Cosine Sum Approximation and Synthesis
of Array Antennas

By D. JAGERMAN
(Manusecript received May 10, 1965)

The problem of approximating a band-limiled function, H(t), by a sum
of costnes arises in the design of phased array antennas. Three methods of
synthesis are presenled for establishing such designs. Error formulae are
deduced for each method, including a new error formula for Tchebycheff
quadrature. The existence of grating lobes is proved, and lower bounds for
their location are developed.

I. INTRODUCTION

This paper is concerned with the problem of approximating a function
H(t) (—o <t < =) by a cosine sum of the form

N
SN(t)=%Z;COStrj,O§m1<$2<"'<x1\r§1. (1)
=
The synthesis of array antennas is an application of the problem of this
paper. Let isotropic radiating elements of strength 1/N be located
along the r-axis at the points z;(1 = j £ N) providing planar radiation
of wavelength A, and let § designate the angle between the positive
y-axis and a line passing through the origin and a far-field point, then,
setting

2 sin 6
==
the far-field radiation pattern of the linear array is given by Sw(¢).
The requirement that all the coefficients of the sum in (1) be equal
generally stems out of the use of identical radiating elements, and out
of the desire to employ identieal feed for each element.

The function H (1) represents the desired far-field radiation pattern;
it will be required to satisfy the condition

t

(2)

H(t) = j(; F(z) cos tx dz, (3)
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for some function F(z) € L(0,1), and the normalization condition
HO) =1. 4)
When required, the function F(z) will be extended to the interval
(=1,1) by
F(—z) = F(2). (5)

The function F(x) is, thus, the illumination required for a continuous
aperture to produce the far-field pattern H (¢). Equation (3) defines
the array aperture as one, and the function H (¢) to be bandlimited with
bandwidth one.

The approximation or synthesis problem consists in the determina-
tion of the quantities x4, - - - , z» subject to the condition of (1) so that
Sx(t) shall approximate H (t).

In this form, the problem is that of numerieal quadrature by means
of an equal-coefficient rule. Sections II and III present methods for
aceomplishing this. Section IV drops the restriction of equal coefficients
and applies the well-known Gaussian quadrature rule. Section V dis-
cusses the existence of grating lobes and presents estimates for their
location.

II. A RIEMANNIAN SUM METHOD

Let H (t) be a characteristic function, that is, H () satisfies the normal-
ization condition (4) and the additional requirement

F(z) = 0, 0 <z <1, (6)
then the function
L(z) = f:F(u) du (7)
satisfies
L(0) =0, L(1) =1 (8)

and is monotonic increasing. Let
y=1L@), x=G(@) 9)

in which @ (y) is the funetion inverse to L (z), then the required numbers
x; are given explicitly by

woi(yr) iziev W
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“}‘(H*ii('m[t(’(gjl (11)
o _Nj=1 ! 2N :

is clearly a Riemannian sum for

The sum

1
1= [ cosltG(y)] dy, (12)
0
and hence
lim Sx(t) = I; (13)
N—bm
however,
1
1= [ Fla) cos todz = H(1) (14)
1]

and hence the approximation is secured. The error Ry (t) given by
Ry(t) = H(t) — Sx(t) (15)

will now be studied. For this purpose consider

Lemma 1: ' .
c, = sin [2rnL(z)] sin {x dz
[1]

= RN(t) .,r;v,; ( l)k—l Cmc

Proof: 1t will be convenient to introduce the function

Sw(ty) = — Z cos [tG (y + 1)]; (16)

thus

The function cos [{@ (y)] may be expanded into a Fourier series on the
interval (0,1); one has,

cos [tG(y)] = H(t) + Z a, cos 2mny + Z b, sin 27ny, (18)

n=1

in which

1
an = 2 f cos [(G(y)] cos 2wny dy,
1]

. (19)
b, =2 f cos [tG(y)] sin 2rny dy.
(1]



1764 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1965
Define ¢, , d. by

1
Cp = f G'(y) sin 2rny sin [tG(y)] dy
0

1
= f sin [2xnL(z)] sin fz dz,
0

1 (20)
d, = f @' (y) cos 2mny sin [(G(y)] dy
0
1
= [) cos [2enL(z)] sin tx dx,
then integration by parts applied to (19) yields
t
a, = — ¢,
™
(21)
b, = 1 —cost_idﬂ‘
T ™
The Bernoullian function
p(y) =3 — {yl, (22)
in which {y} designates the fractional part of y, has the Fourier series
o(y) = 3 2T (23)
n=1 ™

hence, replacing a, , b, in (18) by their values in (21), one obtains

cos [tG(y)] = H(t) + L > En cos 2rny
T a=1M1

- (24)
_t > n i 2rny + (1 — cos t)p(y).
T a=1 N
By summation of the geometric series, one has
N . .
1 > exp | 2mn (y + 2 -1y e (—1)", N | n,
N =1 2N (25)

=0, N ¢t n,
and hence, letting n = Nk (k > 0 integral),

li 22Nk (v + Z—1) = (—1)* cos 2xNE (26)
v & cos 27 y 5N cos 2rNky,
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-
— Z sin 2rNk (y -+ 1?—)—,\[—1) = (—1)* sin 2rNky. (27)

J=l

Equations (16), (24), (26), and (27) now yield

Sy(ty) = —N ; )¢ ci cos 2rNky
t Z (—1)F 2 de sin 2rNky (28)
TI' k=1
3 -1
+(1—cost)wA7§ (J—l- 5N )

The Fourier series for p(y), (23), permits ready establishment of the
identity

N .
2] — 1\ _ 1
;P(E]‘Fuw)—P(Ny"‘g)y (29)
hence
Sx(ty) = i l)kcﬂcos 2xNky
7rN =1
Z )" N" sin 2rNky (30)
1 — cost 1
+ T p (N?l + E) .

Setting ¥y = 0 in (30) yields the result of the lemma.

Lemma 2: r = 2, integral, W (x) = & > 0 or

W7@) £ —e, <0 for a<z<bh

— < ?.2(T+1),’2£_r—(],'r)-

b
f cos W(z) dx

Proof: Tt is clear that only the inequality W (z) = & > 0 need be
considered. The case r = 2 will be considered first. The function W' (z)
is monotonice increasing, hence it vanishes at most once in [a,b], say at
x = ¢, then

b c b
f cos W(a) do = f cos W(z) dx + f cos W(z) de. (31)
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Let 0 £ 6 £ b — ¢ be chosen, then

b c+5 b
f cos W(z) dx = f cos W(z) dz + f cos W (x) dz,
c+48

c c

and hence

b
<464+ fﬁcosW(x)dx .

e+

fbcos W (z) dx

One has

fc; cos W(z) dx = fb W’( ) d sin W(z)

£
= o8 0 W@,
in which the second mean-value theorem was used, and hence

b

cos W(z) dx 2

W’( +8)°

e+8

Since
c+6
Wic+8) = f W"(z) dz = bes,

one obtains, from (33),

j:bcos Wi(x) d:t:’ =5+ 6%:2
The choice
=2
yields
j;b cos W(z) dz| < 242 &%,

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

The value of § in (38) may exceed b — ¢, however, in this case the
inequality of (39) is certainly correct since the integral always admits

the estimate b — ec.
Similarly choose 0 < § < ¢ — a, then

c c—§ €
f cos W(z) do = f cos W(zx) dx + f \ cos W(z) dz, (40)

a a
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and hence

c c—&
f cos W(z) dz j cos W(z) dx

a

-+ 6.
One has

c—6 c—38
f cos W(z) dz = f W%} d sin W(z)

_ 1 ] ) .
= W =3 fs d sin W(z),
and hence

_ 2
Wi'(c—8)"

a

c—b
f cos W(x) dm‘ =
Since
—W'i(c—8) = f W (x) dz = bes.
e—5

one obtains from (41)

fc cos W(x) dx

a

2
§5+5?2~

Hence

f cos W(z) de| < 22},

and, from (31),

<4428

The lemma is thus established for r = 2.

b
f cos W(x) da

(41)

(43)

(44)

(45)

(46)

(47)

Induction will now be employed. The lemma is assumed true for
r =k = 2. Since W** (z) > 0, W* () is monotonic increasing, and
hence vanishes at most once in [a,b], say at * = ¢. Choose 0 £ 5§ = b — ¢,

then

b c+8 b
[ cos W(x) de = f cos W(x) dx + f cos W(x) dx, (48)
e ¢ c+8

and hence

=46+ .

b
f cos W(x) dx

c

b
f cos W(z) dx
c+b

(49)
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The inductive hypothesis states
b

f coS .”’f(.'lf) dr é k2l’k+|)f2-u;(k)(c + 6)—(1;’1:),
c+d

hence
b
f cos W(z) dz| = 6 + k24w ® (e 4 5)%,
Since
e4-8
wW*¥(c +8) = f W (2) de z dexna,
one has
b
f cos W(z) du| £ 6 + KWV W0, ~W8,
The choice
5 = 2k,’2£k+1f(1,’k+1)
yields

b
f cos W(z) dz | = (k + 1) 22 g @0,

c

The inequality of (55) remains correct even for é > b — c.
Similarly, choose 0 £ 6§ = ¢ — q, then

c ] e
f cos W(z) dx = f cos W(z) dz + f cos W(x) dz,

a a

and hence

c c—b
f cos W(z) dz | = f cos W(z) dx | + &.

a

The inductive hypothesis yields

f cos W(z) dz | £ 6 + k2“2 [— WP (c — §)]7.

a

Since

—W*( —5) = f W (2) do 2 degqa,
e—8

(50)

(51)

(52)

(56)

(57)

(58)

(59)
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one has

f " cos Wi(x) do | £ 8+ k25, ~08, (60)
Thus

’ j: cos W) de| = (k4 1) 27 g VY (61)
and hence

f: cos W(x) dr | < (k4 1) 2592 g 7k, (62)

The lemma is now established.
Theorem 1 provides an estimate of Ry ().

Theorem 1: r = 2, integral, L' (x) = & > 0 or
L7(@x) £ —e, <0 for 021
= | Ry(t) | § T2(r+l),’2—(1.'r)1r—1—(1fr)£.(1 + (l/r))erf(l,fr) | ¢ | N—l—(l.’r).

Proof: One has, from Lemma 1,
1
Cn = f sin [2znL(a)] sin iz dz, (63)
0

and hence

1

5 j: cos [2mnL(x) + tx] dv. (64)

1
Cn = -éf cos [2mnL(x) — ta] dx —
1]

Lemma 2 applied to the integrals of (64) yields

/22— — —(1 —(1
|C,, | < _r2(r+)f (fr')ﬂ_ (l.'r)s f.'r)n (J‘r). (65)

r

The infinite series for Ry (¢) in Lemma 1 may now be estimated. Using
(65), one obtains

—(1/r) _—1—(1/r) —(1/r —1—(1/r - 1
|RN(t) | < ?,2(1‘1-!}!2 1/ )1|' 1—(1/ )‘(:J‘ (1/r) | ¢ | N 1=(1/r) Z kl-l—(l.fr) . (66)
k=1

Since the series of (66) is £ (1 + (1/7)), the inequality of the theorem
follows.
An example of the above analysis is provided by the choice

H(t) = J.(1), (67)
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that is the Bessel function of first kind and order zero. For this case

I'(zx) = ﬁ, (68)
and hence
L@ = sz, (69)
Thus
x = sin % Y, (70)
and
a:,—sin—ggiz—%l. (71)
The function L (x) satisfies
L'"@) 2 1=¢g, (72)
and hence, after numerical simplification, the error is estimated by
|Ry(t) | < 8|t| N ¥, (73)
Another example is given by
H(t) = (sin 3¢/3t)% (74)
One has
F(z) = 2 — 2z, (75)
L(z) = 2z — 2, (76)
and
Gly) =1—-+v1—y. (77)
Thus
r;=1—4/1 = (25 — 1)/2N. (78)
Since
L= -2 = —g, (79)

the error estimate obeys
|Rn(t) | < 1.3]t| N@™, (80)
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If F (x) has high order of contact at the endpoints zero and one, then
H (t) will decrease rapidly with increasing ¢, and hence the sidelobes
will be small. In particular, let

FP0) =0 F?01)=0, O0=j=k (81)
then, integration by parts applied to (3) yields

H(t) = —(—1)" "+1f F* () sin tz dz, keven, (82)
and
H(t) = —1)% tkl f F**(z) costz dz, kodd. (83)
If #** (2) is of bounded variation, then
|H(t) | < %;—2 (84)

in which V is the total variation of F**" (z). Equation (84) shows the
rapid decay of the sidelobes.
An example of this type of tapered design is given by

Fe(z) = (28 + 1) (2:) [z(1 — z)]¥ (85)

which has order of contact & — 1 and for which
|H(t) | = V/I (86)

In this case, V is the total variation of F.*® (z). Since
L (g) = —(2k + 1)! (zk") — w1 <0 (87)

one has, from Theorem 1,
| Ry(t) | < By || N77OPED, (88)

in which E, is the constant determined by the theorem.
The function

H(t) = sint/t (89)
corresponds to

Fx) =1, L(z) = =, Gy) = v. (90)
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The distribution of radiators is
xj= (2 —1)/2N (91)

and therefore is uniform. The approximability of this function is poor
compared to the previous examples. Theorem 1 does not cover this
case since L” (z) = 0; however, the Fourier coefficients ¢, (20) may be
explicitly evaluated, and the final determination of Ry (t) obtained from
Lemma 1. The result is

_t <~ sin (¢ + k)
By(t) = N k;w k(t + 2xNk)’ (92)

in which the prime shows the absence of the term k = 0. Evaluation
of the integral

'[]1 P (N:c + %) sin fz dx, (93)
using (23), shows that
Ry(t) = — L flp (Na: + 1) sin tz dz. (94)
N Jp 2
Since
[e(Nx + 3) | £ 3, [sinta| = 1, (95)
one has
|Rv(®) | < §[¢| N (96)

III. TCHEBYCHEFF QUADRATURE METHOD

Let ¢(z) £ C“[—1,1], then the Tchebycheff quadrature formula' is
1 1 M . 1
f K @e(x) de 22 223 o (), [ K@) dz=1. (o)
-1 i=1 -1
The fundamental points «; are determined by the conditions

1 M
Mf dK(z)de = > a = b,, 0v= M. (98)
-1

=1

Define the polynomial w(z) by the polynomial portion of the Laurent
expansion of

exp (M f[K(x) In (z — z) dx)
—1
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about the origin,’ then the zeros of w(z) are the required numbers
a1, -+ , ay . This procedure yields an approximation which, by (98),
is exact if ¢ (x) is a polynomial of degree not exceeding M. To obtain
an approximation to H (t) of the required form (1), one may set

e(x) = cos lx, K(x) = 3F (z), M = 2N; (100)

the points x;, - -, Zy are now chosen as those a; which are positive.
Equations (3) and (97) yield the required result.
Define the error, Ry", of Tchebycheff quadrature by

1 M
Ry" = L K(2)o(z) do — — Z{w(a;), (101)
=
then Theorem 2 provides an estimate.

Theorem 2: The real numbers oy, -+, ay are determined as the zeroes
of the polynomial w(x) defined in (99)

1
ST 1<E<13 R = o [ K@e(@)e™ (@) dn

Proof: Tt will be shown that Tchebycheff quadrature is an instance of
Newton-Cotes quadrature.

Define

o) = — 2@ (102)

(z — a;)o’(a;)’

then the Lagrange interpolation formula is

M (M)
o) = 3 ple) 6(z) + Epp ala), (103)

in which £ satisfies
min (z, ay, * -+, ay) < £ < max (x, 00, +,axn). (104)

The coefficients of the Newton-Cotes quadrature formula are given by
1
6= [ K @)¢() do (105)
1
and hence, one has
1 M 1 1 an
i K(z)p(z) dx = Zl ciplaj) + e f 1K(:t:)m(ﬂ:)qo (¢) dz. (106)
1 i= i —

Since Tchebycheff quadrature is exact when ¢(z) is a polynomial of
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Thus, secondary lobes may be produced of strength nearly equal to the
main beam. These are called grating lobes. Their existence is the subject
of Theorem 5.

Theorem &: There always exist grating lobes.

Proof: Dirichlet’s theorem® on simultaneous approximation states:

Given z;, +--, Ty, & positive integer ¢, and a positive integer 7,,
there exists a number 7 in the range
To 2T = 1o s (114)
and integers p;, * * - , Px, such that
|rz; —pi| =l 1=j=N. (115)
Accordingly, choose 7, = 1 and ¢ = 2w, then
tr; = 2rrx; = 27p; + (27/q)0, lo] =1, (116)
and
cos lr; = (:032!-; 8>1— (27°/q). (117)
Thus
i or
Sx(t) = 2 Ajcostx; >1— R (118)
=1

Since ¢ may be chosen arbitrarily large, the theorem is proved.

An inspection of all the error formulae of this paper shows the common
feature that they increase with increasing |¢| and ultimately become
trivial. For large | ¢ |, H (¢) is small, hence, since Sy(¢), by Theorem 5,
must ultimately become large, the error estimates must also become
large. It follows that the grating lobe cannot occur until Ry (?), Ry (1),
or Ry°(t) are at least one. The error estimates, therefore, provide a
lower bound for the value of | ¢ | at which a grating lobe can occur. This
is especially important in those designs where it is desired to eliminate
the grating lobe from the scan sector. The methods of synthesis presented
in this paper provide different estimates of location of the first grating
lobe. Let T designate that location, then, for

H(t) = J.(t), T > }N*?, (119)
H(@t) = (sin 3/%)°, T > .7TIN"’, (120)
H(t) = sin t/1, T > 2N. (121)
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The above are the estimates obtained from the Riemannian sum method.
The Tchebycheff and Gaussian quadrature methods do not yield esti-
mates of grating lobe location nearly as advantageous as the Rieman-
nian sum method. Thus, for

H(t) = J.(t), T > 4N,

) (122)
H(t) = sin t/t, T > 4N.

These results were obtained by rough approximations to the factorials
in (112) and (113), however, they serve to show the difference between
the Riemannian sum, and the Tchebycheff and Gaussian quadrature
methods. Nonetheless, the last two methods may show a much smaller
estimate of error for small || than the Riemannian sum method.
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