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This paper discusses the expected characteristics of balanced transistor
amplifiers with symmetrical directional couplers.

Provided that pairs of transistors with similar characteristics can be
selected from a given distribution, the inpul and outpul matches obtained
with the balanced configuration are satisfactory over a =10 per cent band-
width with simple one-section lumped-constant LC directional couplers
and over a =40 per cent bandwidth (1.2 octaves) with one section distributed
M4 couplers. For single-stage amplifiers, the decrease in gain s less than
0.1 db and the phase nonlinearities introduced by the couplers are about
+0.15° and +0.6°, respectively, over the same bandwidths.

The requirements on the terminations which are connecied to the cou-
plers to absorb the transistor reflections are not siringent: VSWR’s less
than 1.4 should be acceptable. The noise measure of balanced amplifiers
is calculated to be a weighted average of the noise measures of the two com-
ponent amplifiers, plus a small term which vanishes when the couplers
have 3-db coupling and the companent amplifiers have identical gains. Gain
compression takes place at a 3-db higher signal level compared with con-
ventional single-ended designs, and the expected improvement in the third-
order intermodulation is 9 db on the average.

In the final section, the cascade connection of identical balanced amplifiers
is discussed. With typical microwave transistors, the input and oulpul
return losses for a multistage amplifier should be about 4.5 db worse than
those for the individual single-stage amplifiers of which it is composed. The
gain ripple introduced by the interactions between stages is also investi-
gated in detail.

I. INTRODUCTION

In a previous paper,' the principles and experimental results of an
L-band balanced transistor amplifier have been discussed in which each
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stage consists of two electrically similar transistors whose inputs and
outputs are combined through 3-db directional couplers. Due to wide
distributions in the characteristics of present microwave transistors,
simultaneous realization of flat gain and good impedance matching is
difficult to obtain with conventional single-ended designs unless, for
instance, isolators are employed. On the other hand, as long as pairs of
transistors with similar characteristics can be chosen from a given dis-
tribution, the balanced design offers good input and output impedance
matches as well as smooth gain and phase characteristics, all simul-
taneously. Since the impedance matches are important in miecrowave
systems, the balanced design will be useful for some time, until the
distribution of transistor characteristics becomes so tight that a con-
ventional single-ended design can easily provide good matches and
smooth gain simultaneously.

While the theory given in the paper mentioned above should be
adequate for general purposes, it may not be satisfactory for the actual
design of balanced transistor amplifiers. The theory neglected interac-
tions between the reflections which were introduced to explain the mis-
matches at the input and output ports of the transistors. It also assumed
ideal 3-db coupling of the directional couplers for the entire frequency
band of interest. The former shortcoming can be avoided by employing
scattering matrices in the discussion. This paper is intended to supple-
ment the previous one by presenting an improved theory which enables
us to discuss the effeet of the coupling variation on amplifier charac-
teristics without resorting to too complicated mathematics. The noise
performance and intermodulation characteristics are also included. In
the final section, interactions between stages — when connected in
cascade — are discussed in detail. Although wider bandwidths may be
obtained by using couplers having characteristics slightly different from
one another (e.g. stagger-tuning), for simplicity this paper assumes the
use of identical couplers for both single and multistage amplifiers.

II. REVIEW OF DIRECTIONAL COUPLER PRINCIPLES

A directional coupler is a matched four-port network with zero cou-
pling between conjugate ports. Let us consider a symmetrical directional
coupler with two planes of symmetry as shown in Fig. 1. Because of the
symmetry and by definition, the scattering matrix must have the form
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If a network is lossless, the scattering matrix has to satisfy
StS =1 (2)

where + indicates the transposed conjugate matrix and 7/ the unit
matrix. From this, two constraints between « and g of a lossless sym-
metrical coupler are obtained:

la* +18"=1, = a8+ % =0. (3)

The first equation specifies a relation between magnitudes and the
second one indicates that @ and 8 must be 90° out of phase. Thus, o
and B must be expressible in terms of two real quantities ¢ and o,

a=+1—=2jexp (—je), B =texp (—je). 4)

That is, if a unit wave is incident on port 1, the output waves from ports
2 and 3 are given by /1 — 27 exp (—jg) and t exp (—jeg), respectively,
and port 4 has no output.

There is a class of symmetrical junctions which acts as directional
couplers independent of the frequency. Let us consider two of them as
examples: a lumped constant directional coupler, and a distributed
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Fig. 1 — Schematic diagram of symmetrical directional coupler.
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transmission line directional coupler A/4 long at center frequency of
operation.

For the lumped-constant directional couplers (Appendix) with a
common induectance L from ports 1 and 2 to ports 3 and 4 and with a
capacitance C' between ports 1 and 2 or 3 and 4,

. S -

t = \/1_—[——;2’ ¢ = tan ¢
where { = wl/Z, and the characteristic impedance Z, = +/L/C. When
¢=18=1—¢ = 05 and 3-db coupling is obtained. Figs. 2 and 3
show ¢ and ¢ vs the normalized frequency f/f, where f, is the frequency
for ¢ being 1.

For the distributed directional coupler’

t = . el = tan~" —1 tan @ (6)
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Fig. 2— Coupling vs normalized frequency of lumped-constant LC direc-
tional coupler.
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Fig. 3 —Phase vs normalized frequency of lumped-constant LC directional
coupler.

where k is the coupling factor in the theory of coupled transmission lines
and 6 is the electrical length of the coupled region. In terms of the even-
and odd-mode characteristic impedances Z,, and Z,, , the characteristic
impedance Z, and the coupling factor k are given by

Zae. — Znu

- Zﬂﬂ + ZOO, (7)

ZO = Zuezao ’ k

respectively. Figs. 4 and 5 give { and ¢ vs the normalized frequency
f/f, and f, is the frequency for which § = =/2 or 90°.

III. SCATTERING MATRIX OF ONE-STAGE BALANCED AMPLIFIER

Let us consider the configuration shown in Fig. 6 where two tran-
sistors, @ and b, are connected by two directional couplers in which
ports 3 and 4 are crossed over (as compared to Fig. 1). Due to the lack
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Fig. 4 — Coupling vs normalized frequency of one-section distributed cou-
plers. k: coupling factor.

of coupling between conjugate arms (1-4 and 2-3 in Fig. 1) of the
couplers, the components of the over-all seattering matrix between
ports 1 and 2, are easily calculated. They are:

Su = e #[Snla) — (1 — ££)Su(b)]

Su = je ™t7/1 — £ [Su(a) + Su (b))
St = je /T = & [Se(a) + Si2(b)]
Sp = ¢ [*Sn(b) — (1 — ') Su(a)l.

The subscripts 1 and 2 refer to the input and output ports, respec-
tively, and Sy {(a), Su(b) ete., are the scattering matrix components of
transistors @ and b including their surrounding circuits, i.e., the scatter-
ing matrix components of the component amplifiers @ and b, respec-

tively. When the coupling is 3 db (* = 0.5) and the two component
amplifiers are similar in their characteristies,

(8)
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Sii(a) = Si;(b)
and hence
| Sul|=~0, | S| = 0, Sn & je ™ Su (a) == je ¥ 8u (b).

This means that the input and output ports of the balanced amplifier
are well matched and the gain is approximately equal to that of either
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Fig. 6 — Schematic diagram of one-stage balanced transistor amplifier.

component amplifier. Because of the term, exp (—j2¢), the phase of the
balanced amplifier is affected by the 3-db couplers. This will be dis-
cussed in detail in Section V. The reflections from the transistors are
absorbed in the terminations connected to the couplers as we shall

discuss in Section VI.
When the transistors are dissimilar, but with the coupling still 3 db,

[Sni = %lSu(G) - Sn(b) I, |Szz| = %‘ Saa{a) — 822(5)‘
and
l 8211 = %|Sgl(a) + Sm(b) |

That is, the input and output reflections are reduced to half of the vector
differences of the corresponding reflections of the transistors, and the
gain is given by the vector average of the two gains.

In this section, the coupling of the directional couplers has been as-
sumed to be 3 db. In Section IV, we shall investigate the effect on the
amplifier characteristics when the coupling is not 3 db.

IV. COUPLING OF THE DIRECTIONAL COUPLERS AND AMPLIFIER CHARAC-
TERISTICS

First, let us assume that the two component amplifiers are similar in
their characteristics. Then, from (8), we have

| Sul~ |2 — 1] 8Su(a)|
| Su |~ |20 — 1] Su(a) | 9)
| S| = | 20/T = 2| Sula) |.

If | 2/ — 1| is given in terms of loss in db and | Su(a) | or | Su(a) |
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in terms of return loss in db, then the addition of these figures gives the
corresponding return loss of the balanced amplifier in db. Similarly, if
the gain of the component amplifiers, | Su (a) |, is expressed in db and
2t 4/1 — | in terms of loss in db, then the difference of these two
figures gives the gain of the balanced amplifier in db. Fig. 7 shows the
losses | 2¢* — 1| and | 2(4/1 — £ | in db vs the coupling loss ¢ in db.
T'rom Fig. 7 we see, for instance, that if the input and output VSWR’s
of the component amplifiers are better than 2 (return loss 10 db), the
coupling loss ¢ can deviate as much as —0.4 db and +0.5 db from 3 db
before the VSWR’s of the balanced amplifier become worse than 1.07
(return loss 30 db) and that the decrease of the gain due to the direc-
tional couplers from that of the component amplifier is less than 0.1 db.
The above deviation allows =410 per cent and 440 per cent frequency
bandwidths for the lumped-constant and the distributed (k* = 0.550)
couplers, respectively.

Next, let us consider the case where the two component amplifiers
have different characteristics. In this case, from (8), we have
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Fig. 7 — Improvement in return loss [ 22 — 1| in db and decrease in gain
| 20 v/1 = 2 | in db due to the directional couplers in balanced design.
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v Y Sula) + Sulb) Sula) — Sulb)
[Su|=1@—=1) 5 4+ 5 ’
| Se | = ’(2[2 — 1) Seela) -)F Su(b) Szg(u)_; Saalb) (10)
|8 Su(b
|Su| = |2t VT = £ m-;”[

The gain expression in (10) is the same as that in (9) except Sy (a) is
replaced by the mean vector between Sy (a) and Ss; (b). Therefore, using
the magnitude of the mean vector and Fig. 7, the expected gain of the
balanced amplifier can be easily caleulated. The reflections | Sy | and
| Sso | have two terms each: one becomes small when the coupling ap-
proaches 3 db and the other is independent of the coupling. The magni-
tude of the first term can be evaluated by using Fig. 7 as we have done
before. Now, however, the mean reflection from the two amplifiers is used
instead of the same reflection from the component amplifiers. The magni-
tude of the second term is half of the difference between the reflections
from the two component amplifiers. In order to get the resultant re-
flection, however, a vectorial addition of these two terms is necessary.
For more clear understanding of the situation, the following is an
additional way of viewing the same problem.
Rearranging the first two equations in (10), we have

[ Su| =@ = 1)8ula) — (1 — A
| e | = | (2" — 1)Sm(a) + *A, ],
where A; and A, are given by
Ay = Sy (b) — Sula), As = Sa(b) — Saul(a).

Suppose that the coupling ¢ and Sy (a) are specified and that the re-
sultant reflection | Sy | is required to be smaller than a certain magni-
tude, | Si |max - Then, referring to Fig. 8, the tip of —(1 — *)A, , drawn
from (2t° — 1)8,(a), must lie inside a circle centered at the origin and
of radius | St |mex . Expanding the figure by a factor of —1/(1 — #),
the tip of A;, drawn from — @ — 1)8Su(a)/(1 — ), is seen to be
inside a cirele centered at the origin and of radius | Sy |me/ (1 — £°).
Now translate the whole figure until the tail of A, falls on the point
Su(a). Then, S, (b) is seen to be inside a circle centered at 'Sy (a)/
(1 — ¢*) and of radius | Sy |mex/ (1 — £°) on the Smith chart. Similarly,
if the maximum allowable value of | Ss | is given by | Se |max , Se2(b)
must be inside a circle centered at (1 — £)8u(a)/f* and of radius
l SE‘Z !mnx/tuv

(11)
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Tig. 8 — Vector diagram for the relation | Sy | = [ 81t |max .

As * increases, the area in which S;;(b) should be located also in-
creases; however, the area for Sx(b) decreases. The best compromise is
obtained when the coupling is 3 db. Here, one might ask the followmg
question: If there is no requirement for | S |, should one make t* as
Jarge as possible in order to achieve the required matching more easily?
The answer is, generally, no. Since Sy, (@) is usually larger than | S |wax
as {* approaches 1, the center 'Sy (a)/(1 — ) moves faster than the
increase in the radius | Sy [max/ (1 — ). The cirele therefore ceases to
cover the area where the transistor distribution for Sy is dense and it
becomes harder to find a proper transistor which gives the required
Si (b). In this argument, if Sy (a) is always smaller than | Si1 |wmas » it
could obviously be 1. However, if the reflection from the component
amplifier a is already smaller than the required value there is no reason
for using the balanced configuration and a second amplifier. A similar
argument holds for the output match as well.

V. PHASE LINEARITY

It is obvious from (8) that the phase linearity of the balanced amplifier
depends on the phase characteristics of the directional couplers as well
as on the phase linearity of the component amplifiers. The ¢’s of the
couplers were discussed in Section IT and are shown in Figs. 3 and 5.
From these figures, the phase nonlinearity introduced by the directional
couplers can be estimated. However, in precise applications the over-all
phase linearity required is often within a few degrees and if several
stages in cascade are employed to obtain a desired gain, the phase lin-
earity required for each stage would be within a fraction of one degree.
In such a case, the Taylor expansion of 2¢ around f = f. should give a
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better estimate of the nonlinearity introduced by the couplers. For the
lumped constant directional couplers,

20 =dr+x — I + '+ - (2¢, in radians)
=90 + 57.3x — 28.7x" + 9.6x° + - -- (2¢, in degrees)
where
x = (f = f)/fa. (13)
For the distributed couplers A/4 long at f, ,
2o =7+ w1 —I2x + —k-\/ll‘)_ L X
20072 T
+ k(3 ‘;iO el x4+ -+ (2p, in radians) (14)

180 + 180 v/1 — 2 x + 148 k"1 — k2 %'
+ 736° (3K — 1) /T — 2 x° + -+ (2p, in degrees).

For instance, the deviations of the lumped-constant couplers from phase
linearity at x = f/f, — 1 = 0.1, 0.2 and 0.3 are 0.3° 1.2° and 2.6° re-
spectively, and of the order of 0.04° 0.3° and 1° for the distributed
couplers. These deviations are measured from the straight line tangential
to the 2¢ curve at f = f,. If the reference line is redrawn so that the
maximum deviation becomes the smallest, these figures will be about
one-half of those mentioned above for the lumped-constant couplers
and about one-fourth for the distributed couplers. Thus, over the band-
widths for which the input and output VSWR’s are less than 1.07 as
discussed before, the phase nonlinearities introduced are of the order of
+0.15° and +0.6°, respectively.

VI. EFFECT OF IMPERFECT TERMINATIONS

In order to investigate in detail the role of the terminations connected
to the couplers, let us first consider the balanced amplifier as a four-
port network rather than a two-port network as we have done so far.
The ports are numbered by Roman numerals as shown in Fig. 6. Since
there is no coupling between conjugate ports of the couplers, the scatter-
ing matrix of the four-port network can again be easily calculated.
Si1, Sar, Siz, and Sa are the same as given in (8). Sy and Sy are equal
to S5 and Sy respectively. Sz and Sy are the same as S;; and Sa,
respectively, except that the component amplifier designations @ and b
are interchanged. The others are given by
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Sis = Su = je ¥INV1 — £ [Su(a) + Su(b)]
Sus = Sp = je FUN/T — £[Sn(a) + S=(b)]
Sy = ¢ S (b)) — (1 — ££)Su(a))
S = ¢ [*Su(b) — (1 — ')Sn(a)]
Su = ¢ F['Sn(a) — (1 — £*)Swu(d)]
Su = ¢ [ Su(a) — (1 — ££)Su(b)].

When a wave of unity power is incident to port I, it is split by the in-
put coupler into two, £ and (1 — ¢*), arriving at the component ampli-
fiers @ and b, respectively. The reflections there are given by £ | Sy (a) |*
and (1 — &) | Su(b) |2. Of these, only | Si |2 comes back to port I and
the rest of the power

£ Sua) |+ @ — &) Su®) [* — [ Su[*
= (1 — )| Sula) + Su®) |’

(15)

(16)

(which is exactly equal to | Sy [*), goes to port II1. Thus, most of the
reflected power from the component amplifiers goes to port III and is
absorbed there. A similar argument holds for the output port. These are
the reasons why the balanced configuration gives good matches at both
ends.

Next, let us investigate how critical the matches are for these termina-
tions. Indicating the reflection coefficients of the terminations by 7s
and r; (the subscripts refer to port numbers) and drawing the signal
flow graph as shown in Fig. 9, the reflection to port I, Sy’ can be written
down by inspection.

, T‘sslssn(l — 1Su) + T4814Sn(1
Su = Su + — 738x%) + 37 (S13838a 4+ S1S:aSa)

. 17
1 — 73S — 748y — 13r6SaSa + 3T sS338 44 ( )

Neglecting higher order terms, Sy can be approximated by
Su’ = Sy + reSSa + 7SSy . (18)

The first term on the right-hand side represents the reflection when
r3 = ry = 0, the second term the reflection due to ry and the last term
due to ry . The neglected terms represent the contribution due to multi-
reflections between the terminations and they are in general so small
compared with the terms given above that their omission is readily
justified.
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Fig. 9 — Signal flow graph for one-stage balanced amplifier with imperfect
terminations.

Similarly, S»’ and S, are approximately given by
Sor’ & S + 74828 + 738285
SEI’ & Su + 3838 + raSesSa.

Typical values for the magnitude of the coefficients of r; and r, appear-
ing in Sy’ and Sa’ are of the order of —20 db and those appearing in
8. are of the order of —25 db or less. Therefore, if | r; | and |74 | are
both less than —15 db (SWR =< 1.4), then the effect of imperfect
terminations on the amplifier characteristics must be negligibly small.
In conclusion, the required matches for the terminations are in general
not so stringent; SWR’s of less than 1.4 are usually acceptable.

(19)

VII. NOISE PERFORMANCE

Noise performance of an amplifier is evaluated by the actual noise
measure.’ It is defined by

F—-1

M= /6

(20)
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where G is the transducer gain and F is the noise figure of the amplifier,
including the contribution of the noise power originating in and re-
flected back to the output load. When the input and output of the ampli-
fier are matched, a number of amplifiers with identical characteristics
can be connected in cascade, making the total gain very high. The
excess noise figure of the high gain amplifier is then given by M itself.
However, when the input and output are not matched, we have only to
insert isolators between the stages in order to reach the same interpreta-
tion for M. For each amplifier there is an optimum value, Mo, of M
which can be achieved by a lossless imbedding but cannot be surpassed
by any passive transformation of the amplifier. The noise measure it-
self is a dimensionless number.

Now, let us consider the balanced amplifier. The terminations III
and IV connected to ports ITII and IV, respectively, are assumed to be
matched. Turthermore, the noise temperatures of the terminations as
well as of the load are assumed to be 290°K. For the ideal case where
the coupling of the directional couplers is 3 db and the characteristies of
the two component amplifiers are identical, the noise originating in each
component amplifier is split into two. Only a half of the total power goes
to the output load, with the other half going to termination IV. Since
there are two component amplifiers, the output load receives the same
noise power as in the single-ended design. The noise originating in
termination III is amplified but absorbed in termination IV and none of
it comes out to the load. The noise originating in the load and reflected
back from the component amplifiers goes to termination IV and does
not come back to the load. However, noise power originating in termina-
tion 1V goes into the load. This power is exactly equal to the noise
power originating in and reflected back to the load (7' = 200°) in the
single-ended design. As a result, the noise measure M of the one-stage
balanced amplifier in this ideal case is equal to the noise measure of
either component amplifier.

When a transistor is unconditionally stable, by inserting a proper
lossless cireuit at the input and a matching circuit at the output, the
optimum value M, for the transistor can be achieved. Therefore, the
component amplifiers can have M, in this way, which means that
the balanced amplifier can also give My, . It is worth noting that this
realization of M, does not deteriorate the input matching of the
balanced amplifier. In general, this is not the case for single-ended de-
SIgNs,

Next, let us consider the case where the coupling is not necessarily
3 db and the component amplifiers have different characteristics. The
assumptions for the terminations and the load remain the same as be-
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fore. The excess noise output to the load is given by
N = {(Fa — 1)KkTB| Su(a) |* — kTB | Sez(a) |} (1 — ¢*)
+ {(Fy — 1DKTB | Su(b) | — kTB | Sm(b) [} (21)
+ kTB | 8u |* + kTB | Saes|* + ETB | 8 %,

where F, and F} are the noise figures of the component amplifiers a and
b, respectively. The first term on the right-hand side of (21) represents
the output noise originating in component amplifier a, the second one
in component amplifier b, the third one in termination III, the fourth
one in termination IV, and the last one represents the noise originating
in and reflected back to the load. Combination of (8), (15) and (21)
together with (20) gives the noise measure M of the balanced amplifier
as follows:

_ Ma(|Su(a) [* = 1) (1 — &) + Ms(|Su(d) [ — )¢+ Su[*
[Su = 1 '

M (22)
Thus, M is a weighted average of the noise measures M, and M3 of the
component amplifiers plus a small term which comes in because of
termination III. To make this additional term small, from (15) ¢*Sa (b)
and (1 — ¢*)Ss (a) should be close to each other. When the coupling is
3 db, this means that the two component amplifiers should have approxi-
mately equal gains. Thus, we see that for the balanced design, a pair of
transistors should be selected on the basis of close Si, S and Sy ;
the first two being necessary for good matches and the last for low
noise (although, in practice, the last requirement is not stringent at all).

VIII. GAIN COMPRESSION AND INTERMODULATION

Since each transistor handles only one-half of the signal power, it
begins to saturate at a 3-db higher signal level thus improving the gain
compression and intermodulation characteristics. The type of inter-
modulation of most concern in broadband amplifiers with multiple
frequency channels is usually one in which two strong signals of fre-
quency fi and fz produce third order intermodulation signals at fre-
quencies 2f, — fs and 2f, — f., also within the passband of the ampli-
fier, where they might interfere with wanted weak signals. Since the
signal level to each transistor is 3-db lower, the third order intermodula-
tion output from each transistor must be 9-db lower. Thus, if the two
intermodulation outputs are in phase, a resultant output of 6-db below
that of the single-ended design is expected for the balanced amplifier.
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However, the magnitude of the third order intermodulation output
varies between transistors at microwave frequencies, even if the tran-
sistor characteristies for the signal frequency are quite similar. This
suggests that the phase of the intermodulation output might also be
random. In this case, the resultant output of the balanced amplifier is
expected to be 9-db lower on the average, instead of 6 db. This conclusion
is strongly supported by experimental results on 18 different pairs of
transistors.*

IX. CASCADE CONNECTION

So far we have discussed only single-stage balanced amplifiers. In
this section, let us consider the interactions between stages when con-
nected in cascade. Sinee the outgoing wave of the nth stage output port
is equal to the incoming wave of the (n + 1)th stage input port, the
signal flow graph of a multistage amplifier becomes something like
Fig. 10, where Sy, (n) etc., are the scattering matrix components of the

Sa(1) 52|(2) Sa¢(N)
} Mo SEEU)OSH(E) SEE(ZJQ #(3) SaalN- 1)OSu(N] S22(N)
Si2(M S22 Si2(N)

Fig. 10 — Signal flow graph of multistage amplifier.

nth stage and a;, b;, a, and b, are the incident and outgoing waves at
the input (subseript ¢) and the output (subscript o) ports of the cas-
caded amplifier, respectively. Inspecting this signal flow graph, the
components of the over-all scattering matrix can be obtained. First,
taking a three-stage amplifier as an example, let us consider the input
reflection Sy, of the amplifier. It is given by

811(2)821(1)312(1) {

Sun = Su(l) + 1 — S(2)Su(3)}

A
+ S11(3)Szl(1)812‘;1)321(2)312(2) C(23)
where
A=1— 82(1)81(2) — S=(2)Sn(3)
— S (1)821(2) 81 (3)812(2) (24)

4 S2(1)81(2)82(2)Su(3).
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Since | Se(n)S8n(n + 1) | is small compared with unity for most practi-
cal balanced amplifiers and since p = | Sy (n)Siz(n) | is of the order of
0.4 for typical transistors, Sy, can be approximated by

Su 2 Su(1) + Su(2)8x(1)Se(1)
+ Su(3)8x(1)812(1)8(2)812(2).

The first, second, and third terms on the right-hand side of (25) repre-
sent the contributions to Sy; by the reflections from the first, second and
third stages respectively. The effect of later stages is seen to be reduced
by the buffer action of the previous stages indicated by Sy (n)Sw(n).
For instance, when p = | Sy (n)8S:2(n) | is approximately equal to 0.4,
the contribution of the third stage to the over-all mismatch is reduced
to only p° = 0.16 times the original reflection. When the frequency is
changed, the phase of Sy (n)S;2(n) as well as that of S;;(n) changes.
Therefore, the vectors representing the successive terms on the right-
hand side of (25) are expected to rotate with successively increasing
speeds. At some frequencies, they tend to cancel each other and at other
frequencies they tend to add up. Thus, if the reflection of each stage is
of the same order of magnitude and p = | Su(n)Si(n) | & 0.4, then
for the three-stage amplifier, 1 + p + p* & 1.56 times as large reflection
as the single stage should be expected (or 4 db worse return loss). Simi-
larly, for a multistage amplifier with a large number of stages, 1 +
p+ o+ -+ = 1/1 — p x~ 1.67 times as large reflection should be
anticipated (or 4.5 db worse return loss). The output reflection S can
be discussed in a similar manner,

Next, let us consider the gain Suy . Sy of the three-stage amplifier is
is given by

(25)

_ Sul1)8n(2)8n(3)
A b

Sa (26)

where A is given by (24).

Since factors other than the effect of A being different than one were
dominant, A could be approximated by unity for the diseussion of Sy, .
However, for discussing Ss; , A has to be investigated in detail. When
each stage is well matched, A is unity and the over-all gain is the product
of the gain of each stage as expected. The effect on the gain of the inter-
action between stages comes from the various terms in A. The second
and third terms on the right-hand side of (24) represent the effect of the
interaction between the adjacent stages. The fourth term shows the
effect of the interaction between the first and the third stages through
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some buffer action of the second stage. The last term gives the higher
order interaction which for well designed balanced amplifiers can usually
be neglected. Since the phases as well as the magnitudes of the S;;(n)’s
change with frequency, the interactions between stages introduce ripples
in the gain vs frequency curve. When | Sy () | and | Sz (n) | are of the
order of 0.1 (or 20-db return loss) the magnitudes of the ripples intro-
duced by the second and third terms in A are of the order of 0.1 db.
Therefore, the expected value of the resultant is +0.14 db (or ==0.2 db
for the worst case). The magnitude of the ripple due to the fourth term
is smaller by the factor of | Sx(2)Sr(2)|. However, the phase of
S5 (2)812(2) increases the speed with which the vector rotates with
frequency. This rapid variation is sometimes troublesome. To reduce the
repetition rate of the gain variation with frequency, the equivalent
electrical length of each stage should be made as small as possible. Also,
transistors with high reverse loss help reduce the magnitude of the rapid
ripple.

For an N-stage amplifier, the corresponding A includes N — 1 terms
representing the interactions between the adjacent stages, N — 2 terms
representing those between the nth and n + 2nd stages and so forth —
with additional terms representing various higher order interactions.
The contribution from each group to the gain ripple is proportional to
v'N — 1,v/N — 2 pand so forth, provided that all stages have simi-
lar characteristics. Although the speed of the rotation with frequency
increases successively, the magnitude of the vector representing each
group diminishes rapidly and practically no interaction between the stages
beyond 3 stages away from each other can be observed when p ~ 0.4.

Since each balanced stage is, in practice, well matched at both ends,
the noise performance and intermodulation characteristics of a multi-
stage amplifier with identical stages are clear from the discussions of the
single-stage amplifier. However, because the main noise contribution
comes from the first few stages and the contribution to the compression
or intermodulation comes from the last few stages, it may be advisable
not to use an identical design for all stages. Instead, the first few stages
can be designed for best noise performance and the last few stages for
best compression characteristics. This can usually be done by changing
only the transistor de bias circuit.

In large scale production, when identical circuits are to be used for the
first several stages of each amplifier, the following procedure of select-
ing transistor pairs gives the best noise performance on the average.
First, obtain the actual noise measure 3 of all transistors in a standard
component amplifier and classify them into several groups of increasing
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M, each group containing twice as many transistors as the number of
amplifiers to be built. Then select pairs of transistors from each group
separately on the basis of similar scattering matrices and use first, each
pair from the best group (lowest M) in the first stage of each amplifier,
next use those from the second group in the second stage and so forth.
The pairs from the last group with poor M’s must be used in the later
stages, whose noise contributions are insignificant. A similar procedure
can be applied to the selection of transistor pairs for best compression
characteristics. Here, of course, each pair from the best compression
group is used in the last stage of each amplifier.
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APPENDIX

Theory of Symmetrical Directional Couplers

Since there is no literature readily available on the lumped constant
directional coupler discussed in the text, this appendix is prepared to
explain its principle from a slightly broader point of view. The theory to
be presented is originally due to H. Seidel. It was developed during his
association with Merrimac Research and Development, Ine., and is
used in the design of their low frequency directional couplers.

For convenience, let us call two two-port networks “oppositely re-
flective” with respect to each other when they have identical scattering
matrices except for opposite signs of their diagonal components. Now,
let us consider the symmetrical network shown in Fig. 11, and apply
incident waves of an even mode to ports 1 and 2, i.e., waves with the
same amplitude and phase. Because of this symmetry, the actual (four-
port) network can be considered as a two-port network acting on the
incident mode. We thus have some reflection r, of the even mode from
ports 1 and 2, and a transmission ¢, of the even mode to ports 3 and 4.
Next, suppose that we apply incident waves of an odd mode to ports 1
and 2, i.e., waves with the same amplitude, but 180° out of phase.
Again, because of the symmetry, the actual network acts as a two-port
network to the incident mode and we have some reflection r, and trans-
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PLANE OF
+ SYMMETRY

~ @

Fig. 11 — Symmetrical directional coupler with only one plane of symmetry.

mission ¢, of the odd mode from ports 1 and 2 and from ports 3 and 4,
respectively. With this much preparation, let us present the following
theorem.

Theorem I: If the two two-port nelworks, presented by a symmelrical
four-port network to its even and odd modes, are opposilely reflective, then
the symmetrical four-port network is a directional coupler. (The converse
1s not necessarily true.)

The proof of this theorem is as follows. By definition, r, = —r, and
{, = t, . Therefore, let us define @ and g by

a =T, = —T,, B =1t =1.

Suppose that a unit wave is incident at port 1. This can be considered
as a superposition of even and odd modes incident at ports 1 and 2 with
amplitudes of one half each. This fact can be expressed in matrix form

1 1 1
1 -
0 1 -1

[T

where the upper and lower rows represent the waves on the left- and
right-hand sides of the vertical plane of symmetry in Fig. 11, respectively.
The reflection from ports 1 and 2 is therefore given by

, 1 . 1 0
e + 2

D)
2 1 2

—1 a

This means that port 1 has no reflection and port 2 has an output a.
Similarly, the transmission to ports 3 and 4 is given by
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1 1 81
e + ‘0 — J.

)
)

1) 2[-1] Lo

This tells us that port 3 has an output 8 but no output appears at port 4.
In other words, when a unit wave is incident to port 1, port 1 is matched,
ports 2 and 3 have output waves « and g, respectively, and port 4 has
no output. A similar argument holds for a unit wave incident at any
other port of the symmetrical four-port network. This means that each
port is matched and there is no coupling between conjugate ports. Thus,
if a symmetrical four-port network is oppositely reflective to its even
and odd modes in the sense discussed above, then it is a directional
coupler and the theorem is proved.

The next theorem is useful for searching possible structures of direc-
tional couplers.

Theorem I1: If two two-port networks with real gemerator and load
immatiances are dual in their normalized form with respect to the generator
immitiances, then the two-port networks are oppositely reflective independ-
ent of the frequency.

To make the meaning of the theorem clear and the proof easy, let us
consider a simple example as shown in Fig. 12. For later use, the normal-
ized load emittances are assumed to be unity in Fig. 12; however, this
assumption is not necessary for the present discussion. The duality is
satisfied when the normalized inductance ! is equal to the normalized
capacitance ¢. The theorem asserts that the networks inside the dotted
lines are oppositely reflective at all frequencies. However, this is obvious
from the following consideration. The normalized input (or output)
impedance of one network is equal to the normalized input (or output)
admittance of the other and therefore the reflection coefficients have
equal magnitudes and opposite signs. The voltage across the load of one

r— 1 T 1
: joL I I :
) 7[00 : :, : v —
| | = | |
1 ! | Jjwc |
I _ 1 |
i I, §| I—1m §| i =S : §1
E=1 T : : | 1
] | : }
| ! : [
T ] I i
| S - | I |

Fig. 12— An example of dual circuits.
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network is equal to the current flowing into the load of the other and
therefore the transmissions are the same. Thus, regardless of the fre-
quency, they are oppositely reflective with respect to each other. Since
the above explanation is quite general, the theorem is proved.

Now, consider two closely spaced, thin and short parallel conductors
and let us conneet identical load Z,’s (real) at each end of the conduc-
tors. When the even mode is fed from one end of the conductors, the
conductors should represent a lumped L. For the odd mode, the capaci-
tance C between the conductors becomes effective while the currents in
the two conductors cancel each other, giving no inductance effect. There-
fore, from Theorems T and II this kind of circuit can work as a lumped
constant directional coupler. In order to satisfy the required dual prop-
erty, L/C has to be equal to Z,'. @ and 8 can be calculated from Fig. 12
where the normalized inductance ! corresponds to 2L/Z, . The coefficient
2 appears here because two loads Z, are connected in parallel for the
even mode to feed current to L.

If one realizes that coupled transmission lines exhibit a dual property
to even and odd modes, the theory of the distributed coupler can be
developed in a similar fashion. In the limiting case where the coupling
factor & approaches unity and the electrical length 6 of the coupled
region approaches zero, the distributed coupler can be considered as a
lumped constant directional coupler.

Although we have not discussed multisection directional couplers,
they are useful in obtaining wider bandwidths. The following theorem
serves as a guiding principle for constructing such couplers.

Thearem IIT: The oppositely reflective network of a cascade connection
of two-port networks is equivalent to the cascade connection of the oppositely
reflective two-port networks (provided that, for the comparison of opposile
reflectivity, the same resistance is used for reference at each corresponding
reference plane).

This theorem, together with Theorem I, guarantees that when several
directional couplers of the type discussed above are connected in cas-
cade, the resulting structure still works as a directional coupler. For the
proof, let us first consider a cascade connection of two two-port networks.
Using a signal flow graph similar to Fig. 10, the scattering matrix com-
ponents of the cascade connection are given by

Sa(1)812(1)Su(2)
1 — nrgg(l)Su(g)

_ Si(1)81(2)
1 — Se(1)Sn(2)

lS‘ll = ‘—qll(l) +

Sz
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g Su(1)8n(2)
T T T 8e(D)Su(2)

S22(1)82(2)812(2)
1 — See(1)8Su(2) °

If we change the signs of Sy (1), S=(1), Su(2), and S (2) then the
signs of S;; and Ss change but S;; and Sy remain the same. This means
that the theorem is true for two networks in cascade. Next, let us in-
crease the number of networks to 3, and first consider No. 1 network as
one network and the cascade connection of No. 2 and No. 3 as the other.
Then the application of the above proof for two networks shows that the
opposite reflective network of the cascade connection of No. 1, No. 2
and No. 3 is equivalent to the cascade connection of the oppositely
reflective network of No. 1 and that of No. 2 and No. 3 in cascade.
Since another application of the above proof to the cascade connection of
No. 2 and No. 3 shows that the oppositely reflective network of No. 2 and
No. 3 in cascade is equivalent to the cascade connection of the oppo-
sitely reflective networks of No. 2 and No. 3, the theorem is proved
for the case of three networks in cascade. Since this procedure of in-
creasing the number of networks can be continued indefinitely, the proof
of the theorem is completed.

S22 = S22(2) +
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