Autotrack Control Systems for Antenna
Mounts with Non-Orthogonal Axes

By W. L. NELSON and W. J. COLE
(Manuseript received May 17, 1965)

The use of non-orthogonal, or conic, mounts for steerable antennas in-
troduces some conlrol system design problems not present in the more
conventional orthogonal mounts. These problems result from both the
geometrical and the mechanical cross-coupling which occurs between the
two non-orthogonal axes of motion.

This paper presents a general analysis and design of the control system
for the open cassegrain antenna which can be readily applied to other non-
orthogonal antenna structures. The form of the feedback controller for ap-
proximately non-inleracting control of each axis is developed. Also de-
scribed is a supplementary control strategy for providing tracking near the
zenith region without excessively high slewing rates.

A compuler simulation ot the system has verified the basic control strategy
for mom-orthogonal mounts and established the feasability of operating
compact antenna structures such as the open cassegrain design under
severe wind conditions without a radome.

I. GENERAL SYSTEM DESCRIPTION

While the general control system design methods developed in this
study apply to any antenna mount using two non-orthogonal axes, the
specific structure considered throughout this paper is the slant-mounted
open-cassegrain antenna.! In this structure, the antenna beam tracks
the target by controlled rotational motion about the inclined and the
vertical axes shown in Fig. 1. While motion about the vertical axis pro-
duces true azimuth motion of the beam, the motion about the inclined
axis generates a combination of azimuth and elevation motion of the
beam. Further eross-coupling between the azimuth and elevation track-
ing channels is introduced by unavoidable mechanical coupling of
motion between the two drive axes.

Fig. 2 is a general block diagram of the tracking control system. The
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Fig. 1 — Open cassegrain antenna with two-axis conic mount structure
showing simplified subreflector strueture.

pointing error is resolved for convenience into the standard azimuth and
elevation angle errors (this is a conceptual, not physical, portion of the
system). In the tracking of active repeater satellites, the error signals
are derived from the waveguide mode detector receiving the satellite
beacon signal.® The horizontal and vertical error signals, e and e, , at
the output of the error detector are related to the azimuth and elevation

errors by
€ = K},_ (BOS E)(A,- — A)
€ = Kv(Er = E)

(1)
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where K; and K, are the detector gains, A, and F, are the reference
azimuth and elevation angles, respectively, of the satellite, and 4 and
E are the controlled azimuth and elevation angles of the beam axis
(electrical boresight) of the antenna.

All of the equations of motion of the antenna drive system and phys-
ical structure (considered in detail in Section III) can be represented
here by the single nonlinear differential equation,

N = Fwu @)
where W is the state vector containing as components those variables
necessary to adequately represent the dynamies of the antenna system,
and F is the vector-valued function relating the time derivative of the
state to itself and to the control vector, u (with components u; and us).

From the error signals (1), as well as from feedback signals derived
from the components of the state vector, W, the controller must gen-
erate the two antenna drive signals, u; and u, , which control the antenna
angles, V' and 7, in such a way as to reduce the tracking error and keep
the antenna beam automatically ‘“locked-on” to the satellite. Because of
the complex, nonlinear, multivariate nature of this system, the design of
the controller cannot be achieved by conventional analytic design meth-
ods. A preliminary controller design, based on a linear approximation of
the system dynamices, together with the appropriate coordinate trans-
formations and supervisory control logie, is discussed in Section IV. The
final design will be evolved from this preliminary design through an
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Fig. 2 — Preliminary block diagram for antenna control system.
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accurate computer simulation of the overall system, its inputs, and its
environment.

II. CONIC MOUNT CHARACTERISTICS

To gain an initial understanding of the tracking requirements on this
system, the basic transformations between the antenna angles (I,V)
and the tracking angles (E,A) are needed. Some of this is similar to a
study on conic mounts by Norton,® and his notation is used here.

Fig. 3 shows the geometry of the conic mount, in particular the struc-
tural design angles (a,8), the inclined- and vertical-axis angles (L,V),
and the elevation and azimuth angles (£,4).

BEAM
DIRECTION
VERTICAL
( AXIS )
2 (INCLINED AXIS)

Fig. 3 — Conic mount geometry.
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Since V produces only azimuth motion, the only coordinate conver-
sions needed are those giving the azimuth angle A and the elevation
angle £ produced by I. Fig. 3 indicates that these angles are related by
rotation about the y-axis through an angle (90° — «), which corresponds
to the rectangular coordinate transformation:

[x'] sina 0 cosal [z
y | = 0 1 0 ||y]. (3)
7 —cosa 0 sin «f |z

For a unit radius, the spherical coordinate equivalents of these rec-
tangular coordinates are,

cos F cos A sinae 0 coseal| [sinBcosl
—cos Ksin A| = 0 1 0 sing@sin I| . (4)
sin | —cosa 0 sina cos B

Multiplying out the right-hand side of (4), the coordinate conversions
can be expressed as

E = sin' (sinacos 8 — cos asin B cos )

_ 1 - —sin 8 sin [
A = fan [cos a cos B + sin «a sin 8 cos IJ (5)
A=V 4+ A,

In order to have complete coverage of the zenith region, it is neces-
sary that £ = 90° when I = 180°. From (5) this occurs if and only if
a + 8 = 90°. All relationships from here on assume this zenith condi-
tion. In particular, since & + 8 = 90°, let us define,

a = sina = cos 8

b

}a,2+b2=1 (6)

sin 8 = ¢o0s a

so the elevation-azimuth expressions (5) reduce to*

* The antenna mount for the open cassegrain design! has « = 42.5° and g =
47.5° which gives a —5° to 90° range in E. Therefore sin « = cos 8 = 0.67559, and
sin 8 = cos @ = 0.73728, but for simplicity of notation, and somewhat more gen-
erality, we eontinue to use a and b.
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sin”? (a* — b*cos )

tan”' [— é tan (g):l (7

A=V + A

The inverse of these expressions gives the required antenna mount
angles, I and V, to produce a given azimuth and elevation of the beam

E

A

axis:
o fa’ — sin E
I = cos l(_ltaT—
voame ®)
A= —qg(tan’ (l 1/1 — 2a° + sin E)
a 1 —sin £
where we define
= . - sin I
o(I) =sgn (sinl) = it ©)

These relationships between the angles I, A = A — V, and E are
plotted in rectangular form in Fig. 4, and in polar form in Fig. 5. It is
apparent from these figures that there are two pairs of drive angles
(1,V) corresponding to every pair of tracking angles (E,A).” However,
in continuous tracking of a moving target, the choice of which pair (I,V)
to use in pointing the antenna to the given (E,4) is arbitrary only at
the beginning of the track, since instantaneous switchover to the oppo-
site pair is not possible. To switch from one pair to the other may be
necessary or desirable in certain applications (see Section 4.2), but it
ecan be accomplished only by moving the antenna boresight off the
target for some finite period of time. The exception to this is the unique
case of the target track which passes precisely through the zenith, at
which instant the two (I,V) pairs coincide, so that instantaneous
switchover can be made.

Finally, the coordinate conversions between the conic mount angular
velocities (1,V) and the tracking angular velocities (£,4) are of interest
in determining the control system requirements. Using (6), (8), and (9)
we get

* For example, for the tracking angles (B = 40°, 4 = 80°), there are the two
equivalent pairs of drive angles (/; = 110°, ¥, = 145°) and (I = 250°, V. = 15°).
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R SR S
-7 I + sin K
L al I (10)
A 1 + a> — b cos [ Rl (COS ‘2)
V=d4-4A

where 6 (cos //2) is the Dirae delta function of (cos 7/2), representing
the derivative of the step discontinuity in A which occurs whenever
cos ([/2) = 0,i.c.,, whenever I = =(2n + 1)m, n = 0,1,2, --- (see
Fig. 4).

To predict the tracking requirements for the two-axis conic mount,
it is clear from (8) and (10) that the elevation and azimuth angles
(E,A), and rates (£,4) are needed. In the tracking of communication
satellites, these are functions of the orbit parameters of the satellites,
the locations of the tracking station, and the time reference chosen.
Computer routines for providing such data are available.! For the pur-
pose of analysis and preliminary design, however, it is desirable to have
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analytic expressions for the azimuth and elevation angles and rates for
circular orbits. These expressions are derived in Appendix A.

III. DYNAMICAL MODEL OF ANTENNA AND DRIVE MOTORS

As an essential step in the design of the control system, we consider
now the mathematical model of the antenna mechanical system and the
drive motors. Although the model must realistically represent the out-
put angle response (I,V) to input signals, (%, , u»), some simplification
will be made to ease computer simulation.

The model of the antenna mechanical system, based on a study by
Coyne,® which was considered to adequately represent the essential
dynamics, is illustrated in Fig. 6.

REFLECTOR

J -MASS MOMENTS OF INERTIA
R -MECHANICAL FRICTION

L -SPRING CONSTANTS
Ta-APPLIED TORQUES

@ ~SHAFT ANGLES

BASE

Fig. 6 — Model of antenna mechanical system.
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Using the notation in Fig. 6, the equations of motion are
Tal” = Jﬂ.]é] 'Jr L[(Bl — I) + Rl(al - I) + R:}B] (11)
Li(by — I) 4+ Ri(6 — 1) = Jud — mu,

for the reflector structure, and
1,2 = Jybs — Lo(V — 6) — Ra(V — 6:) + Rub (12)
—La(V = 0) — Re(V — 6) = Jouo V — T, + ma,
for the base structure, where

my = —bJu.(Veos I — IVsinI) + aJ..V,
my = b:Jyy sin I(Vsin I + IV cos I)
+ bcos I[Jrwh(V cos T — IV sinI) — Jy.(aV — 1))

The product mass moments of inertia of the reflector section are defined
with respect to the x-y-z coordinate system. The J,.... is measured with
respect to the vertical (') axis.

Due to the large speed variations required in tracking, and because a
stiff drive is needed to cope with disturbance torques, it is expected that
hydraulic transmissions similar to the units used to drive the Andover
horn-reflector antenna® will be employed as the drive units. In addition,
direet gearing is assumed.

The differential equation which deseribes the hydraulic drive unit’ is

Ka = Kby + K.P + KcP (14)

(13)

where %, 8, , and P represent the drive signal from the controller, motor
shaft angle, and hydraulic pressure. The torque delivered by the hy-
draulic unit is proportional to the pressure, or

Ty = K.P. (15)

Equation (14) is valid provided the pressure, P, is less than the maxi-
mum pressure, P , which is allowed in the transmission. This condi-
tion is shown in Fig. 7 where the lines AB and C'D represent (14) with
U = Zbmax and AD and BC represent P = &P . . The line KOF repre-
sents the operating line or static load line of the hydraulic transmission.
To illustrate the dynamic operating of the hydraulic transmission, sup-
pose the operating point is at  with u = 7, and a large change in drive
signal to # = # oceurs. The motor velocity cannot change instantane-
ously, so that the pressure in the transmission unit becomes larger. If
the drive signal change is large enough, the P may exceed P,..x and the
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Fig. 7 — Dynamic operation of hydraulic transmission.

new operating point jumps to point H in Fig. 7. At this point, a relief
valve is actuated which maintains the pressure at P.. and the torque
at KrPua until the shaft velocity increases to the value at point 7.
Then, (14) is again valid with % = #, and the shaft velocity will increase
to the value at J. If the drive signal change is such that P < P,.,, the
dynamic path is similar to KLM. As a result, in the system simulation,
the value of P must be monitored and, if it exceeds Pu.. , we must set
P = P, le.,a limiting function,

A counter-torque arrangement of the motors was assumed to eliminate
hysteresis effects in the drive systems.® This permits the linear gear
train equations,

Tu = IVGTD N

16
ﬁm =N(;3, ( )

to apply, where T , 6, and N are the torque applied to each axis in Fig.
6, the shaft angle at the gearbox output, and the gear ratio, respectively.

The mathematical model for the computer simulation of the antenna
structure and the drive motors, represented by (11) through (16) and
Tlig. 7, is shown in detailed block diagram form in Figs. 8 and 9.
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IV. CONTROLLER DESIGN

4.1 Approximalely Non-Inleracting Conltrol

In order to design the controller for approximately non-interacting
control of each channel, it is necessary first to represent the drive motors
and antenna structure in terms of a linear system which is a good ap-
proximation of the actual system in the small error-signal case and nor-
mal operating conditions. We assume first that the drive motors are
unsaturated, i.e. P < P,.. Next we assume that the torsional spring
constants of the reflector and base structures are sufficiently large that
6:(t) = I(t) and 6:(t) = V(¢).

Although these assumptions linearize and simplify the drive and self-
coupling portion of each channel in Fig. 8, some major complexities and
nonlinearities of the system remain in the cross-coupling portion shown
in Fig. 9. There are, unfortunately, no reasonable or standard assump-
tions to apply to this portion, only educated guesses. After examining
the relative magnitude of the various terms in Fig. 9 for typical satellite
tracks, the simplified linear system representation shown in Fig. 10 was
chosen for the preliminary design study.

- - - ___i
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| |
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Fig. 9 — Cross coupling portion of Fig. 8.
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Fig. 10 — Simplified linear system representation for deriving basic non-
interacting controller.

Fig. 10 also shows the elements of the basic controller design: the error
signal conversion unit and the feedback compensation units.

The channel error signals, which are conceptually shown in Fig. 10 as
the difference between the desired, or reference, angle and the output
angle for each channel, are obtained as physical signals from the con-
version of the autotrack error signals, given in (1). This conversion, de-
rived in Appendix B under the assumption of small errors, is given by,

;1 2 2[
el—E[1+a cot §]e.,

-1
€ = I:E(I%v esc’ é:l €& + [:K;.bz sin® 1 (l + d* cot’ é)] €,
where K, and K, are the detector gains in (1), and the constants @ and b

are defined in (6).

The controller outputs, %, and u. , are derived from these error signals
plus additional compensation through the feedback networks B (s) and
C (s). The purpose of these networks is to improve the response to errors

in the same channel, and to eliminate the undesired response to errors
in the opposite channel. For the development of this non-interacting

(17)
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design it is convenient to use matrix notation. We define the input, out-
put and control vectors,

- () o= =)

The overall input-output relationship is denoted by
©(s) = Dex(s) (18)

where, for non-interacting channels, the transfer matrix must be diag-
onal. Therefore, we require D to have the form

_ Dl(S) 0
D = ( 0 Dg(s))' (19)

From the block diagram of Fig. 10, we obtain the intermediate rela-
tionships,

Go(s) = Fu(s)
(20)
u(s) = @ (s) — Co(s),
where
L+ Bi(s)  Ci(s) (F 0
¢ =( Cols) 1+ Bz(S))’ = (aF.1 Fg)’
a.nd (21)

G = (9082 +‘, (gr + M)s _9432 )
g8 + ahs 9282 + (g2 + ha)s/)’

Then, from (18) and (20), it follows that the controller matrix, C, is
given by
C=D"'—-Fq. (22)

Upon substitution of the matrices in (19) and (21) into (22), we obtain
the required transfer functions of the controller units:

1 9
Bl(s) = 51—1;3 -1 - F—,[[908~ + (QI+ hl)S]

1

BE(S) = m -

1 — Flgl(gﬂ + agy) s’ + (ga + ho)s)
(23)

Ci(s) = ll (g5

Ca(s) = Pi,{(agu — ) & + apsl .
2
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The only design objective incorporated in these controller functions is
that of non-interacting channel control. This has fixed the cross-coupling
controller units (' (s) and C:(s) in terms of the linear plant parameters,
the output angles (7,V'), and their derivatives. The self-coupling con-
troller units, B, (s) and B:(s), however, depend not only on these plant
parameters and state variables, but also on the choice of the channel
input-output transfer functions, D, (s) and Ds(s).

Sinee both B, (s) and B (s) have the same functional form, we will use
the subscript i = 1,2 to refer to either channel. From (23), B;(s) is
written in the simplified form, '

(5
BI(S) = (D,(S) 1) c: fn', (24)

where fori = 1: ¢, = Fi/qo, i =Fi/ (g + h),
and for7z = 2: ¢ = Fo/ (g2 + ags), Jo = Fa/ (g3 + he).

Accuracy, fast response, stability, and a practical feedback structure
are the general objectives which should be mutually satisfied to the ex-
tent possible in the choice of the channel transfer function, D;(s). More
specifically, we consider the following requirements:

i. Each channel should have no steady-state error for step and ramp
inputs.

ii. The feedback synthesis of B;(s) should employ signals proportional
to the output angle, its velocity, and acceleration, but no higher deriva-
tives.

iii. The error for a sinusoidal input, having an angular velocity no
greater than »; and an acceleration no greater than v, , should not exceed
the allowable value, p; . (Appropriate numerical values of », v, and p to
be specified for each channel.)

iv. The choice of D, (s) should achieve a good compromise between the
competitive aims of fast transient response and small noise band-
width.

To satisfy requirements (i) and (ii), the channel transfer functions
must be of the form

c:s + di
s+ bis* 4 ¢i8 + d;

where the coefficient ¢; is the same as in (24), but b; and d; are available
as design parameters. Using (25) in (24) yields

—1 d; | ¢; 2 di
Bi(s) =M[(a+ﬁ— b.)s +f_,- s:| (26)

Di(s) = (25)
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where ¢; and f; are defined below (24) in terms of the linear plant con-
stants shown in Fig. 10.
The error transform for either channel is

§(s + bder(s)
§ + bis* + s + ds

ei(s) = [1 — Di(s)] o, (s) = (27)
where ¢, is the channel reference input (either I, or V,). Considering
requirement (iii), ¢, is a sinusoidal signal,

or(t) = oi(w) sin w,

where the peak amplitude is given by

fwife, @ < yifw
¢i(w) = {'y,-/mﬂ, w Z vi/vi. @)

The steady-state error for this input will not exceed the allowable value,
p:i , provided

|1 — Di(jw) | = pi/ei(w). (29)

Both sides of (29) are shown in the log amplitude-log frequency plot of
Fig. 11, using (28) and the asymptotic straight-line approximation of
(27). Since at low frequencies,

|1 = D;(jw) | = bw'/d;, (30)

it follows that requirement (iii) imposes the design constraint (see Fig.
11),

b/d P:/’Yt (31)

which shows that for a given tolerable error, p; , the limit on the parame-
ter ratio is imposed by the peak acceleration, v;, rather than the peak
velocity, »; .

In considering the transient response of each channel, we make use of
a computer study made by J. F. Kaiser on the step and ramp response
of the equivalent system

2 3
D(s) = mos Few (32)
which has a noise bandwidth related to the coefficients by,

® = f_wlD(jw) [df = 2("”‘* “l) (33)

From this study, the parameter values which seem to give the best com-
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Fig. 11 — Amplitude-frequency sketeh of error functions in relation (29).

promise between good transient response and small noise bandwidth lie
in the region,

23 < g < 27]
118 < p <23/

within which the noise bandwidth varies from about 0.9 wy to 1.1 wo.
For small bandwidth, wp should be chosen small. However, since b; = pwo
and d; = w,", the lower bound on w, to satisfy (iii) is, from (31),

w' = plyi/pi)- (35)

Furthermore, the choice of w, is also linked to the physical system con-
stants, since ¢; = nwp’.

The detailed choice of the numerical values in the controller design
cannot be made until all the values of the system constants and the oper-
ating requirements are known. However, the specific structure of the
non-interacting controller designs can be given in terms of the channel
gains F; and F;, the plant parameters go through gs (see Fig. 10), and

(34)
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the variable parameters by , d; , b: and d» . This controller design for the
normal autotrack mode of operation is shown in Fig. 12. The design of
supplementary control action for special tracking modes is considered in
the following section.

4.2 Near Zenith Control Modes

Asnoted inSection II, there are two possible tracking modes for a given
satellite track. For later reference, let “mode 1’ (I, V) be the tracking
mode where 0 < I < 180° and “mode 2’ (15, V2) be the tracking mode
where 180° £ I = 360°. These two modes are illustrated in Fig. 13 as a
function of time for the tracking of a satellite in a circular equatorial
orbit of 6000 miles altitude with the antenna site located at 2° latitude.
As can be seen from this figure, the maximum vertical axis angular
velocity required to stay on track, which we shall call Vyax , Occurs at
the point of maximum azimuth tracking rate and maximum elevation.
As the maximum elevation angle approaches 90°, V. will eventually
exceed the maximum vertical-axis velocity of the antenna, S

Fortunately, there is a factor which reduces vertical axis tracking re-
quirement. The antenna has an “on-track’ beamwidth,* 2¢, so that it is
possible to track without the antenna pointing directly at the target.
We can utilize this “on-track’ beamwidth in the following manner. For
any satellite path which passes within ¢ degrees of zenith, it is possible
to switch tracking modes without any interruption in communications.
This situation is illustrated in Fig. 14, where V,, V: tracking modes
near one of the switchover points are plotted as a function of time for an
assumed beamwidth of 0.2 degrees, a maximum satellite elevation angle,
Eunax = 89.9° and a satellite altitude of 6000 miles (circular equa-
torial orbit). The solid lines show the vertical axis angle if the satellite is
on boresight. The two pairs of dashed lines represent the allowable varia-
tion in the vertical axis pointing angle due to the beamwidth of the an-
tenna. If the vertical axis angle is anywhere within the area between
the dashed lines, communications can be maintained with the satellite.
Since the tracking areas have a point of intersection at V = V,, a smooth
transition between tracking modes is possible without a lapse in com-
munications. For satellite tracks where E,. > 89.9° the two tracking
mode areas will have a large area of intersection rather than a single
point of intersection as in the limiting case discussed above.

This operation of switching tracking modes will be referred to as the
“switch-mode.” If the switch mode is employed, the vertical axis is to

* That is, the beamwidth for which the signal-to-noise ratio at the receiver is
considered sufficient for communication objectives of the system.
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Fig. 13 — Antenna pointing angles for satellite in circular equatorial orbit of
6000 mile altitude with antenna station at 2° latitude.

track keeping the satellite on boresight until, at time ¢, in Fig. 14,
the vertical axis angle of the tracking mode equals the angle at which
switchover from one mode to the other will oceur. This switchover angle,
V., is equal to the azimuth angle at the maximum elevation point and
is computed in advance from the predicted satellite orbit. At ¢, , a verti-
cal error signal (V, — V') is employed to keep the vertical axis angle at
V, . This error signal (7, — V') is maintained until, at time ¢,» as in Fig,.
14, the vertical axis angle for boresight tracking of the second tracking
mode is equal to V, . At this point the switch mode vertical axis error
(Vs — V) is replaced by the boresight tracking error (V, — V) and
tracking is continued using the second tracking mode.

Graphical investigation of this switchover process indicates that, de-
pending on the satellite track, a particular tracking mode should be
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Fig. 14 — Tracking angles of vertical axis near one of the switchover points
for B = 89.9°, & = 0.1°, and 6000 mile circular equatorial orbit.

chosen for tracking from the horizon, where the satellite is first acquired,
to the maximum elevation point and the other mode from the maximum
elevation to the horizon. The choice is made by determining, from orbit
predictions, the initial vertical axis angular velocity for each tracking
mode when the satellite initially appears at the horizon. If the initial
vertical axis tracking velocity of mode 1, Vi , is greater than the initial
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tracking velocity of mode 2, V. , then mode 1 is used first and the switch-
over is made to mode 2. The opposite procedure is employed if Vi >
Vi . Although the tracking velocity requirement is greater at the
horizon using this procedure, the tracking velocity requirements near
zenith are reduced.

For satellite tracks where E,.. < 90° — £, one cannot switch tracking
modes without losing communications for a brief period. Therefore, one
desires to track the satellite by remaining in the same tracking mode.
However, instead of pointing directly at boresight when tracking the
satellite, one can again utilize the “on-track beamwidth” to point off
boresight and still be within the antenna beam as shown in Iig. 15. By
following the tracking path, T, illustrated in Fig. 15, it is possible to
significantly reduce the peak vertical axis velocity requirement from the
velocity required for boresight tracking. This procedure will subsequently
be referred to as the ‘“‘slant-through” mode.

In the design of the antenna drive system, an upper limit is needed on
the maximum vertical axis angular velocity required to follow the slant-
through path, V, for all circular satellite orbits of a given altitude, i.e.
the worst case slant-through speed, S. Since it is expected that the com-

260
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Fig. 15 — “Slant through’ path for 6000 mile altitude, circular polar orbit
with K., = 89.803°.
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munication satellites to be tracked will be launched in the same direction
as the earth’s rotation, the worst case will occur when the inclination
angle, a, equals 90° (a polar circular orbit) and En. = (90° — £).
(This elevation is chosen since if ... is larger than (90° — £) the switch
mode will be employed.) An approximate expression for S is derived in
Appendix C. Shown in Fig. 16 is a graph of S as a function of satellite
altitude, « = (r — 1), for antenna half-beamwidths of 0.1° and 0.2°.
For example, the continuous tracking of satellites in nearly circular
orbits of 6000 miles altitude with an antenna half-beamwidth of 0.1°
would require a vertical axis slewing capability of approximately 1 rpm.
A major factor affecting this capability is the gear ratio used in the
drive system, the choice of which depends also on other important con-
siderations such as tracking performance at very low speeds, immunity
to disturbance torques, minimization of reflected load inertia, and drive
power requirements.

This tracking capability should not be difficult to achieve for medium
and high altitude satellite systems. For low altitude systems, continuous
tracking may be achieved with the same speed capability by temporarily

3.0

\

1.0

N\ AN
o8 AN
N
06 \\ A
0.5 AN
AN

MAXIMUM VELOCITY REQUIREMENT IN RPM

°? \\

0.2
o] 2000 4000 6000 8000 10,000

SATELLITE ALTITUDE IN MILES

Fig. 16 — Vertical axis velocity requirement as a function of satellite altitude
for antenna half-beamwidths ¢ = 0.1° and 0.2°.
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broadening the antenna beam during the near-zenith portion when
signal strength conditions are favorable.

The slant-through mode can be performed by biasing the vertical axis
error signal with another signal (V — V,) between ¢; < ¢ < £, as shown
in Fig. 15. V is the computed vertical axis angle which will program the
“slant-through” path within the antenna beamwidth. V, is the computed
vertical axis angles for boresight tracking determined from orbit predic-
tions. Since V, = V,, the resultant error signal looks like (V' — V).

The above discussion indicates the following tracking strategy. From
orbit predictions of the satellite path, the elevation values (E) as a func-
tion of time are scanned. If the maximum elevation, Fn.x , is greater
than or equal to (90° — £°) the “switeh” mode will be employed as ex-
plained above. If Enux < (90° — £), but (Vimax) > &, the slant-through
mode is employed at time ¢; in Fig. 15. If neither of these special modes
is required, normal tracking will be employed. For the normal and slant-
through modes, it is desirable to use the tracking mode which has the
smaller vertical axis velocity required when initially acquiring the satel-
lite at the horizon. The inclined axis velocity requirement at satellite
acquisition is the same for either mode. If Vs > Vg, then mode 1 will
be used for tracking and the opposite choice will be used if Vi > Vs .

The mode tracking strategy is shown in flow chart form in Fig. 17.
Note that no special control signals are needed for the inclined axis. The
initial inclined and vertical pointing angles when the satellite appears at
the horizon, 7y and V4, can also be determined from orbit predictions
and (8).

V. DESIGN RESULTS AND CONCLUSIONS

The second phase of this design study consists of a simulation and
design evaluation program on a hybrid analog-digital computer facility.”
The major objectives of this program are to verify, improve, and if
possible, simplify the basic controller strategy developed in Section IV.

The analog computer portion of the facility is being used for the
simulation of the controller and the antenna dynamiecs. The experimental
results discussed here were based on a simulation of an open cassegrain
antenna with a 56-foot aperture, an overall height of about 70 feet, and
a total weight of about 100 tons,* using two 25-hp hydraulic motors for
the vertical axis drive and two 10-hp motors for the inclined axis drive.

The closed-loop response of the antenna drive system using the basic
controller design shown in Fig. 12 was tested using step and ramp in-

* Subsequent design modifications have changed the weight and the antenna
dynamics somewhat, but not enough to significantly affect the simulation results.
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Fig. 17 — Flow chart of tracking strategy.

puts, I, and V,, as well as wind disturbance torque inputs. The design
for each channel was based on the approximate model transfer function
(32) with parameter values, n = 2.4, up = 1.9, and a range of values of
wp from 5 to 40 sec.”. Because of the low accelerations required for the
expected satellite tracks, the constraint (35) was easy to satisfy with the
available range of loop gains; therefore the major considerations in the
choice of wy were good transient response, steady-state accuracy, and
immunity to wind disturbances. Satisfactory performance with respect
to the objectives of zero steady-state error in tracking constant velocity
inputs and minimum channel interaction was achieved in the experimen-
tal design with state feedback gain adjustments close to the nominal
values computed for the expressions in Fig. 12.

The experimental data obtained from this design study has established
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the feasability of operating the open cassegrain antenna under severe
wind conditions without a radome. A series of tests using simulated
wind loads corresponding to a 40-mph gale with gusts exceeding 80 mph
have indicated that the control system is capable of maintaining the
antenna beam on-track with both a mean and rms error less than 0.002
degrees, which is about 1/100th of the nominal beamwidth of the an-
tenna.

The future test program in this design study will employ the digital
computer portion of the hybrid computer facility to simulate satellite
tracking data, autotrack error detector signals, and the necessary co-
ordinate conversions for resolving the error signal inputs and the angu-
lar outputs of the non-orthogonal axes of motion. This will provide a
complete simulation of the overall autotrack system shown in Fig. 2,
and will allow testing and evaluation of the overall control strategy
for non-orthogonal mounts, including the near zenith control modes
discussed in Section 4.2.
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APPENDIX A

We consider the polar coordinates [r(¢),0(¢)] of the satellite in the
orbital plane to be given, and then make the sequence of transformations
necessary to relate the tracking coordinates (4,F) to these orbit parame-
ters:

A1 Transformation from orbit plane to equatorial plane

We define rectangular coordinates X¥Z and X'Y'Z’ as shown in Fig.
18, with the X and X’ axes coincident with the line formed by the inter-
section of the orbit and equatorial planes. The satellite moves into the
northern hemisphere at the 4 X-axis. We define the following (see Fig,
18):

r(t) = range from center of earth to satellite at time (.
#(t) = angle which » (1) makes at time ¢, measured from the X’-axis.
a = inclination angle of orbit plane with equatorial plane.”

* Should not be confused with antenna incline-angle, «, defined in Section II,
since they will not be used in the same context.
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z
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X

Fig. 18 — Satellite coordinate conversion — Orbit plane to equatorial plane.

Y. (t) = longitude angle of satellite eastward from X-axis.
A (t) = latitude angle of satellite northward from equator.

The transformation from the orbit plane to equatorial plane corresponds
to a rotation about the X-axis through an angle «, so that

(X 1 0 0 X'
Y| =10 cosa —sinal |V (36)
Z 0 sin a coS « 7z’

Expressing the rectangular coordinates in the equivalent spherical polar
coordinates, we have

T COS A, COS V¥, 1 0 0 7 cos 0
rcos A, 8in ;| = |0 cosa —sin | |7sin 8 . (87)

7 sin A, 0 sin « coS « 0
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A2 Transformation from equatorial plane to horizon plane at Antenna
Station

The rectangular coordinates (xyz) are located with the origin at the
antenna site as shown in Fig. 19, with the 4 x-axis pointing northward.
The notation used here is as follows:

R = radius of the earth (assumed constant)

¢ = longitude angle of antenna site, measured eastward from X-axis

A = latitude angle of antenna site, measured northward from equa-
tor

p = slant range to satellite from anetnna site

A = azimuth angle measured CW from z-axis(North)

F = elevation angle measured up from horizon (ry-plane)

The transformation from XY Z coordinates to xyz coordinates can be

z

\ SATELLITE

T
rd
E
A 'f\ 2,2’
\ P
ANTENNA
SITE

1>

EQUATOR

X

Fig. 19 — Diagram for the transformation of coordinates from the earth-
centered system (XY Z) to the local antenna site coordinates (xyz) and pointing
angles (4,£).
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written as a sequence of two rotationg and a translation, as shown in
Fig. 19. The first is a CW rotation about the Z-axis through an angle
(180° — ), which can be written as

X —cosy —sinyg 0] [X
Vi = siny —cosy 0| [V]. (38)
7 0 o 1) |z

The second is a CW rotation about the ¥-axis through an angle (90° — X)
as indicated in Fig. 19:

x sin A 0 cosA| (X
y | = 0 1 0 Y. (39)
Z —cosh 0 sinAf | Z
Thirdly, a simple translation along +2'-axis a distance R gives,
x 2 f 0
y =1y | =10
z) Z | R
or, in terms of the spherical coordinates at the antenna site
p cos I cos A @ 0
—pcos Esin A| = | — 0] (40)
psin B 7 R
Finally, combining (37) through (40), we have
pcos E cos A = —r(sin X cosy cos 6 + cos asin A siny sin 8
— sin « cos A sin @)
—pecos Esin A = r(sin ¢ cos § — cos & cos ¥ sin 8) (41)

psin ' = r(cos \ cosy cos § + cos « cos A siny sin 8
4+ sin a sin A sin 6) — R.

Separating these variables gives the desired transformations:
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Slant range to satellite:

p ="+ R —2rR(cos A cos ¢ cos § + cos e cos A sin y sin 0

)
-+ sin « sin A sin 8)]
Azimuth angle to satellite:
_ i 6 — cos « cos ¥ sin 6
A = tan [ - sin ¥ cos : . . 4
an sin A cos ¥ cos @ + cos a sin A sin ¢ sin 0 (43)
— sin « cos A sin @
Elevation Angle to satellite:
r(cos \ cos ¢ cos § + cos « cos A sin ¢ sin §
B — sin! 4+ sinasin Asinf) — R (44)

[* + R* — 2rR(cos A cos ¢ cos @
+ cos a cos A sin ¥ sin 6 + sin « sin A sin 8)]}

where —7/2 £ E = /2.

In these expressions the constant factors are the orbit inclination angle,
a, the antenna site latitude, A, and the earth radius E. The antenna site
longitude angle, ¢, can be considered constant if the effect of the earth’s
rotation is neglected, but more generally it will have the form

Y(t) = o + 0 (45)

where @ = earth’s angular velocity = (7/12) rad/hr. To simplify the ex-
pressions we shall measure distance in units of earth radius (e.r.) so that

R=1er (46)
Further, to emphasize the constants, let
Ca = c0s a, Oy = cos | 7)
S. = sin a, Sy = sin AJ

Using the notation of (45), (46) and (47), the tracking angles can be
written

_ -1 J siny cos § — (' cos ¢ sin § \
4 = tan Lb\(cos Ycos 8 + O, sin ¢ sin 8) — S, sin Bf (48)
r(Cy(cos ¢ cos 8 + C, sin ¢ sin 6)
1 + SaSysind) — 1 (49)

[1 + 72 — 2r(C\(cos ¢ cos 8

E = sin
] + C. sin ¢ sin 8) + S.S, sin §)]}
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where r, 6, and ¢ are in general varying with time. The denominator in
(49) is the range from antenna to satellite in units of earth radii. The
numerator in (49) gives the necessary condition for the satellite to be
above the horizon at the antenna site, namely:

r[Cy (cos ¢ cos 8 + Cpsing sind) + SShsinf]l 2 1=E>0 (50)

where, of course, » is the radius vector of the satellite in units of earth
radii.

During the period when (50) is satisfied, the A (¢) and E(t) given
above, as well as their time derivatives, give the required information
to evaluate the antenna drive angles and rates, from (8) and (10) in Sec-
tion IL For non-circular orbits, the expressions for (r,0) as functions of
time must still be determined, and in general a computer routine* would
be used. The main usefulness of the analytical expressions (48) and
(49) is in estimating tracking requirements for particular orbits where
complete data are not needed.

A3 Tracking angles and rates for circular orbits

For a given inclination angle, «, of the circular orbit plane (see Fig. 18),
and a given latitude, \, of the antenna site, the tracking angles A (t) and
E (t) can be obtained from (48) and (49) as explicit functions of time by
substituting the time functions ¢ ({), given in (45), and

where 8, = 6(t) at arbitrary time reference, ¢ = 0, and the constant
angular velocity of the satellite is given by
w = k" (52)

where

r=1+ h/R,

h = satellite altitude

R = earth radius

k= (g/R)

g = accel. due to gravity
or

ko= 447 hr! = 1.24 X 107" sec .

The particular case of the circular equatorial orbit yields the simplest
expressions for azimuth and elevation angles and rates. Letting « = 0,
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we obtain from (48) and (49) the angle expressions:

[A(#)]ems = A*(t) = tan™' {— tar} qo(t)} (53)
sin A
R | reosAcose(t) — 1 _
[E@]emo = B*(0) = sin {[l + r?2 — 2r cos A cos ',a(t)]*} (54)
where

p(t) = (0w — Q)+ 6 — 0. (55)

Taking the time derivative of (53), the azimuth rate for circular equa-
torial orbits is

— §in A

[AD]eo = A*() = sin? ¢(t) =+ sin? A cos? (1) ¢

(56)

where, from (55), ¢ = w — Q = constant relative angular velocity of
the satellite with respect to the earth. The maximum azimuth rafe
occurs when ¢ (f) = 0, and is given byt

[ (w — ©) -
i ¥| = 27 7
[ Alumx ' Sin Y (07)
where, from (45) and (52),
o= (0 — Q) =447+ — (x/12) rad/hr (58)

the maximum elevation, F, also occurs when ¢(f) = 0, and has the
value,

(59)

Emax* = sin™ { reosh — 1 } .

[1 + r* — 2r cos A}

Differentiating (54), the elevation rate for the case of circular equa-
torial orbits is,

—7rcos Asine(t) (r — cos A cose(l))e

(1 — cosz A cos?e(t))¥(1 4+ r — 2r cos A cos (1))’ (60)

B*(1) =

where ¢ (¢) and and ¢ are given by (55) and (58), respectively. We
are interested in the maximum value of E when the satellite is visible,
i.e. when r cos X cos ¢(¢) > 1. Once the parameters r and A have been
specified, this can be determined from (60).

tIf T = 180°, then Viax = Amex .
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APPENDIX B

We derive the inclined and vertical channel error signals as functions
of the waveguide error signals and the controlled antenna angles (Z,V)
in this appendix. The desired error signals are

ElgIr —I
€ = V,-—V.

Since we desire to make € () to be within some small specified toler-
ance, we assume

(61)

sini(f, — I) = &/2
and (62)
sin (I, — I) = sin I.
Using (62) and the trigonometric identity,
sin 2(4 + B)sin (4 — B) = —3}(cos A — cos B),
we can write

o = (cos I — cos I,) ‘ (63)
sin [
Using (8) and (63), one obtains
. (sin E, — sin K)
“= —f@eml (64)
Using (1), the trigonometric identity for the difference between sin K,
and sin E, and assumptions similar to those used above

(B, — E) cos E _ €, cos H
B b? sin [ K, sin [~

(65)

€1

From (7) and some algebraic manipulation, we can write (65) as

a = 1% [1 + a’ cot’ (-2{)] (66)

The vertical-axis error signal, e is found using a similar procedure.
From (61) and (8),

e= (V.- V)=A4,— A(,) — 4 + A(). (67)

From (1), we have
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+A(I) — A(IL). (68)

€ =

.K;. co
Using the trigonometric identity,

sin (A(I,) — A(D))
cos A(1,) cos A(T)

tan A(I,) — tan A(I) = (69)

and, assuming that for normal tracking (A(J,) — A(J)) is small, we
obtain
A(I) — A(I) = $[tan A(I,) — tan A(L)]
X {eos [A(I;) + A(T)] (70)
+ eos [A(Z;) — A(I)]}

using (69) and the trigonometric identity for the product of two cosines.
Using (7) and assuming that

-—l[t JL)—tan {];_____L
| MM\ T 2/ a[l + cos ]

cos [A(L) — A(D] = 1 (71)
cos [A(I;) + A(I)] = cos 2A(1)
(70) becomes
A(I) — A() = — 21 4 cos 28D + cos I, (72)

After some additional algebraic manipulation using (7) and trigonomet-
ric identities, one obtains

A(I) — A(I) = —ae[l — sin E]. (73)
Using (68) and (7), (73) becomes

_ € » I\ aey 1
@= {b sin” I(I—l—a cot’ >J +2K cse (—) (74)

APPENDIX C

An approximate expression for S is derived in this appendix. Refer-
ring to Fig. 20, one can say

sin [(x/2) — & = [rcos o — 1[(r cos g — 1)° 4+ (rsinyo) " (75)
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Fig. 20 — Tracking geometry for worst case slewing speed calculation.

Since £ and ¢, are small angles, (75) can be written as

CE i T T
b T [1 = D | Rl e v L
Since rgy?/ (r — 1)* < 1, then (76) can be expressed in the form
g2 2
L (R Ry (77)

(r —1) (r — 1)

where the remaining terms of the series are negligible compared to the
first two terms in (77). Solving (77) for ¢,

TU’J 0

fTT-D

or

(r—1) N (78)
7

Using (48), (49), (8) and (78) for the special case of a circular
polar orbit of 6000 mile altitude (» = 2.5 e.r.) and £° = 0.1°, the vertical
axis angle pointing directly at the satellite and boundaries on either side
of the vertical axis angle which are allowable for tracking of the satellite
were graphically determined and plotted in Fig. 15. The maximum ve-
locity requirement, S, was graphically determined by picking the
minimum slope as shown in Fig. 15. For the particular example plotted,

§ =1RPM. (79)

Yo
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The velocity requirement for “boresight tracking,” S, is obtained by
taking the time derivative of (48) with S, = Cx = 1 and evaluating
at ¢ = 0. The result is

S = l I;'mrlx In—=90° = w/’.&n (80)
for small Yo angles. Using equation (78), one can write

Tw

T e

Using (81) for a 6000 mile polar circular orbit, the comparable slewing
requirement for “boresight tracking” is 2.85 rpm. Graphical plots for
other orbit inclinations, altitudes, and antenna beamwidth angles indi-
cate that tracking on the “edge of the antenna beamwidth,” as illus-
trated in Fig. 15, reduces the required slewing capability for a given
circular orbit by approximately §. Therefore, an approximate expression
for S is

S (81)

S = 18. (82)
Using (81) and (52), (82) can be expressed as

g = 2.3 R.P.M.
Tt — 1)E°

where r is in earth radii and £°, the half-beamwidth angle, is in degrees.

(83)
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