 2d and 2b to obtain de| E | +
bu | H |* (this is the energy density ¢rif d = b = §). Sections III and
IV show that certain unequal weights have some slight advantages.

In order to imitate the haphazardness of real mobile radio inter-
ference patterns most of the field models which follow assume waves
with randomly chosen amplitudes, phases, and directions of propaga-
tion. Section IV finds probability distributions for the weighted energy
density. At wavelengths longer than about 0.2 meters, such distributions
might be used to predict the fraction of time that the signal will fade
beyond the range of the receiver’s AVC action. At shorter wavelengths,
a fast automobile encounters fluctuations which have appreciable
components at audible frequencies. Then questions about spectra
(Section VIII) and correlations (Section VII) arise.

Fig. 1 shows the energy density as a function of position when four
waves superimpose. The four waves had equal amplitudes but the phases
and directions were chosen to typify some of the random models which
follow. The propagation directions made angles of 0°, 60°, 140°, and 260°
which were measured clockwise away from a horizontal direction.
Table I gives the code for interpreting the printed symbols as energy
densities in db above the mean level. The square in Fig. 1 is 3.6 wave-
lengths on a side. Fig, 2 uses the same four waves and the code of
Table I to depict the electric energy density alone. It is immediately
apparent that Fig. 2 represents a more violent function than TFig. 1.
The peaks are higher (usually above 4 db), the valleys are deeper (often
below —13 db), and intermediate levels are relatively scarce.
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Fig. 1 — Total energy density of four superimposed waves.
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TaBLE | — INTERPRETATION OF Figs. 1 AND 2

Symbol Interpretation
blank below —13 db
0 between —13 db and —10 db
] @ —10 ¢ ¢ 7
1 113 7 6 & _ B &
, 1] -5 113 « _3 ¢
2 i —3 ¢ e ]
- 13 _1 i N 0 i
3 i 0 (13 (13 l i
/ 13 1 i 13 2 11
4 1 2 13 ‘e 4 i
+ above 4 db

II. NOTATION

Fields will be functions of Cartesian coordinates (z,y) in a horizontal
plane. The propagation direction of a vertically polarized wave will be
specified by a unit vector v = (u., u,). Let P be the radius vector to
a point in the (x,y) plane. At P, the following are the nonzero field
components of a wave propagating in direction u:

E, € *4 exp { —iBu-P)
H, = u A exp | —iBu- P)
H, = —pu u A exp [ —1iBu- P

where 2r/8 is the wavelength and A is a complex amplitude. All fields
depend on time through a complex factor exp iwt which will be sup-
pressed. The factors containing the dielectric constant e and permeability
u were inserted to simplify the expressions for energy density. When
waves from directions u,v,w, --- are added, their amplitudes will be
called 4 (u),A (v),A (w), --- . Most of this paper is concerned with the
weighted energy density

Y(P) = d| > A(u) exp — Bu-P ]2
+ b ZA (u)u, exp — 18u-P i? (1)
+ b| 20A (w)u, exp — iBu-P [

The coefficients d and b in (1) will always be nonnegative and will satisfy
d + b = 1. Let ¢&(P) and ¢5(P) denote the electric and magnetic
energy densities at P; then ¢ (P) = 2dyx(P) + 2byx(P). The choice
d = b = } makes ¢ (P) the total energy density ¢+ (P); ¢ (P) can also
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become 2¢x(P) or 2¢,(P) if one adopts the extreme values d = 1 or
b = 1. Another form of (1) is

Y(P) = 2 AW)A*(v)(d + bu-v) expiB(v — u)-P (2)

where * denotes complex conjugate.

The average level Y, about which ¢ (P) fluctuates, may be defined as
the limit as B — o« of the average of ¢ (P) over a circle of radius R.
In the limit, terms of (2) with v # u contribute zero to the average.
Thus, if no two propagation directions are the same the average level is

o= 2

u

Au) 3)

Whend = 1orb = 1, (3) shows that the average electric and magnetic
energy densities are each 3y .

According to (3), Yo does not depend on d and b. The influence of d
and b on some properties of the multipath fluctuations will be examined
in subsequent sections, and (3) guarantees that the average detector
output remains constant as d and b vary. When making such compari-
sons it must be recognized that the random noise received by the system
may depend on d and b. For example, if the three antennas receive un-
correlated noises of equal power the noise output of the detector is
proportional to d + 2b.

III. NULLS

Since three complex equations E, = 0, H, = 0, H, = 0 must hold
simultaneously at a point of zero energy density, it is not obvious when
such a zero is possible. This section gives some examples of zeros.

When fewer than four waves add, no two having the same direction
of propagation, no point can be a point of zero energy density. A proof
of this fact is given in Appendix A. However, it is not necessarily de-
sirable to have only a small number of waves. For example, consider
two waves propagating in directions which differ by an angle ¢, say u =
(cos 18, sin 3¢) and v = (cos 39, —sin 3#). Suppose the amplitudes are
equal in magnitude but differ in phase by 8, say

A(u) = exp (ilp +8)), A@) = exp (ip).
At a point P = (x, y), (1) and (3) show that
v(P) = ol + (d + b cos &) cos (5 — 2By sin 38)}. 4)
Note that ¢ (P) attains its minimum value ¢o {1 — |d + b cos ¢ |}
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along the family of lines
(28 sin £4)y = 6 + multiple of =. (5)

The “multiple” in (5) must be odd if d + b cos & > 0 and even if d +
b cos 9 < 0. The (positive) minimum value can be arbitrarily small if
¢ is small enough.

It is interesting to compare the weighted energy density (4) with the
electric energy density ¥z (P). When d = 1, (4) becomes

ve(P) = {1 + cos (5 — 28y sin 34)} (6)

a function which vanishes along the lines (5).

Equation (4) may be used to help decide a good choice of the coeffi-
cients d,b for a detector. Imagine the two waves produced at random in
such a way that the angle ¢ and relative phase & are independent random
variables, both having probability density (2«)~"in the interval (0, 2r).
One wants ¢ (P) to fluctuate as little as possible. The variance of the
random variable ¢ (P) is one measure of fluctuation. From (4) one ob-
tains a variance

Ef|¢(P) — W} = 30 {d" + §b)

which has its minimum when d = %, b = %. Alternatively, one might
prefer to pick d and b so that the expectation of the minimum value
1 — |d+ bcosd | of ¢(P) is as large as possible. This condition re-
quires d and b to minimize E{ | d + b cos ¢ | }. The calculation given in
Appendix B shows that the minimizing d and b are d = 0.40, b = 0.60.
Although both criteria suggest that the magnetic energy density be
weighted more than the electric energy density, both minima are so
broad that an energy detector with d = b = } does almost as well.

It is possible to have ¢ (0) = 0 when waves from four different direc-
tions superimpose. For example, take the propagation directions along
the 4+, +y coordinate axes

w=(10), v= (1), —u=(=10), —v=(0,—1)
and let the amplitudes be
Au) = A(—u) = 1, A@) = A(—v) = —1.
At the point P = (z, y),
¥(P) = yuofd(cos Bz — cos By)* + b(sin® Bz + sin’ By)].
Zeros are spaced A/4/2 apart in this pattern if b 7 0. However the
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electric density is much worse,
Ve (P) = 3yofcos Br — cos By}”.

The zeros of ¥ () are not isolated, they occupy two orthogonal families
of parallel lines.

IV. ENERGY DISTRIBUTION FUNCTIONS

Three real parameters specify a wave, say the angle ¢ between » and
the z axis, and the modulus | A (¢) | and phase of the complex amplitude
A(w). This section discusses some models which pick at random the
3N parameters of N interfering waves. In every case the N phases are
chosen independently with constant probability density (2x)' in the
range (0,27). As a result, the models are stationary with respect to
translations of the (a,y) coordinate system. In particular the probability
distribution function of ¥ (P) is the same for all points P; to simplify
the analysis take P = 0, the origin. The distribution function

F(y) = Prob {¢(0) = ¥}

is the probability that the detector of a mobile radio station produces
an output less than y. In this section, the N waves have roughly the
same statistical properties. By contrast Section VI considers a model in
which one of the waves represents a strong wave direct from the trans-
mitter.

In the first model the number of waves is N = 3. The N propagation
vectors u, , - - - , uy are not random. They are equally spaced around the
unit cirele; u, makes angle 27k /N with the positive x-axis. Each complex
amplitude A («) will have the form A (u) = R(u) + I (x) where the
2N real numbers R (w,), -+, R(ux), I (w), -+, I (uy) are supposed
independent Gaussian random numbers with mean 0 and variance 1.
Another way to obtain the same random process is to pick moduli
A(u) |, -+ ,| A(ux) | independently from a Rayleigh distribution
and the N phases independently with constant density (2x)™" in the
range 0 to 2r.

According to (3), the average of ¢ (P) over the plane is

Yo = 2R () + D (u)

so that the expected average is

¥ = E{) = 2N. (@)
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Appendix C derives the distribution function
F) =1—c'exp (—y//d)
+ (c— 1) {c+ 1+ 2¢/d} exp (—2¢'/b)

where ¢ = 2d/(2d — b) and ' = ¢/§. Note that the number of waves
N enters (8) only through the normalizing factor ¢ = 2N. The distribu-
tion function for the total energy is (8) with ¢ = 2. From the limiting
casesd = 1 and d = 0 of (8) one obtains distribution functions for the
electric and magnetic energy densities.

Prob {¢x(0) = (I} =1 — exp (—¢)
Prob {yx(0) < GI)¥} =1 — 1+ 2¢') exp (—2¢).

Curves EN and TN in Fig. 3 show the distributions of electric and total
energy densities plotted in db above their respective mean average
levels. The electric energy density has a much higher probability of
being small than the total energy density. A curve for the magnetic
energy density will be given in Section V.

The distribution obtained for ¢z (0) implies that the electric field
strength | E. | has a Rayleigh distribution. In this respect, the model
agrees with some experimental data of W. R. Young® (see in particular
his Fig. 5).

For small values of , (8) becomes

Fy) = @) b3+

with missing terms - - - of order 0@W™) (see (24)). To make small values
of ¢ as unlikely as possible, one may minimize d_'b~" by picking d = 1,
b = 2. Recall that these values had another minimizing property in
Section ITI. Again the advantage over using d = b = 1 is slight. If the
curve for d = §, b = % were plotted in Fig. 3 it would lie about  db to
the right of the total energy density distribution curve. Equation (8)
becomes indeterminate when d = §, b = 3. However, in this special case,
¢ (0) has a chi-squared distribution of six degrees of freedom

Fy) =1— 1+ 3¢ + 33y)") exp — 3¢

Part of the variability of ¥ (0) comes from the randomness of the
average value y, . For any particular choice of the wave amplitudes,
Yo will not be exactly §; the distribution of ¥ (0) /s might have been
more relevant. However, ¢, has a chi-squared distribution with 2N de-
grees of freedom and so has high probability of being close to ¢, say
within 0.5 db, especially when N is large.

(8)
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Fig. 3 — Probability distribution functions for energy densities.

The simple form of the distribution (8) results from the special ran-
dom process which picks the amplitudes and directions. One might
prefer to choose directions independently at random with probability
#/27 of making an angle less than ¢ with the z-axis. Other amplitude
distributions also suggest themselves. It seems reasonable to continue to
insist on independent amplitudes with random phases but one might
use equal moduli | 4 () | or another modulus distribution instead of the
Rayleigh distribution. Undoubtedly F (¢) will be a more complicated
function of N in these cases. However, (8) must still apply in the limit
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of large N. For example, let M be an integer approximately equal to
N'. Let v, -+, v be M unit vectors equally spaced around the unit
cirele. For each wave direction  find the vector «’ in the list o, , 22, - - -,
v » which approximates w as closely as possible (and so to within angle
w/M). If N is large, one makes only a small error in ¥ (0) by replacing
each true direction u in (1) by its approximation u’. This approxima-
tion replaces the waves with random directions by waves with M equally
spaced directions. For ¢ = 1, ---, M the approximating waves with
direction v; add up to a single wave, say with amplitude 4’ (;). The
central limit theorem shows that the real and imaginary parts of A’ (v;)
have approximately Gaussian distributions when N is large. Then the
assumptions leading to (8) hold again.

Limiting results may be misleading if applied when the number of
waves is small, as may be typical in mobile radio. Curves T2 and E2 of
Fig. 3 show distributions for the total energy density and electric energy
density (plotted in db above their mean values) for a superposition of
two waves with equal moduli, random phases, and random directions.
The distribution of total energy density ¢»(0) was obtained numerically
using (4) with d = b = ; ¢+ (0) was evaluated for 200 equally spaced
values of ¢ and 200 equally spaced values of 5. A histogram of the 40,000
numbers was compiled to get the distribution. The electric energy dis-
tribution is easily derived from (6):

Prob {y5(0) = (3¢} = =" arc cos (1 — ¢')

(see Margaret Slack® for the electric energy distribution when other
numbers of random waves of equal moduli combine). The curves show
that the case of two waves of equal moduli is much worse for mobile
radio than the case of waves with Rayleigh distributed moduli. Never-
theless total energy detection is again much better than electric energy
detection.

When more than two waves of equal moduli, random phases, and
random directions combine, the total energy density ¢-(0) depends on
many random parameters. To find its distribution function by a nu-
merical integration of the kind used for two waves would be much too
costly. A computer experiment was used instead. Using pseudo-random
numbers to pick phases and directions, the computer generated a se-
quence of field components for independent plane waves. After com-
puting each new wave the computer found for N = 2, ---, 10, the
energy density in the sum of the N most recently computed waves.
After 10,009 waves, the computer had compiled histograms of the energy



ENERGY RECEPTION FOR MOBILE RADIO 1789

densities in sums of 2, 3, - -+, 10 waves, each based on 10,000 random
samples. The same wave appeared in N consecutive sums of N waves;
then samples closer together than N were not independent. However,
the estimate of F () is at least as good as if the experiment had 10,000/N
independent samples.

Table II summarizes this experiment and compares the observations
with theoretical predictions based on the curves in Fig. 3. The numbers
observed agree surprisingly well with (8) even when N = 3. A compari-
son of the theoretical and observed numbers for N = 2 gives an idea of
the accuracy of the experiment.

V. RECEPTION USING M ELECTRIC DIPOLES

Let m vertical dipole antennas be placed at points Py, -+, Pn.
Using switched diversity reception the received signal energy density is

¥p = max {Y&(P1), - -, ¥=(Pum)}.

Another possibility is to square the antenna signals and add them
(additive diversity); then the detector output is

Vs = ¥e(Py) + ¢e(P2) + -+ + ¢ (Pn).

Py, +++, P, will be assumed spaced so far apart that the fields at
these points may be considered independent random variables. If there
are N waves generated at random by the first model of Section III, then
each term Y (P;) is a random variable with the chi-squared distribution
of two degrees of freedom and mean N.

TasLE Il — Fracrion or Sums or N Waves oF ENERGY DENsSITY
=< . SampLE Size 15 10,000

N=12 N=2 N=3 N = =
ivl;l/ﬁ‘% theor obs obs ob55 N obsm ﬂ“(g
—16 0.0057 0.0066 0.0002 0 0 0.00008
—14 0.0091 0.0084 0.0002 0.0003 0 0.0003
—12 0.0144 0.014 0.0004 0.0003 0.001 0.0011
—10 0.0232 0.025 0.0004 0.002 0.003 0.0042
—8 0.0376 0.038 0.006 0.009 0.010 0.0144
—6 0.0614 0.063 0.030 0.033 0.047 0.0459
—4 0.1037 0.104 0.105 0.120 0.117 0.1301
-2 0.1851 0.185 0.227 0.270 0.296 0.3103
0 0.5000 0.500 0.530 0.574 0.584 0.5869
2 0.8908 0.891 0.882 0.853 0.849 0.8484
4 1 1 0.995 0.989 0.979 0.9742
6 1 1 1 1 1 0.9986
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The distribution function for ¥ p is
Fp(¥) = Prob (4 < ¢) = I Prob {y=(P:) = ¥}
= {1 — exp (—y¢/N)}"

The mean of ¢ p is

m

b= [ 0= Faiaw = 3 () <0

k=1
Form = 1,2, -+, 5, ¥pis N,3N/2, 11N /6, 25N /12, 137N /60. Then
Fp@) = {1 — exp (—3¢/2¢p)}" when m = 2
Fo(y) = {1 — exp (—11¢/6¢5)}°  whenm = 3, ete.

Y5 has the chi-squared distribution with 2m degrees of freedom and
mean Nm. Fig. 4 shows the distribution function of ¢ 5 with m = 2, 3,
5, and 8. The curves for the distributions of ¥, and y, lie very close and
so the curves for ¢ , were not added to Fig. 4.

When m = 3 the distribution funetion of ¢4 is exactly the same as
the one for the weighted energy density ¢ (0) withd = % and b = 2.
As noted in Section IV, this distribution function is slightly better than
the one for the energy density (d = b = 1) at small values of .

In Section IV, the two magnetic field components H,(0) and H, were
found to be uncorrelated. Then the distribution function of the magnetic
energy density at zero follows the curve labeled m = 2 in Fig. 4.

VI. STRONG DIRECT WAVE

Section IV presented extreme cases in which the waves are all roughly
of comparable strength. In this section another wave, stronger than the
others, will be added to represent a ‘“‘direct” wave of amplitude R. It is
no longer easy to derive F (¢) exactly. However, the asymptotic form of
F () for small values of ¢ is derived in Appendix C using the first model
of Section IV. This result (25) assumes a convenient form in terms of
the quantity

c=2N/§ =1— R/}

which represents the fraction of the expected weighted energy density ¢
contributed by the N scattered waves. When N and R are expressed in
terms of ¥ and ¢ the final result is

F@) = @®)d b0 @/) exp —3(c" — 1) 9)

approximately for small .
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Fig. 4 — Probability distribution function for the sum s of the electric energy
densities at m points.

The case B = 0, or ¢ = 1, was discussed in Section IV. When 0 <
¢ < 1, (9) contains the extra factor

s lexp — 3(c ' — 1)

which is less than 1 and approaches 0 with decreasing ¢. One concludes
that F () is then smaller than the value given by (8); i.e., deep minima
tend to be less frequent when a direct wave is present. For example, if
seattered waves account for only half the received weighted energy
density (¢ = 1), the probability of receiving less weighted energy
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density than y is only 8 exp — 3 = 0.40 times the probability (8) for

g =1.

VII. CORRELATION COEFFICIENTS

This section finds correlation coefficients between various pairs of
energy densities. The correlation coefficient between ¢ (0) and ¢ (P)
indicates whether a receiver traveling from 0 to P will find very different
weighted energy densities at the two points. The correlation coefficient
between Y (0) and ¥z (P) might be used to decide whether 0 and P are
good locations for two electric dipole antennas in a diversity system;
one would want low or negative correlation. For similar reasons, corre-
lation coefficients involving the magnetic energy density yz(P) =
¢ (P) — ye(P) are interesting.

The waves in this section are produced by a random process slightly
more general than the one used to get Table I. The N propagation
directions and N phases are chosen at random and independently as in
Section IV. The moduli | A (ui(|, -+, | A (ux) | are now chosen in-
dependently from a common probability distribution. It is not necessary
to know the distribution in detail. Only the expected values of the second
and fourth powers E(| A4 |*), E(| A |') enter into the correlation co-
efficients. To facilitate comparisons with Section IV, take E( | 4 | *) = 2.
Then the expected average weighted energy density is again

R. H. Clarke has also used this random process in an unpublished study
of some different correlations.
It will be convenient to express the fourth power moment as

E(|A]") =4+ 3,

so that Z* is the common variance of the squared moduli. When the
moduli are all the same, | A (u;) | = 2! i =1, .., N, and the variance
=* is zero. When moduli have the Rayleigh distribution, Z* = 4.

All the correlation coefficients of interest will be obtained as special
cases of a single result. Consider two weighted energy densities.

'1[’1 = 2d'¢/x (0) + 25"’5(0)
and

Yo = 2Dy (P) + 2Byx(P).

I
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Appendix D proves
E W) — EW@)E () = NZ* + 4N(N — 1) {dDJ¢ (Br)
+ (dB + bD)J\* (Br) (10)
+ 3B (J" (Br) + J2'(Br)))

where » = | P|. When D = d, B = b, and P = 0, then y» = ¢, and
(10) becomes the variance of ¢,

Varyy = NZ° + (4d° + 20" )N(N — 1). (11)
Likewise,
Varys = NZ° + (4D 4+ 2B )N(N — 1). (12)
The coefficient of correlation between y; and y» is
p = {EW) — EW:)E @)}/ (Var g Var yu}’, (13)

which may be evaluated using (10), (11), and (12). The case of equal
moduli (Z* = 0) is especially simple because then (assuming N > 1)
the factors N (N — 1) cancel out and p does not depend on N, This is
the only case in which p — 0 as r — «; when Z* > 0 the average
weighted energy density ¥y is uncertain and so the energy densities re-
main slightly correlated even at points far apart. When N is large this
residual correlation is small and p approaches its value for equal moduli.

By choosing special values for d, b, D, and B, one can obtain correla-
tion coefficients of special interest:

prr = {3J¢ (Br) + 4J.°(Br) + J' (Br)}/3
pex = Jo (Br)

pun = Jo' (Br) + Jo*(8r)

per = ()7 (Br) + i (Br)}

pen = 2801 (Br)

pur = 3 {J(Br) + 207 (Br) + Ji(Br)).

Here the subscripts E,H,T indicate the kind of energy, electric, mag-
netic, or total, at the two points. For the sake of simplicity the coeffi-
cients have been given only in the special case of equal moduli (2* = 0)
or in the limit of large N. Some of the more interesting coefficients are
plotted in T'ig. 5.
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Fig. 5 — Coefficient of correlation between the energy densities at two points
separated by distance 7.

VIII. SPECTRA

When a receiver moves with constant velocity vector V, the received
energy density ¥ (V,t) is a random function of time. If one assumes the
model of Section VII, the autocorrelation function of ¢ (V) is known
and hence its power spectrum may be found. The power spectrum of
¥ (Vot) gives some idea of the frequencies at which the fluctuation noise
is likely to be strong. In particular cases, depending on the way that
the modulating signal is to be extracted from ¢ (P), the spectra of other
functions may be more important. For example, if an AM system is
used, one might prefer to know the power spectrum of ' (Vit). For
another kind of fading spectrum see J. F. Ossanna’. Ossanna combines
two random waves and derives the spectrum obtained at the output of
an envelope detector receiving the electric field.

For purposes of comparing power spectra it is convenient to nor-
malize them to make the total power unity. Appendix E takes the
Fourier transform of E{y (0)¢ (Vet)}/E {¢°(0)} to obtain a normalized
spectrum. In order to keep formulas simple, Appendix E and this sec-
tion consider only the case of large N.

The normalized power spectrum of y (Vi) contains a spectral line at
zero frequency which represents the carrier or desired signal. The power
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in this line is 1/(1 4+ d* + b*). Again the choice d = %, b = § maxi-
mizes this power. The rest of the spectrum is fluctuation noise distributed
with a speetral density function s(f). Fig. 6 shows this spectrum for the
total energy density and for the electric energy density. Both spectra
vanish when f is larger than a cutoff frequency

fl)= 2|Vn|/?\. (14)

Note that fo is the frequency of the fluctuations in electric energy den-
sity observed by a vehicle moving toward the wall in the interference
pattern described in Section I. When 0 < f £ fo, the spectral density
has an analytic expression (32) in terms of the complete elliptic integrals
K (z) and E(x). Let v = f/fy . Then

_ 16 2 A — _ 2 _ ot
s(f) —m{(ﬁi DK(A—)) —2Q=»)E(0 —»))} (15)
for the total energy density and

s(f) = K{Q — MY/ (=) (16)

for the electric energy density.
The fluctuation noise ¥ (Vt) appears to be less troublesome than
Yz (Vo) both because it contains less total power away from the carrier
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Fig. 6 — Power spectra of the energy densities Y(Vot) and ¢u(Vot) observed
by a vehicle moving with constant velocity V.
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and also because its spectrum is concentrated more toward low fre-
quencies. As Fig. 6 shows, the spectrum of ¥» (V) goes to 0 smoothly
at f = fu while the spectrum of (V) remains at a high level until it
drops to 0 discontinuously at f = fy.
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APPENDIX A

The impossibility of producing a zero by adding fewer than four waves

In what follows, waves must have nonzero amplitude and no two
waves may have the same propagation direction. It is clearly possible
for two or three waves with same direction to cancel if their amplitudes
add up to zero.

The condition for a zero at the origin (P = 0) is

0=v(0) = | ZA@) P+ | A + | T4 @]

or simply
0= ;A (u) = ;A (u)u. (17)
Consider first the case of two waves in different directions w and ». Then,
(17) becomes
A{u) + A@) = 0.
A@)u + A@) = 0.

The second (vector) equation requires that the unit vectors wu,y be
colinear. Since » cannot equal u, v = —u. Then

Au) + A@@) =0
Am) — A@) =0,

a system with no solution except the trivial one A (u) = A (») = 0.
When there are three waves with directions u,v,w, one may eliminate
A (w) from the system (17) to get

Aw)(u —w) + A@) @ — w) = 0.
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A (u) cannot be zero. Then

u=w-+al — w)

where a = —A (v)/A (u). Since |u |* = |w |* = 1, one finds

0=2mw (v —w)+d|v—wl|. (18)
Also,

0=2w-(@—w)+|v—wl| (19)
follows similarly fromv = w + (v — w) and | v |* = |w |* = 1. Use (19)

eliminate 2w- (v — w) from (18) and get

lv — wa(e — 1) = 0.
Since v # w and since @ # 0 (otherwise 4 (v) = 0), e = 1. However,
ifa=1,u=w+ 1(» —w) = v, a contradiction.

APPENDIX B

Weights which maximaize the expected minimum value of ¢ (P)

In the interference pattern (4) for two random waves, () attains a
minimum value

'pmin=‘r'/0{1_ |d+b(30519|}.

The expected value of ¥ win is
2T
E(Ymin) = ¥ {1 — (@2m)! f |d + bcos & | dd} . (20)
0

The evaluation of the integral in (20) requires two cases. First, if b =<
1 <d,|d+beosd|=d-+ bcosd and
E@min) = b, (b = d). (21)
Second, if d £ 3 £ b, let 9y = cos™' (d/b). Then
|d+bcos§i={d+bcosﬂ when | ¢ = 7 — &

—d — bcos ¢ otherwise
and

EWwin) = olb + @/m)dd -0 — &)}, (@ =) (22)

Fig. 7 shows E (Y min) plotted vs d. There is a broad maximum near
d=04,b = 06.
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Fig. 7— E(Ymin) and E(Ymw)/(d + 2b).

As mentioned in Section II, the received noise power will depend on
d and b. One might prefer to maximiz the expected minimum signal-to-
noise ratio. If the three antennas have uncorrelated noises of equal
powers one would then maximize E (Y min)/ (d + 2b). The dashed curve
in Fig. 7 shows that d = 0.45, b = 0.55 for the maximizing detector.

APPENDIX C

The energy distributions (8) and (9)

It is convenient to have a special notation for real and imaginary parts
of the field components at P = 0. S will always be a real part, J will
always be an imaginary part. Subscripts 1, 2, or 3 on S or J denote the
ﬁ;ald, either ¢! B, , u*H. , or u*H, . For example, the imaginary part of
uwH. is

J2 = Zuul(u).

Each of the six components S, , J1, Sz, J2, S3, J3 is a linear combina-
tion of the 2N Gaussian variables R(w), ---, I (ux). Then these six
variables have a joint Gaussian distribution, which is determined en-
tirely by its 21-second moments.

All second moments of the form E(S;J;) are zero. This follows be-
cause E(R(w)U(v)) = ERw))EI(v)) = 0 for all N* choices of
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u,v. Two other typical second moments are:

E(8:8;) = E[—ZR(R)R(U)‘U:}

= — Y wE[R (u))
.
= — Y cos (2rk/N),

and

E (S2S;)

E{— 2 R(u)R(v)up.)

.
uw

N

— —1 Y sin (4xk/N).

k=1
The identity
N .
oo a1 — exp (iNt)
zl: exp (ikt) = e 1 — exp (it)

can be used to prove that both are zero. In the first case set ¢ = 2r/N
and take the real part (recall that N = 3 is assumed). In the second
case take t = 4x/N and take the imaginary part. In like manner, one
eventually finds that the only nonzero moments are

E@Y) =EWUYD) =X 1=N

2 _ 2 _ 2 2wk 1 1 drk\
E(Sy) = E(J.) = sm—F_Z(§ §COST)_"’N
E(Ss) = EWJ) = Zcosz%f . Z(%{-%cosivjr_k) = 1N.

Note that these formulas hold only because N = 3. The cases N = 1
and 2 are different, having E(8)) = E(J5") = 0and E(8?) = E(J3) =
N.

The six parts of the field components are independent Gaussian
variables with joint probability density function

L(NT) "exp (=8 + Ji° + 2(8° + J.° + 8" + Ji)}/2N). (23)

Now note ¢ (0) = dt; + bt, where t;, = SE+ Jland b = S+ JF +
S:2 + J are two independent variables with chi-squared distributions.



1800 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1965

Then the desired distribution function is

F(y) = Prob (dt, + bty = ¢)
vib (y—btp)/d
= %N—a ty exp (—tz/N) -/u exp (—t1/2N)dt1di2.
0

An elementary integration produces the final result (8).

The asymptotic form of F () for small  can be obtained by differen-
tiating (8) or, more simply, by the following argument. According to
(23) the joint probability density of S, Ji, Sz, J2, Ss, J3 at the
origin is 4 (N7 ). The inequality ¥ (0) < ¢ defines a small ellipsoid

d(Sy’ + Ji°) + b(S" + J'+ S+ JF) = ¢
about the origin. This ellipsoid has six-dimensional volume
(=*/6)d”"b~".
The probability that (S;,Jy, -+, J3) lies in this ellipsoid is, apart
from terms of higher order,
F) = 3(Nm) 7 (' /6)d b7y
Fiy) = B)d v @/)". (24)

In Section VI, an additional wave, stronger than the others, was
added to represent a ‘‘direct” wave. Let the direction u, of the direct
wave be along the z-axis and let its amplitude be A (w) = R, a given
real number. With S;, S,, - -+, J3 defined again to include the random
fields only, the weighted energy density is

¥(0) = d{(R+ 8)" + J7*} + b {8 + Jo' + (R + &) + JJ)
with mean § = R’ 4 2N. The asymptotic form of the distribution
function for ¢ (0) may be derived in the same way as (24). Now the
six-dimensional ellipsoid ¢ (0) < ¢ of volume (r'/6)d b’ is centered
on the point (—R,0,0,0,—R,0). Equation (23) gives the probability
density at that point and hence the result

F(y) = ¢'/{12N’db° exp (3R*/2N)} (25)

approximately for small .
APPENDIX D
Correlation coefficients

To prove (10) write,
EWwn) = 4dDE (Ys(0)¥e(P)) + 4dBE (Y£(0)y=(P))

26
+ 40DE (yu(0)¥e(P)) + 4bBE (Yu(0)yu(P)). &0
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The four expectations on the right are:
EfyuOWe(P)) = N(N — DI1 4+ J @) + INE(A ") (@7
E{e(0)yu(P) = Elya(0)e(P)}

= NN — D{1 + J@Br)} + INE(A[")
Elu)a(P)} = N(N — DI+ 30 (8r) + 35 (8r))
+ INE(| 4 ).

The proofs of (27), (28), (29) are alike. Only E{yg(0)¢s(P)} will be
derived in detail.
Begin with

(28)

(29)

2(0) = | ; A @)
Wu(P) = | 2 A(U)U exp — ipU-P [,

Then,
Ye(0)yu(P)
= 1 AW)AT()U-VA(U)A*(V)exp i8(V — U)-P  (30)

o, U7
with the summation variables w,p,U/,V ranging over all N* ways of
picking four vectors from u,, ---, uy . Now take the expectation of
both sides of (30). Most of the N* terms in the sum have zero expecta-
tions because E (4 (u)) = E(A*(u)) = 0, and because A (u), A (v)
are independent when w # v. Nonzero expectations can come from
terms of three types:

(i) N(N — 1) terms withv = », V = U, and U # u,
(ii) N(N — 1) terms with V = w,» = U, and U # u,
(iii) N terms withw = v = U = V.

The expectation of each term of type (¢) is
E(A@)U-UAWU)) = FE(A@))E( AT
=1X2X2=1.

All N(N — 1) terms contribute N (¥ — 1) to (28).
The expectation of each term of type (ii) is

1R A )| AU)|*u-U exp iB(u — U)-P}

= Klu-Uexpif(u — U)- P}
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Now let ¢ and 6 be the angles which « and U make with the vector P
sothat w-U/ = cos (§ — O) = cosdd cos © + sind sin O and (w—U)-)
= reosd — r cos 0. The expectation sought is

E {cos (¢ — 0) exp i8r (cos & — cos 0) |
}

The two integrals may be recognized as Fourier coefficients in the well-
known series

2

2T
f cos ¢ exp (ifr cos &)dd/2r
0

2
+ }f sin & exp (i8r cos &)dd/2n
0

exp (iBrcos d) = Jo(Br) + 2 2 "J.(Br) cos nd.
n=1
Then each of N (N — 1) terms of type (i) contributes J,*(8r) to (28).
Each term of type (iii) is 2 | A (u)|*; the total contribution to (28)
of all N terms is ANE(| 4 [*).

APPENDIX E

Specira

The normalized power spectrum of ¥ (V) is a Fourier transform of
E@0)¢(Vit))/E®@*(0)). The expectations are obtainable from (10)
with D = d, B =0, P = Vit and from E(y(0)) = EW(Vit)) = 2N.
When N is large, one seeks the transform of

1 — d&Jd(Br) + 2.db J(Br) + 30°(Jo(Br) + J(Br)) (31)
1+ @ + 3b?

withr = | Vo | ¢.

The constant term in (31) represents the spectral line described in
Section VIII. The remaining terms may be transformed using the equa-
tion

* Py —1), 0<y<2
f J.2(x) cos xy dv =
—w O, 2 < y < o

(Ref. 2, Erdelyi, e! al, p. 46, transform 21), where P,_;(u) is the Le-

gendre function of order n — 3.
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This result is applied in the form
[ 2281 vt ]) cos 2nft dt = (=1)"Pus(2 = 1)/ (xfo)

for0 < » < 1 (recall (14) and v = f/fo). One then obtains an expression
for s(f) which involves Legendre functions of orders —%, %, and .
This expression was not suitable for computing because there was no
available table of Legendre functions of fractional order. However, the
Legendre functions of half-integer order can be expressed as complete
elliptic integrals by the following identities:

Py(x) = 2/mKl (G — 32)})
Pyx) = 2/7)2E((} — 32)') — K(G — $2)))
(m + D)Pun(r) = Cm + DaPu(x) — mPua ().

(Ref. 1, Abramowitz and Stegun, Egs. (8.13.1), (8.13.8), (8.13.11)).
When the Legendre functions are replaced by elliptic integrals the Bessel
function terms of (31) transform into
2((3 — HHK((1 — )
+ (8 — )b — 12db] E((1 — "D} (32)
3rifo(1l + d* + 3b%) '

The results (15) and (16) are special cases of (32).

s(f) =

REFERENCES

1. Abramowitz, M., and Stegun, I. A., (editors) Handbook of Mathematical Func-
tions, Nat. Bu. Standards, Appl. Math. Series 55, 1964.

2. Erdelyl, A, Magnus, W, Oberhettinger, ¥., and Tricomi, F. G., Tables of
Integral Transforms, Bateman Manuscript Project, 1, McGraw-Hill, New
York, 1954,

3. Ossanna, Jr., J. F., A Model for Mobile Radio Fading Due to Building Re-
flections: Theoretical and Experimental Fading Waveform Power Spectra,
B.S.T.J., 43, Nov., 1964, pp. 2035-2971.

4. Slack, M. The Probability Distributions of Sinusoidal Oscillations Combined
in Random Phase, JLEE., 93, part 111, 1946, pp. 76-86.

5. Young, Jr., W. R., Comparison of Mobile Radio Transmission at 150, 450, 900,
and 3700 Mc, B.S.T.J., 31, 6, 1952, pp. 1068-1085.



p—



