On the Accuracy of Loss Estimates

By A. DESCLOUX
(Manuseript received March 30, 1965)

In telephone traffic studies, the observed proportion of unsuccessful at-
tempts over a given time interval is one of the measures commonly used to
evaluate the grade of service provided by trunk groups. This paper deals
with the derivation of an approximate formula for the variance of this
estimate when (i) call arrivals conslitule a Poisson process, (it) service
times are independent of each other and identically distributed according
to a negative exponential law, and (i17) calls placed when all trunks are
busy are either cancelled or sent via some alternale route (loss system).
Comparison of simulation data with numerical values computed by means
of this formula indicates that the latter is accurale enough for practical
purposes.

The observed proporiion of time during which all trunks are occupied s
also an estimate of the grade of service (defined as the probability thal a
call will be lost or overflow). It is shown here, that for relatively small loads,
this estimate has a smaller variance than the observed proportion of lost or
rerouted calls. However, as the load is increased, the inequalily beiween the
variances of these two estimates is reversed, the cross-over occurring in the
vicinity of the point where the load (in erlangs) is equal to the number of
trunks.

For a given observalion period, the proportion of time when all trunks are
busy can be either measured evactly or estvmated by “‘switch-counting.”
In the latter case, the group is scanned ai regular intervals and one ob-
serves, for each scan, whether all irunks are occupied or not. The average
number of scans which indicate that all trunks are busy is an estimate of
this proportion and 1is, a fortiori, an estimate of the probability of loss.
The effect of the scanning rate on the accuracy of this estimale is investi-
galed.

I. INTRODUCTION

In this paper, we shall consider the simplest type of loss systems,
namely full availability groups with Poisson inputs, negative exponential

1139



1140 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUG. 1965

service times, and cancellation or rerouting of ecalls finding all trunks
occupied. Under these assumptions, we shall obtain an approximate
expression for the variance of the measured call congestion, the latter
being defined here as the proportion of calls which either are lost or
overflow to some alternate group during a given time interval. In the
“derivation of this expression, use is made of the classical formula for the
propagation of errors, whose computation requires the evaluation of
the first- and second-order moments of the joint distribution of the
number of offered and the number of overflow calls. Since the marginal
means and variances of this distribution are known (cf. Ref. 1), the
emphasis is placed here on the derivation of the covariance. Computed
values of the variance of the measured call congestion are shown to be
in good agreement with simulation results (cf. Figs. 1-5).* Charts
giving the variance of this ratio for group sizes up to 50 and offered
loads (in erlangs) per trunk of 0.1 to 10, are reproduced in Figs. 6-8.*

For a given observation period, the measured call congestion and the
observed proportion of time when all servers are busy — here called
measured time congestion — provide us with two estimates of the
probability that a call will either be lost or overflow to some alternate
route. Neither of these two estimates has a uniformly smaller variance
than the other. Actually, the following holds: for relatively small loads,
the measured time congestion has a smaller variance than the measured
call congestion. However, as the load is increased, the direction of the
inequality is reversed, the cross-over occurring in the vicinity of the
point where the load (in erlangs) is equal to the number of trunks. Thus,
the measured time congestion is not always a more efficient estimator
of the probability of loss than the measured call congestion (cf. Figs.
9 and 10).

(In what follows, the terms measured time congestion and measured
call congestion will always be abbreviated to time and call congestion,
respectively. These terms will refer throughout to measurements per-
formed over a given time interval.)

For a given observation period, time congestion can be either meas-
ured exactly or estimated by switchcounting. In the latter case, the
group is scanned at regular intervals and one observes, for each scan,
whether all trunks are busy or not. The proportion of scans which indi-
cate that all trunks are busy is an unbiased estimate of time congestion
and is, a fortiori, an estimate of the probability of loss. Clearly, the vari-
ance of this estimate increases as the scanning rate decreases. The loss
of accuracy due to scanning is depicted in Fig. 11.

* See illustrations placed later in this article.
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Under the present assumptions, loss probabilities can also be esti-
mated from carried loads measured either exaetly or by scanning. For
offered loads (in erlangs) falling short of the number of trunks, simula-
tion has shown that such estimates have smaller variances than the
estimates mentioned earlier. This fact is illustrated in Fig. 12. The
effect of scanning on the accuracy of loss estimates based on load
measurements is sketehed in the same figure.

Finally, we note that estimates of loss probabilities based either on
observed call congestion or on carried load measurements are biased,
respectively, downwards and upwards. These biases are, however,
quite small and likely to be negligible in most situations of practical
interest.

II. THE COVARIANCE FUNCTION

Consider a group of ¢ trunks which operate in parallel and are fully
available to all requests. If a call iz placed when a trunk is free, service
starts immediately; otherwise the request is either cancelled or routed
via some alternate group (loss system). Regarding the input and the
serviece durations, the following assumptions will be made:

(7) The time intervals between sucecessive service demands (whether
suceessful or not) are independent of each other and have a common
negative exponential distribution with mean equal to 1/a (Poisson
input).

(#7) The service times are independent of each other and have a
common negative exponential distribution whose mean will be taken
throughout as the unit of time (a is therefore the offered load in erlangs).

The following notation will be used:

N (t) = number of busy trunks at time ¢,
R(t) = total number of requests offered during (0,t),
S(t) = total number of unsuccessful requests during

(0,t),
Pnrs) =Pr[N{t) =n,R({) =7, St) = s
From the definition of P(-,-,-,-), it follows that:

P(tnrs) = 0forn > ¢, (t=0)
Pltnrs) = 0fors >, (t=0)
P{Omnrs) =0forr = 1.

It will be econvenient to extend the definition of P(-,-,-,-) and to
adopt the convention:
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pansion of F; in powers of z and the summation on the right of (6)
is the coefficient of z° in that same expansion. Therefore

_ (C + I)Tc+1 (wsy) — QYz'T, (TU,ZU)
COV2) = = o Doy —wrowy)

where the 7’s and ¢’s are defined by

0

(1 — )" = ZD: an (wyy)z” (8)

-]

1—z
K&u_l)ay (1 - -’1:)'1(?_1]*“' _/; Hﬂuﬁww*leﬂyﬁnu du = Z Tn (w,y) z". (9)
0

We note that if ¢, (-,a) and L, (- ) stand respectively for the Pois-
son-Charlier and the Laguerre polynomials of degree n and parameter
a;l.e.,if (Ref. 2, pp. 34-35 and 101, and Ref. 3, p. 26)

en(tia) = “fz(n')’Z( 1)"_’() atlt — 1) -+ (t — v+ 1)

and
@y _ s~ fn A+ ay (=)’
Lu ("‘) - ;n(n+ }') VI -
then:
e (1 — ) = D e.(tya) [(ax)"/nl]
0
= > (1) L e
0
and

an(wyy) = [{ay)"/n eala(y — 1) — w,ay]
= (=1)" LT T (ay),
[The relation between the ¢’s and Kosten’s ¢-functions (ef. Ref. 1) is

readily found. Indeed, by definition

o0

en(:: -1 (1 _ $)= — Z 50,.,2.’5”
0
so that

On (way) = euyw e ]
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Tor later purposes we note that:

am+1(W,II) = Um+l(w + 1,?/) - U'm(w + lly)!

(10)
(m = 0) 1! v ')
[w—aly — Dleww + 1y) = (m + 1)om(w,y)
— ay-on(wyy), (11)
(m = 0’ 1, . )
Zﬂ on(wy) = ac(w + Ly). (12)

These identities are immediate consequences of recurrence relations
known to hold for the corresponding Laguerre polynomials (cf. Ref. 2,
p. 98).

Substituting (7), (8) and (9) into (5) yields:

(e 4 1) 7o (wy) — ayz-r.(wy) n
Fy(wayz) = — ¢ ! et L(wy)
' i ) (C+ 1)6c+l(w:y) - ﬂyz‘ﬂc(wyy) Z 7 ’y) (13)
+ 2 ra(wy)z".
We can now obtain the generating function, F(-,-,-), of the Laplace
transforms of the joint probabilities Pr [R(t) = r, S(t) = s], r,s = 0,
1, -+, by deleting from (12) all terms of degrec higher than ¢ in @

and then setting 2 equal to 1. If we perform these operations and then
make use of (12), we find that:

(C + l)Tu+1 (1(’,]]) — AYz-7, (TU,?})
- — 0, 1,
(¢ + Doep(wy) — ayz-a.(wy) o:(w + 1y)

+ ; 7 (0,77 .

Flwyz = —

(14)

The moments of the joint distribution of R and S can now be obtained
by evaluating the derivatives of F (w,-, ) fory = z = L

Differentiating (7) with respect to z and making use of (11), we find
ar | _ _ay-r(wy)
0z |:m1 w—aly — 1)
(15)
ay-oc(wy) (e + Drep(wy) — ay-r.(wy))
w—aly — DI oe(w + Ly) '
In particular, for y = 1, we have the well-known result

aIP _ aElu: ((I)

dz y=z=l w?
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so that
ES(@t) = at B1,.(a) (16)

where E, .(a) is Erlang’s loss formula.
Taking the derivative of (15) with respect to y and then setting y
equal to 1, yields:

I et [+l e ]
-+ f—v% e(wyy) | =1 )
— wza‘“("—w('*i’:ﬁ [(c + 1) ‘%nu (wyy)
—a (% 7o (w,y) ]"El

where

om(w) =on(w1)and 7,,(w) = 7m(w,1), (m=0,1,---).

To determine the derivatives of r.(w,y) and 7. (w,y) with respect
to y, consider the generating function

H(w,zr,y) = I(clr~])ny (l _ m)a(y—])—uﬁf Ha(l—y)-i—m—l ea(y—l)u du.
0
Differentiating this expression with respect to y and then setting y
equal to 1, we find that

a d m
a_y H(wr’ch} ' y=1 = ; Ey Tm (w,z)x l y=1

aea(z—l]
= Km (1 + wa)
and, therefore:
d _ ae a
a—y'l'm(w:y) lym1 = K m — Dw(l + w) (1 + m’w)’ (18)
(m = 1, . .)_
Since
Ke "a"

Tm (’LU) = w
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we obtain, upon taking (18) into account:

—a c+2 —a_c+l

SlEIRW-SW]} =2k % 4+ Kk ° owi2(0) (19)

chw? cw?  oypn(e)

where the notation £{f} is used to designate the Laplace transform of f.
Since ER(t) = at and ES(t) = at E, .(a), we also have:
e_“a + 0. (w + 2)
clw? :r,('w + 1)
where Cov [R (t),S(¢)] stands for the covariance between R (¢) and S(¢).
Fory = 1, m = ¢ and w replaced by w + 1, (11) reduces to
w4+ Doc(w+2) = (¢ + Doecpn(w + 1) — ac.(w + 1),
and (20) can be rewritten as follows:
£{Cov [R(t), S(®)]}

£{Cov [R(1),SW]} = (20)

e a X . (21)
= I{c!wg(w + 1)0'5(10 + 1) [(C + l)ac-{-l(w-‘- ) —ao'c(w+ )]'
Let wy, 4 = 1, ---, ¢ be the ¢ roots of o.(w + 1). It is well known

that these roots are simple, smaller than —1 and at least one unit
apart. Then expanding (21) in partial fractions and making use of the
relation (¢ + 1)o.41(0) — ao.(0) = 0, whichis (11) fory = 1, w = 0,
we find:

£{Cov [R(1), SO]}

_ o [ (e + Do (1) — ao.(1)
= K° c! [ w:ac(l)
4 ¢ + 19 oo (w+ 1) e+ Doga(l) — ao.(1)
w ow o (w+ 1) w0 wo(1)
- a'c+1(wi + 1)
T+ 1)!;“}»’2(1 + wi) (w — w;) 11;1, (wi — w,-):l

and the covariance between R and 8§ is, therefore, given by
Cov [R(t), S(1)]

—a E-H [(C + 1)0c+1(1) - ao’c(l)

=K° el ao(1)

-t

a %(w + 0| e+ Doeal) —as (1) (22)
T T D) e oe(1)
oepr(wi + 1)
+ e+ 1! SHws(l —:‘w)H(w.—wJ)jI
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To determine explicitly the derivative appearing in (22), let us con-
sider Cov [R(¢),S(t)] for small values of {. Writing P (i,r,s) for the
(equilibrium ) probability that, during a time interval of length ¢, r
requests arrived and that, among these r requests, s of them found all
the trunks busy, we have (¢ small):

P0,0)=1—at+ o(t)

P(,1,0) = at[1 — Ey.(a)] + o(t)
Pt1,1) = at B, .(a) + o(t)
P(t0,s) = 0, (s=1)

P(r0) =o(t), (>1)

and

0= Ez sP (t;r,s) < E rP(tr,s) < E rsP (t,r,s)

r,8= r,8=2 r,8=2

< E 2 --at (Gt) (t)

r=9

Hence Cov [R(1),S8(t)] = at Ey.(a) + o(t). Letting ¢ tend to 0 in (22),
we find that

3 oo (w + 1)
w o (w + 1)

— (¢ + Doea (1) — aoc(1)
a.(1)

— (c+ 1! E

e+ 1) —

O'c+1(w= + 1)
2(1+w)H(‘w-—wf)'

Substituting this expression in (22) yields

e—“ et [(ﬂ + Doea (1) — aoe(1) p
c! ‘Tc(l)

Cov [R(1), S(0)] =

T l(wl 1) ’
— (e41)! E wE +Tw’) H iy @)

+ (e+1)! Z gesr (wi + 1) ]

wi(1 + w:) H (wi — w;)
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We shall now determine the constant term appearing in (22"). To this
end, we note that

oo.(w + 1) = %LII (w — wy)

and, therefore

0e+1('w + 1) _ L0c+1(1) _ 1 0'c+1(0)
w(l + w)e.(w + 1) w a.(1) 14+ w o.(0)
+ C!i 1 Uﬂl(ws' + 1)

S (w — w) wi(l + ws) LI (wi — w;)
FET]
Hence, for w = 0, we have:

d 0'c+1(wi + 1)
(c + 1)!.;10,-2(1 + wi) IT (wi — w)

[}_ [UPNE] (1) _ 1 Teil (0)
w o (l) 14w o(0)

_ ‘-Tc+1('w + 1) ]
w(l + w)e.{w 4+ 1)

= (¢ + 1) lim

w0

(23)

= — (.

Furthermore, forw = 1 4+ w;,y = land m = ¢, (11) yields:
(wi + Doc(wi + 2) = (¢ + L)ocu(w: + 1). (24)

We also note that the ¢ roots of o,(w + 2) are w; — 1,4 =1, ---,
¢, so that

a.(w + 2) =;;—!IfI(w—w,-+1). (25)

Hence, combining (24) and (25), we have:

(c+1)!crc+1('wl'+1)_ : .
S

Using (23), (26) and the relations

Ke %™ = ¢l aF o (a)

(e + 1)oesa(1) = ac(1){c + 1 + aEy,.(a))



1150 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUG. 1965
(22") can be simplified as follows:

Cov [R(®), S ()] = aBs.(a) [[c F1—all — B@ljt+a

Sw? ;I;l( 1w:):l

@7

Since, as pointed out above:

max w; < —1

1<i<c
min |w; — w;| > 1
1sij<e
i
we have:
< ew‘!
1L (L + - ) >0
i=1 'wz =1 — w;
and

Zwl ,1;1,(1 +wg1w5) <0
Hence we have the following inequalities [use is also made here of (23)]:
aEy(a)e + 1 — a[ll — By (a)l}t
< Cov [R(¢),S(1)]
< aF.(a) [le +1 — a[l — Ei(a)l}t + a]
and, for large values of t(>0):

Cov [R(£),S(1)]

e (28)
= aBy.(a) [jc + 1 — a[l — Ey.(a)l}t + a] + o(e ).

III. VARIANCE OF CALL CONGESTION

In the preceding section, exact and asymptotic formulas were obtained
for the covariance between the number of offered calls, R(f), and the
number of overflow calls, S(t), during a time interval of length ¢. These
expressions can now be combined with known formulas for the means
and variances of R(f) and S(¢) to obtain an approximate expression for
the variance of call congestion. Indeed, according to the classical formula
for the propagation of errors, we have:
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Var [S(t)/R (t)]
~ {1/ER(t)]" Var [S()] + {ES()/IER(1)]'}* Var [R(¢)]
— 2{ES(t)/[ER ()T} Cov [R(1),8(t)]
= (1/at)’ Var [S(t)] + Ei.c’ (a)/ (at)
— 2[E,.(a)/ (at)’] Cov [R(2),8 ()]
< (1/at)® Var [S(t))

(29)

where, assuming ¢ large:

Var [S()] ~ at Br.(a) [1 + 2 a%) ﬁ’_‘%—)]w (30)

and
Cov [R(1),S(t)] ~ at Ey.(a)lc + 1 — a + aFy(a)]. (31)

We note that Var [S(¢)/R(t)] is, asymptotically, of the form £k/¢,
where k depends only on a and c.

The exact and asymptotic expressions for Var [S(t)] were first de-
rived by Kosten, Manning and Garwood.' These formulas can be ob-
tained in a straightforward manner from the generating function (14)
with y set equal to 1. The asymptotic expression (30), however, is
rather involved and its use can be avoided as follows. Indeed, we note
that, under the present assumptions, the instants at which overflows
occur constitute a renewal process (i.e., the intervals between any
pair of consecutive overflows are independent of each other and have
the same distribution). Then using Smith’s extension of a result due to
TFeller (cf. Ref. 4, pp. 296-298 and Ref. 5, pp. 30-33), we have:

Var [S(1)] ~ [u2(e) — w*(e)]t/m" () (32)

where g, (¢) is the nth moment of the interoverflow distribution of a
group of ¢ trunks.

The expression on the right-hand side of (32) is rather easy to com-
pute, since we have the following recurrence relations (cf. Ref. 6, p. 388)

aps(n) = 2ap’(n) + npa(n — 1), (n =12 ---) (33)
where u1 ' (¢) = aF,.(a). Hence

[(c/a) palc — 1) + m’(c)] X

Var [S(2)] ~ 300)
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The second moment ua(c — 1) can be computed either by repeated use
of (33) or by means of the explicit formula

palc — 1) = Z 1)“ wm'le — 1 —n)

with
(c— 1) =1, (c—1=(c=1)c—2) - (c —n),
n=1).

We note that the renewal theorem used above can be applied as long
as the input to the system is recurrent, and the other assumptions made
here remain the same. In these more general cases, (32) still holds, but
the moments u;(c) and us(c) satisfy less simple recurrence relations.
Indeed, we have then:

pr(e)yvea (1) — mle — 1) =
and
#2(6)')(..-—1(1) - 2#1(0)[#1(0 - 1) — 'Yc—lf(l)] - #2(0 - 1) =

where v,(-) is the Laplace-Stieltjes transform of the interoverflow
distribution of a group of n trunks and v, (1) stands for the derivative
of v, (-)at 1.

The preceding relations follow immediately from Palm’s recurrences
(cf. Ref. 3, pp. 36-38, and Ref. 7, pp. 16-22):

’}'"(8)[1 - 'Yn—l(s) + 'Yﬂ—l(s + 1)] = 'Yn—l(s + 1)1 (n = 1r2: "')'

The standard deviation of the call congestion computed by means
of (29) and (31) to (33) is compared in Figs. 1-5 with simulation
results. As may be seen from these graphs, there is good agreement
between the theoretical and observed values.

On each one of these charts, two additional curves are also plotted,
namely :

() {Var [S@]}'/ER(t) as a function of the offered load.

This expression is an upper bound for the standard deviation of the
call congestion. However, unless the offered load is relatively small,
it considerably overestimates this standard deviation.

(#@) {Er..@)[l — Ev.(@)]})/{ER(t)}* as a function of the offered
load.

This quantity, referred to as the binomial approximation, is a lower
bound for the standard deviation of the call congestion. This bound
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underestimates the latter to such an extent, however, that it is of little
if any value.

In view of the agreement between the observed and theoretical vari-
ances of the call congestion, the latter are graphed in Figs. 6-8 for
¢ = 1(1)10(2) 20(5)50 and 0.1 = a/c =< 10. These values pertain to the
case t = 20. The asymptotic variance of the call congestion for any
(sufficiently large) value of { may bhe obtained by multiplying the vari-
ances of Figs. 6G-8 by 20/1.

Simulation results have shown that (29) — with Var [S(¢)] and
Cov [R(t),8(t)] replaced by their respective asymptotic expressions —
give sufficiently accurate values of the variance of the call congestion
whenever the length of the observation period, ¢, is such that the ex-
pected number of offered calls, ER (t), is about 40 or more. When ER (¢)
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Fig. 1 — Standard deviations of call and time congestions, ¢ = 6, ¢t = 20.
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Fig. 2 — Standard deviations of call and time congestions, ¢ = 10, ¢ = 20.
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Fig. 3 — Standard deviations of call and time congestions, ¢ = 20, ¢ = 20.
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STANDARD DEVIATION OF CALL CONGESTION
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Fig. 5 — Standard deviations of eall and time congestions, ¢ = 40, ¢t = 20.
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Fig. 6 — Variance of eall congestion. Observation period = 20 holding times
¢ = 1(1)10.

falls below 40, (29) provides us with an upper bound which becomes
increasingly coarse as the expected number of offered calls decreases.

IV. RELATIVE ACCURACY OF LOSS ESTIMATES

Various measurements can be used to estimate the probability of loss.
The principal ones are:

(?) The number of offered calls and the number of lost (or overflow)
calls. The ratio of the latter to the former (i.e., the call congestion) is an
asymptotically unbiased estimate of the probability of loss.

(7) The time congestion. This quantity, which is an unbiased estimate
of the probability of loss, may be either measured exactly or estimated
by scanning the trunks at regular intervals and observing, at each
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scan, how many trunks are busy. The proportion of scans which indicate
that all trunks are busy is also an unbiased estimate of the probability
of loss.

(7ii) The carried load (i.e., the average number of busy trunks) obtained
etther by continuous observation or by secanning at regular intervals. This
last measurement consists in observing, at regular intervals, the number
of busy trunks. The average of these numbers, for a given number of
seans, is an unbiased estimate of the carried load. If I stands for the
carried load measured either exactly or by scanning, then the demand
rate, d, may be estimated by means of the formula

c=12(2)20
t=20
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Fig. 7 — Variance of call congestion. Observation period = 20 holding times

e = 12(2)20.
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Fig. 8 — Variance of call congestion. Observation period = 20 holding times
¢ = 25(5)50.

E, 4(4) itself is an estimate of the probability of loss. This estimate has a
small positive bias which tends to zero as the length of the observation
period gets large.

Theoretical as well as observed (simulation) values of the standard
deviations of these estimates are plotted in Figs. 9-12. (For each load,
the simulation results given in Fig. 12 were computed from a single
run of 500 hours. The numerator and the denominator of each ratio
appearing in Figs. 9 and 10 were evaluated from a single 500-hour run
of simulated traffic.) These graphs reveal typical patterns, namely:

(i) When the offered load, in erlangs, falls short of the number of
trunks, the loss estimates based on continuous load measurements
have smaller standard deviations than both the call and the time
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Fig. 9 — Relative aceuracy of grade of service estimates based on hourly
measurements of eall and time congestions — simulation results.

congestions. In the same range, the call congestion has a larger standard
deviation than the time congestion.

(i7) When the offered load exceeds the number of trunks, the con-
verse situation holds; i.e., the call congestion has a smaller standard
deviation than the time congestion, and the standard deviation of the
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Tig. 10 — Relative accuracy of grade of service estimates based on hourly
measurements of call and time congestions — simulation results (eont.).
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Fig. 11 — Standard deviation of the time congestion estimated by switch-
counting.

latter, in turn, is exceeded by the standard deviation of loss estimates
based on continuous carried load measurements.

The effect of scanning on the variances of the time congestion and of
the loss estimates based on carried load measurements is illustrated in
Trigs. 11 and 12.

Let us assume now that the length of the observation period is such
that (29) closely approximates Var [S(¢)/R(¢)]. Under these conditions,
the load beyond which the time congestion is less accurate (in terms
of its variance) than the call congestion is approximately equal to the
load a determined by the following equation:

1 + El.c(a) = ZEI.C(G')[C + 1 - a + G'E!.c(a')]- (34)
This condition is readily seen to be equivalent to the requirement
Var [S(¢)/R(t)] = Var B(t) (35)

where B(t¢) stands for the time congeéfion in an observation period of
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length t. Equations (35), (29), and (31) together with the relations
(cf. Ref. 3 p. 131)

ES(t) = atEB(t)
(af)® Var B(t)

I

Var (1) — ES(t)

imply (34).

For given ¢, (34) has a unique positive root, r, which is smaller than
¢ except in the case ¢ = 1 where the root is equal to 1. Computations
show that this root lies relatively close to ¢ (cf. Fig. 13).

Let B, (¢) be the estimate of the time congestion obtained by switch-
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Fig. 12 — Relative accuracy of loss estimates based on call and time conges-
tions and on carried load measurements.
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Fig. 13 — Root of equation (34).

counting at the rate of n scans per observation period of length {. We shall
now derive an explicit formula for the variance of B, (t).

Let 7 be the interval separating consecutive scans, N (u) be the num-
ber of busy trunks at time u, and

1 if N@)=c
Xw) = {0 if N(u) <e.
Then

B.(t) = n”! in(if)

and
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EB,(t) = Ei.c(a)

Var B,(t) = n™* 3 3. Cov [X (in),X (jr)].

=1 j=1

Now let
Pu) = PrNu)=c|NQO)=cl

The function P (-), which is called the recovery function of the proc-
ess N (+), has the following expression (cf. Ref. 3, p. 85 and Ref. 8, p.
135):

P(W) = Fyo(a) — )i‘,gwn(l e )

=1 Wj 5Aj Wi — Wi
where, as before, w;, i = 1, -+ -, ¢, are the ¢ roots of o.(w + 1). Since
Cov [X (u + ),X (0)] = E,.(a)P(u) — Ey.'(a)
we have (cf. Ref. 8, pp. 136-138)
Var B, (t) = n”" Ey.(a) ZZP(U —jln = El()

i=1 j=1

¢ |l¢]w i

= —n L‘lc(a)z("—lkDZ
-H(l— 1 ) (36)

=] w; — Wi
B 3 {w 1 (1 g w)}

TW; 1—e"™ 2 [ TW;
-{ctnh (?)—l- (T) esch (T)}

If we let n tend to infinity in this formula, we obtain, in the limit, the
variance of the time congestion, B (), for continuous observation (meas-
urement):

Var B(t) = -Ll;(a) { w1 (1 — L )

175 w; — Wi

177

This last formula was first obtained, in a shghtly different form, by
Kosten, Manning and Garwood (cf. Ref. 1).
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