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The conditions necessary lo achieve undistorted transmission of a pulse
signal over a channel of finite bandwidth have been sel down by Nyquist.
These condilions are extended in this paper to eliminate the bandwidth
restrictions. Conditions on the real and imaginary parts of the overall system
characteristic which lead to the elimination of intersymbol amplitude and
pulse width distortion are found. These generalized constraints do not de-
pend on any sharp band limitation and permil one lo find ideal conditions
for band pass and gradual cutofl systems. The application of Nyquisl’s
condilions usually amounts lo equalizing the lransmission characleristics
in order to approximate an overall linear phase and some sort of symmetrical
amplitude roll-off. This paper shows that the principles of channel shaping
for distortionless transmission are a good deal more flexible than this. The
application of this more general interpretation of Nyquist’s theory is illus-
traled by several examples.

I. INTRODUCTION

Nyquist’s classic paper! considered the conditions necessary for digital
data transmission without intersymbol distortion, and these conditions
have provided the guides for system design for many years. However,
Nyquist treated the case in which no energy is transmitted at a frequency
above twice the signaling speed, although he mentioned the general case
in passing. As a consequence, his results cannot be applied directly to
cases in which the amplitude characteristics extend beyond twice the
signaling speed (gradual cutoff systems) or baseband systems without
low-frequency components (bandpass). In addition, Nyquist’s theory
has been incompletely exploited in practice. The usual application of
the principles of channel shaping amounts to equalizing the phase to
malke it linear across the band, and equalizing the amplitude to produce
a symmetric roll-off characteristic. This procedure is valid and consistent
with the theory, but is only a special application of the theory.
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This paper extends the previous results by showing that it is not neces-
sary to restrict the bandwidth to arrive at an efficient description of the
amplitude and phase constraints for distortionless transmission. In other
words, transmission systems without a sharp cutoff frequency are con-
sidered and constraints on the system characteristics are obtained. The
removal of the bandwidth limitation means that one can easily find the
constraints for gradual cutoff and bandpass systems.

In addition, the applications of the principles developed here are ex-
tended to give a good deal of flexibility in the design of transmission net-
works. In particular it is shown that distortionless transmission can be
achieved under conditions of nonlinear phase and nonsymmetrical roll-off
in amplitude, provided the proper relationships between these two quan-
tities exist.

Fig. 1 illustrates the general baseband system to be examined. We can

s(t)l

SIGNAL s{t) | TRANSMISSION RECEIVER rt)
——{  SHAPING CHARACTERISTIC FILTER  f——
Slw) Tiw) Elw)

Fig. 1 — General digital transmission system.

assume, without loss of generality, that the information is contained in
a random sequence of impulses at the input to the system. Thus a signal
s(f) having an amplitude of 0 or 1 is transmitted every 7 seconds. The
system output, r({), with the Fourier transform

R(w) = S(w)T(w)E(w) (1)

is used to decide whether s(f) was transmitted with amplitude 0 or 1 at
a particular time. The type of decision criterion used determines the
constraints on R(w). Decisions based upon pulse amplitude (usual PCM)
at a fixed time and pulse width (telegraph) will be considered.

A sequence of input signals will, in general, produce a sequence of
overlapping output pulses. To prevent intersymbol distortion at the
output, either the pulse amplitude or the pulse width must be unaffected
by the tails of adjacent signals. Fig. 2 illustrates the types of waveform
which possess these characteristics. It should be noted that both wave-
forms require periodic zero crossings away from the main peak. These
constraints on the time domain signals are translated into constraints in
the frequency domain.*

* These constraints on channels are based on the preservation of periodic zero
crossings in the output response. In the case where information is contained in the
amplitude of a binary signal, this concept is straightforward. Complications arise,
however, when information is associated with the pulse width (such as certain
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Fig. 2 — Undistorted system responses, (a) r(f) with pulse amplitude undis-
tur]tcd by adjacent pulses; (b) r(t) with pulse width undistorted by adjacent
pulses.

1I. SYSTEM CONSTRAINTS — UNDISTORTED AMPLITUDE TRANSMISSION

In this section decisions based upon pulse amplitude will be considered.
From Fig. 2(a) the constraints on the output pulse may be written

r(kT) = 1 = rodyo . (2)

These sample values may be written in terms of the Fourier transform

r(t) = f_m R(w)e™ dw @

T = f_ ) R(w)e™" dw ()

- > [FO R do )
n——w T (2n—1)

types of telegraph transmission and systems involving timing recoveri;l). In such
cases there may oecur troublesome excursions of the signal in between those points
which are preserved by the constraints. Unless special apparatus is used in the
detection (or timing recovery) process errors will result. TEe analysis of this prob-
lem, which is inherent in the original Nyquist work as well as in the present study,
is very complicated and beyond the scope of this paper.
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- > [ (u+2ﬂr) ST g, (50)

Assuming that Y. Rlu + (2nx/T)]e™*” is a uniformly convergent

series, one obtains
e = f Z ( 27“') e du. (5b)

Notice that r is just the kth coefficient of an exponential Fourier series
expansion of

2w = 2nm T T
E < < —_
R( ) T u_T.

n=—w

The requirement that r, = ref;e implies that only the zeroth coefficient
of the expansion of
o0 — 2nm
T ( + —)
is not zero, and hence
2 < 2
o S (e %) ®

By using the amplitude and phase characteristics

R(w) = A(w)e’™® )

ngﬂ A(u + 21%11-) exp [ja(u + Qﬂr)j, - %1 (8)

Separating (8) into real and imaginary parts one obtains

Z A(u - ") oS (u + — 2nmy 120_'1" (9a)
m™

one gets

n=—o

and

.,io A(u. ) sin a(u + ZF;‘,I) -0 (9b)

for — «/T = uw = =/T. Because of symmetry conditions [4 (w) =
A(—w), a(w) = —a(—w)] the interval 0 = u = /T is sufficient.
Fig. 3 illustrates the constraints for a characteristic that is limited to
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Fig. 3 — Constraints for no intersymbol amplitude distortion [4(w) = 0| w | =
3x/T].

| w| < 3m/T. There is, however, no reason for this limitation other than
for clarity in the diagram. The only restriction on the frequency charac-
teristic is an asymptotic one. The condition that ), R[u + (2nr/T)]-
¢™*” be a uniformly convergent series is satisfied if 4 (w) — 1/ ¢ = 2,
as w — . This is a more realistic restriction than forcing A (w) = 0
for large w.

One may also note that the constraints are more general than Ny-
quist’s symmetry conditions because of the elimination of the cutoff
requirements. These symmetry conditions may be obtained by limiting
A (o) to the region —27/T < w < 2x/T. From Fig. 4 it is easily seen
that

Au) cos a(u) + Alu — (2x/T)] cos alu — (27/T)] = Const. (10a)
and
A(u) sin a(u) + Aflu — (2x/T)] sin aflu — 2r/T)] = 0
(10b)
for0 £ u = «/T

which are Nyquist’s conditions.
Consider, now, (9a) and (9b) and their ramifications. No longer is
one confined to low-pass sharp cutoff systems. It is now possible to
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/Fji,g. 4 — Constraints for no intersymbol amplitude distortion [A (w) = 0| w | =
2x/T).

express compactly the conditions for distortionless transmission for
bandpass or gradual cutoff systems as well. Fig. 3 shows a gradual cutoff
system and Fig. 5 illustrates an acceptable bandpass characteristic.

Note that (9a) and (9b) represent constraints on the real and imag-
inary parts of the characteristics and not upon the amplitude and phase.
In general, these equations imply nothing about conditions on the ampli-
tude and phase individually (the exception being the bandlimited case
[A(w) =0, |w| > 7/T] where A (w) = K and a(w) = 0 are the condi-
tions). Constraints on A () are imposed only if « (w) is arbitrarily chosen
or viee versa. The usual application of Nyquist’s results (linear phase
and symmetric roll-off) is just such an arbitrary choice.
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Fig. 5 — Distortionless bandpass characteristic.



EXTENSIONS OF NYQUIST'S THEORY 1495

teristics may be such that the required 4 (w) in one of the intervals may
approach infinity (if a;(u) = a:(u) 4 nw). With phase equalization,
for a;(u) or a;(u) to be real phase angles it is necessary that
(A;w) + A, 2 Fuw) + G) =z {4:) — 4} (15
—(«/T) £ u = =/T. 5)
This condition determines the intervals, if any, in which phase equaliza-
tion may be applied. It may happen that, because of a poor choice of
transmission speed or poor characteristics outside the 7 and j intervals,
this type of equalization cannot be used. In most practical cases, how-
ever, the transmission rate can be judiciously chosen, and phase equaliza-
tion is theoretically possible. It might be pointed out that (15) or its
generalization (where phase equalization is allowed over the entire
spectrum ) can be used to determine the maximum rate for a fixed ampli-
tude characteristic. The application and some ramifications of (15) are
illustrated in Appendix A for the Nyquist problem of (10).
As a specific example of some of the concepts outlined, consider the
usual Nyquist problem (4 (w) = 0 for @ > 2x/T) given in (10a) and
(10b). One can obtain the constraints on either A (w) or a(w) by letting

Fu) =K (16a)
G) =0 (16h)
Ai(u) = A(u), ai(u) = a(u) (16¢)

A, (u) = Alu — (2a/T)], aj(u) = alu — 2x/T)] (16d)

in (14a-d). The resulting equations become
K sin a(u —_ Z%r)

sin l:a(u — 2%-) — a(u)]
A) —_ rd L d P

.‘l(u — ir) = K sin a(u) , (17h)
T sin| o © — 2m\ _ alu)

T
27

K' 4+ A%(w) — A‘-’(u - T)
a(u) = cos™ SRAT) (17¢)

(17a)

A =

and
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K+ Az(u - 3’5) — A*(u)

a(u — Q—W) = cos " r
T 2
2KA(u - ?”) (17d)
for0 = u = %.,.

Equations (17a-d) form a relationship which must be satisfied for
ideal transmission. In general, a(w) need not be linear and A (w) need not
have the usual symmetrical roll-off. All that is required is that the phase
and amplitude satisfy the equations.

For an unequalized channel, with known 4 (w) and a(w), this can be
accomplished by either leaving the phase unchanged and computing the
matching amplitude from (17a-b) or by leaving the amplitude un-
changed and computing the matching phase by (17¢—d). It is apparent
that this gives a good deal more freedom and flexibility to one con-
fronted with the task of equalizing a channel. Some examples of the use
of equations will now be considered.

2.1 Examples

The amplitude characteristic A(w) of a channel with some kind of
resonant, peaking is shown in Fig. 6(a) together with the minimum phase
characteristic associated with A(w). Since these channel characteristics
do not satisfy ideal transmission conditions, the impulse response of the
channel will be distorted. This is indicated in Fig. 6(b) in which the zero
crossings of the response do not coincide with the sampling points. As
stated before, there are several ways of equalizing the channel. Phase
equalization may be achieved by substituting the value of A(w) into
(17¢—d) and obtaining the matching phase. This is shown in Fig. 7(a)
(with the original minimum phase shown dashed for comparison). The
resulting impulse response, shown in Fig. 7(b), is seen to have zero cross-
ings which are properly spaced, thus satisfying the condition for undis-
torted transmission.

It can be seen that equalizing a channel by means of (17¢,d) offers
considerable reduction in complexity over the method which requires a
flat delay and symmetrically shaped amplitude. For example, in the
above illustration it was necessary to alter only one of the characteristics
instead of both. It was not required that the phase be linear but only that
its shape be altered in a prescribed manner. An important practical
factor stems from the fact that the delay for the equalized channel is not
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Fig. 6 — Initial system response, (a) transmission frequency characteristics;
(b) impulse response.
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Tig. 7 — System response with phase correction, (a) transmission frequency
characteristics; (b) impulse response.
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Fig. 8 — System response with amplitude correction, (a) transmission fre-
quency characteristics; (b) impulse response.

flat. While it is usually thought desirable to have a channel with a flat
delay, it is apparent that in this case linear phase across the hand would
degrade rather than improve transmission.

A second method of equalizing the channel of Fig. 6 is obtained when
the equalized amplitude characteristic is obtained from the original
minimum phase by (17a~b). The resulting A (w) is shown in Fig. 8(a)
together with the impulse response for the equalized channel in Fig. 8(b).

III. SYSTEM CONSTRAINTS — PULSE WIDTH UNDISTORTED

If the pulse width is to be undistorted by adjacent pulses, r(f) must
satisfy the conditions

rk=r(2k—lT)=0 E=01

2
1
5-

(18)

o = 1 =
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Again, writing these sample values in terms of the Fourier transform,
one obtains (3)

r(l) = f R ()™ do
0 (193.)
= f R(w) g (T kT g

(2n ) . —i 2 1
Z f +1 g jw(T/2) e}wk'f' dw (19b)

= n;m f_i (u + ﬁ) exp [ (u + g;—r) 22:' ™ du.  (20a)

Assuming that 3 Rlu + (2nm/T))e "¢ "™ " is a uniformly con-
vergent series one obtains

"= _F:{ > R( + -QET) _’”'} eI g gy (20b)

- n=—u

T

f z { _E_ (—1)" R( 2mr)} oI KT g (000

The value of r. is the kth coefficient of an exponential Fourier series
expansion of

@n/T) 3 (=1)"Rlu + (2n/T)le ™.
From (20c) it is seen that the expansion is

i (—=1)"Rlu + @nx/T)e ™ = (T/27) Zkr;"“”. (21)

n=—w

Letting

Gr(u) + 5G; () ={ i (=1)"R[u + (2n7r/T)]}e_"'“T"2’ (22)

n=—w

and using the conditions ro = r, = % and r, = 0, & # 0,1 one gets

Ge(u) + jGr(w) = (T/2m)} + 3 7). (23)
Separating the real and imaginary parts of the equation yields
Ge(u) = (T/4x) (1 + cos uT) (24a)

and
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Gi(w) = (T/47) (—sin uT) for — (#/T) = u = «n/T. (24b)
Letting

Re(u) = Re {2, (—1)"Rlu + (2nx/T)]} (25a)
and
Ri(u) = Im|{ > (—1)"Rlu + (2nx/T))|
" (25b)
for — (v/T) S u £ x/T
one gets
Gr(u) = Re(u) cos (uT/2) + R;(u) sin (uT/2)
(26a)
= (T/4w)(1 + cos uT)
and
-G (u) = Rp(u) sin (ul/2) — Rr(u) cos (uT/2) (26D)

= (T/4x) sin uT for — (x/T) = u = =/T.

Solving these two equations, the constraints for no intersymbol inter-
ference become

Re(u) = RG{Z (—1)"Rlu+ @nr/T)]} = (T/27) cos (uT/2) (27a)

and
Rr(w) = Im{> (—1)"R[u + (2nx/T))} = 0

" (27b)

for — (x/T) £ u £ «/T.
Finally, writing
R(m) — A(w)e:fa(m)
one obtains
3 (—=1)"A[u + (2nr/T)] cos alu + (2nx/T)]
" (28a)
= (T/27) cos (uT/2)

and
> (—1)"A[u + (2nx/T)]sin afu + (2n7/T)]
" (28b)

=0 for — («/T) £ v = «/T.
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Again, there is only an asymptotic bandwidth restriction on these
constraints. Fig. 9 illustrates a satisfactory characteristic with 4 (w) =
0,| w| = 3x/T for clarity. With A (w)= 0,|w | = 2x/T the conditions
become the familiar Nyquist results shown in Fig. 10.

The general statements of Section IT about the implications of (9a-b)
can be applied here to (28a-b). The specific results of Section I can be
obtained by replacing

Alu + @nr/T)] by (—1)"Alu + (@nT/x)]

and K by K cos (#T/2). For the specific case of the usual bandwidth
limitation [A (w)= 0,|w| = 2x/T]one gets from (17a-d) the constraints

Kcosgsina(u— 2%-)
Alu) =

BEGEED)

9 K cos %1 sin o (u)
A (u -7 = , (29b)

T sin [a (u - %T) - a(u):

K* cos’ %T 4+ A%(w) — A° (u — 2‘”)

(29a)

a(u) = cos™ 7 T (29¢)
2K A (u) cos %
and
. T ; 27 ]
K cos® %= + 4° (u - —) — A%(w)
a(u—z%r)=cos_l 2 3 r T
T U ‘
i —2KA(u - ?) cos 5 ] (29d)
<yu<T
0=u= T

IV. CONCLUDING REMARKS

This paper has extended Nyquist’s work on transmission theory to
eliminate bandwidth restrictions. The extension is important for a full
understanding of data systems. In the past, incomplete results have been
obtained from the imposition of arbitrary band limitations. For example,
one paper? stated that only one waveform jointly satisfies the two criteria
discussed here (pulse height and pulse width preservation). In Appendix
B this is shown to be false in general but true if A(w) = 0, | w | = 2x/T.
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Although distortionless transmission has been the main consideration,
it is possible, with the approach used in the paper, to obtain an estimate
of system quality when the conditions of ideal transmission are not met.
In Appendix C, a measure of the distortion (for systems which base deci-
sions on pulse amplitude) is derived in terms of the frequency domain
characteristics.

The discussion makes clear that the constraints are not obtained on
the phase and amplitude characteristics individually, but only the real
and imaginary parts of the transfer characteristics. Specific constraints
on the amplitude and phase are the result of arbitrary design choices.
Equalization requirements are thus less stringent than usually assumed.
It is seen that equalization is only necessary over intervals of =/T" or
27/ T (subject to the conditions discussed) and not over the entire band.
Further, it may only be necessary to compensate either the amplitude
or the phase but not both.

APPENDIX A

Realizability Conditions for Phase Equalization

In Section II, the question of equalizer realizability was briefly con-
sidered. This question is closely related to the choice of transmission rate
which is of sufficient importance to discuss further at this point. Thus,
it is possible to illustrate the realizability conditions for phase equaliza-
tion by considering a transmission system with variable phase equalizer
and determining the maximum signaling speed. By assuming that the
system has a continuous sharp cutoft amplitude characteristic [A4 (w) =
0,0 = w] and that it is desirable that the signaling speed (w, = =/T')
be

w/2 = 7/T £ o, (30)

one has the usual Nyquist problem. Under these assumptions, the condi-
tions for phase equalization (15) become

(A@) + Alu — @e/T* 2 K* = {4 () — Alu — 2«/T)]}*  (31a)

or
Au) + Alw — 2n/T)]
(31b)
> Kz A@w) — Alu — 2=/T)) =2 — K
or
Ay(u) 2 Kz A_(u) 2 —Kfor0 = u = «/T.

(31c)
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The more general condition would be used if the above assumptions are
removed, but this example illustrates the concepts adequately. By using
condition (30) and the fact that

Aw) =0, o=
one obtains
A) + Alu — 2r/T)] =2 A0) = A(u)

‘ (32)
— Afu — @2r/T)] 2 —4(0)

and
A(r/T) =z 34(0), (33)

and these must be satisfied for phase equalization.

By examining the amplitude characteristics graphically, it is easier
to study some of the other implications of the equations. As an example,
consider the problem of finding the maximum signaling speed for the
amplitude characteristic shown in Fig. 11 (a). From the previous results,
it is known that the maximum speed lies between w./2 and z(4 (z) =
A(0)/2). Fig. 11(b) shows A, (u) and A_(u) for

w/2 < /T < z
and Fig. 11 (¢) shows the same curves for
| /T = w./2.

Notice that 4, (u) > A (0) for all w in Fig. 11 (b), and phase equaliza-
tion cannot yield distortionless transmission. For n/T = w,./2 the net-
work can be phase equalized. Notice also that w./2 is the maximum
signaling speed for distortionless transmission with phase equalization.
In other words, any amplitude characteristic which is strictly decreasing
[A(w + 8) < A(w)] cannot have undistorted signaling above «./2.
Because A" (0") 5 0, a slightly higher signaling speed would mean that
both A (u) and A_(u) would be identical and have a slope different
from zero at u = 0. This situation would not satisfy (32).

The above observation can be generalized by noting that the upper
signaling speed is limited by } (o, + «:) where w; = lowest frequency
at which A’ (w) # 0. Fig. 12 illustrates this feature for a peaked am-
plitude response. Here

7/T = 3 (we + @)

and a slightly higher speed would again mean that A, (u) = A_(u) at
some point with A () = A (u) # 0.
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Tig. 11 — Maximum signaling speed when 4'(0%) # 0.

To show that i (w. + ) is only a limit and not the true maximum
speed, consider the example in Fig. 13. It is apparent that the frequency
1(w. + w.) is too high and thus the true maximum is w, .

It is difficult to sum up in words all of the considerations in deciding
whether equalization is possible or, equivalently, what is the highest
signaling speed at which it is possible. Equation (32) contains all of the
required information, and this section was intended to give some idea
of its use.

APPENDIX B

Combination of the Two Cases

In the previous analysis, two types of undistorted transmission were
treated independently. It will now be determined under what conditions
these two cases can be realized simultaneously. The equations which
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Alw)

A(0)

———r—=A_(U)

(v, + wg)

(b)

Fig. 12 — Maximum signaling speed for peaked amplitude response.

must be satisfied are:
equation (9a)

E Alu + (2nr/T)] cos afu + 2nx/T)] = K,

equation (9b)
> Alu + @nr/T)] sin alu + 2nr/T)] = 0,

equation (28a)

2. (—1)"A[w + (2nr/T)) cos alu + (2nx/T)] = K cos (uT/2),

and equation (28b)
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> (=1)"Alu 4+ @2nx/T)] sin alu+ 2nr/T)] =0

for — (x/T) £ u = «w/T.

The simultaneous solutions to these equations are

Z;,d Al 4+ 2nx/T)] sin alu + 2nx/T)] = 0, (34)
> Alu 4+ (2nx/T)] sin alu + (2nx/T)] = 0, (35)
>, Alu+ (2nx/T)] cos alu + (2nx/T))
n even (36)
= 1K{1 + cos (uT/2)]
and
Z Al + @nw/T)] cos aflu + 2nw/T)]
n odd (37)
= 1K{l — cos (uT/2)} for — (v/T) = u = «/T.
A(w)

| |
! I
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| I
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] |
|
u %=%(wc+ml} u %:m;
(b) (c)

Fig. 13 — Maximum signaling speed equal to w; .
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In general there will be many possible solutions to these four equations.
For the particular case A (w) = 0, | w | 2 2x/T each of the above sum-
mations reduces to one term and

a(u) = 0, (38)
alu — 2x/T)] = 0, (39)
Aw) = (K/2){1 + cos (uT/2)}, (40)

and
Alu — 2=/T)] = (K/2){1 — cos (uT/2)} forO0 = uw=a/T. (41)

Taken together, (40) and (41) define the amplitude characteristic
across the band as the familiar® full cosine roll-off, which may be written
by a single expression

Aw) = (K/2) + (K/2) cos (wT/2)
— @2r/T) 2w s @0/T). (42)

This amplitude characteristic is shown in Fig. 14(a). The corresponding

(a)
~ a(w) =0
¥ L
0 w/T 2mw/T
FREQUENCY
()
-3 -2 -1 4] 1 2 3

TIME IN BIT INTERVALS

Fig. 14 — System response satisfying both critria, (a) transmission frequency
characteristies; (b) impulse response.
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impulse response in Fig. 14(b) satisfies both types of undistorted trans-
mission, as expected.

APPENDIX C

A Distortion Measure

It is possible to use the results of the paper to obtain an estimate of
system quality when the conditions of ideal transmission are not met.
The variance of the intersymbol distortion distribution.

> T

can be shown to provide an indication of transmission quality (for un-
distorted amplitude transmission). Since

f Z R( 2””) *Tdu (equation 5b)

one could write

2nw _E‘_ . —jukT
ZR( 1)_%;”6 (438)

or

2n1r nT _ T | ukT
ER( ) %_Q'szn”e (43b)
and

(43c)
for — ? Sfu=s %
Multiplying (43b) and (43c) and integrating, one obtains
x . %
g [z (e )4
or &= T L% 2
(44a)

[Zr(es )50

or
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s 2r [7 2nm
=7 [ {[?‘4 (“+T)
2nm roT T 2nw
COSa(u—l— —T—)—E]-l-[z,;/i(u-i-?) (44b)
. 2nmw Ql ™ T
ssine |4 4 = jn’.u for—?,gug?.
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