Diffraction Loss and Selection of Modes
in Maser Resonators with
Circular Mirrors

By TINGYE LI

(Manuseript received February 4, 1965)

The losses, phase shifts and field distribution functions for the two lowest-
order modes of interferometer-type maser resonators consisting of spherically
curved mirrors with circular apertures are computed by solving a pair of in-
legral equations numerically on a digital computer. Solutions are obtained
for the symmetric geometry of identically curved mirrors and for the half-
symmetric geomelry consisting of one plane and one curved mirror, with the
radius of curvature of the mirrors as a variable parameter. The confocal or
near-confocal configuration is shown lo have good mode-selective properties
in that the ratio of the loss of the second lowest-order (T EM ) mode to that
of the lowest-order (TEM o) mode is the largest of the configurations con-
sidered. The numerical resulls should be of interest to those concerned with
the problem of mode selection in optical masers and with the design of single-
mode masers with relatively low gain.

I. INTRODUCTION

Interferometer-type resonators used for optical masers usually have a
number of modal resonances falling under the gain profile of the active
medium. Therefore optical maser oscillators generally can and often do
oscillate in many modes, each mode having its own characteristic fre-
quency and field pattern. Such a multimode, multifrequency output is
undesirable for applications in communications and metrology. Many
mode-selection schemes have been devised and tried, but most of them
involve added complications and are beset by problems of stability. A
simple solution was obtained by Gordon and White,! who built a stable
single-frequency gas optical maser using a short, thin discharge tube.
The resonator length was made short to reduce the number of longi-
tudinal resonances and the mirror curvature was chosen so that only the
lowest-order transverse mode had enough gain for oscillation. (The dif-
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fraction losses of the higher-order modes were all greater than the gain
of the tube.) Choosing the appropriate mirror curvatures for mode sup-
pression is preferable to the commonly used method of aperturing the
mirrors, because the former method does not restrict the amount of ac-
tive material that can participate in maser action and therefore is capa-
ble of producing greater output power.

In order to select a pair of mirrors with the appropriate radii of curva-
ture for single-mode operation, it is important to know accurately the
diffraction losses of the modes as funetions of the mirror size, spacing and
curvature. Much work has been done on resonators with rectangular
mirrors: Boyd and Gordon? and Boyd and Kogelnik? have derived ap-
proximate formulas for estimating the losses; Fox and Li* have made
numerical calculations on a digital computer by solving the appropriate
integral equations by the method of successive approximations; Streifer®
recently made similar calculations using Schmidt expansion theory;
Gloge® used perturbation techniques for his calculations. Unfortunately,
these results are not very practical because the discharge tubes usually
have circular cross sections and the diffraction losses for square mirrors
and for circular mirrors are not simply related. Recently, Heurtley” has
made some calculations on the modes and the eigenvalues of resonators
with circular mirrors using Schmidt expansion theory. But published
data on the diffraction losses suitable for practical design purposes are
still lacking. It was with this purpose in mind that we computed the
diffraction losses of the two lowest-order modes of the maser resonator
with cireular mirrors for various mirror curvatures. The results, which
complement our earlier work,*8: should be of interest to those concerned
with the problem of mode selection in optical masers.

II. MATHEMATICAL FORMULATION

The geometry of a maser resonator with circular mirrors is shown in
Fig. 1. It is convenient to use the cylindrical coordinate system, with its
axis coinciding with the axis of the resonator. The mirrors are spherically
curved and have radii of eurvature equal to R, and R, . The mirror aper-
tures are circular, their radii being a, and a, . The separation between the
mirrors along the axis is d.

The integral equations for the modes of the resonator with mirrors of
arbitrary curvature and shape are given in Ref. 4. For the present case,
they are in the form

v (r1, 1) = _/; fu K® (r1, o172, 0¥ ® (ra, o) redeoadrs (1)
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TFig. 1 — Geometry of the maser resonator consisting of spherically curved
mirrors with eircular mirror apertures.

ay 2T
v PP (r, @2) = f f K® (ra, 02571, 009" (r1, o) ridgsdry  (2)
0 0

where K® and K® are equal and are given by
K®(r 01572 ,00) = KO(r2, 00501, 01)

— _J_ E){p {— JQL; [gﬂ"]_i' + 927'22 —_ 27'1?‘2 cOoSs ((91 —_ (pg)]} . (d)
In the above equations, vV and v® are the eigenvalues associated with
the eigenfunctions ¢ (r1, ¢1) and ¢ (ry, @), which are distribution
functions of the reflected field at each mirror surface; g, is equal to
1 — (d/R,) and g is equal to 1 — (d/R2); k is 2ar/X and A is the wave-
length in the medium between the mirrors. Making use of the relation!®

exp [jn (1r/2 - ﬁ)]'ln (;l:y)

-1 DJ exp {jlry cos (@ — B) — nal} do (4)

2

and integrating (1) and (2) with respect to ¢, and ¢. , respectively, it is
seen that

YO (ry, @) = RO (r)eine, (n = integer) (5)
and

YO (e, @) = R, @ (ro)eine, (n = integer) (6)
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satisfy (1) and (2), respectively. Thus the azimuthal variation is sinus-
oidal in form. The radial functions R, (r;) and R,® (r.) satisfy the re-
duced integral equations

'Yu(an“) (7'1) '\/;1 = f ) Kn ('?'1, ?'2) Ruﬂ) (7‘2) '\/FE dT') (7)
0

'le{2)Rn(2, (Tﬂ) '\ﬂ‘;; = f K" (1-1 3 Tﬁ) Rﬂ(l) (TI) ‘\/T_l dTl (8)
0

where
.n+1k

K, (ri,r) = ld— Ju (k ?—;?) V/rir; exp {— & (g + gerf)} (9)
2d
and J, is a Bessel function of the first kind and nth order. It is unneces-
sary to show that the modes are orthogonal over their respective mirror
surfaces, since this has been demonstrated for the general case of arbi-
trary mirrors.*

III. COMPUTED RESULTS AND DISCUSSION

An IBM 7094 computer was programmed to solve (7) and (8) for the
two lowest-order modes (TEM, and TEM,,) and their eigenvalues using
the method of successive approximations.*® Solutions were obtained for
the symmetric and half-symmetric geometries; the symmetric geometry
consists of identical mirrors (a; = as = a, ¢ = g2 = g) and the half-
symmetric geometry consists of one plane and one curved mirror
(a1 = as = a, g» = 1.0). In all cases, fifty or more intervals were used
for the numerical integration of (7) and (8). When the losses were low
and the convergence was slow, as many as one hundred intervals were
used.

Figs. 2 and 3 show the relative field distributions of the lowest-order
(TEMy,) and the next lowest-order (TEM,) modes for the symmetric
case. Except for geometries close to plane-parallel or concentric (g =~ +1),
the relative amplitude distributions can be closely approximated by
Gaussian-Laguerre functions, with the spot sizes of the TEM,, mode
equal to d/mi — g%, as given by Boyd and Gordon.* Also, for
geometries other than plane-parallel or concentric, the equiphase sur-
faces almost coincide with the mirror surfaces. The agreement between
the computed field distributions and those of the generalized confocal
theory?? becomes closer with larger Fresnel numbers (N > 1).

The power losses per transit of the two lowest-order modes are given
in Figs. 4 and 5 for various values of g lying in the low-loss region
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Iig. 2 — Relative field distributions of the fundamental (TEMw) mode for
the symmetric geometry (N = a*/Ad = 1.0).
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Fig. 3— Relative field distributions of the TEMuw mode for the symmetric
geometry (N = a*/Ad = 1.0).
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Fig. 4— Power loss per transit of the fundamental (TEMwx) mode for the
symmetric geometry.

(0 £ |g| £ 1).34 The curves for | g | = 1 (plane-parallel or concentric)
and g = 0 (confocal) are the same as those given previously by FFox and
Li.# Curves for other values of ¢ lie between these two. The computed
loss values for the confocal configuration are in perfect agreement with
those of Slepian,'! who has obtained various analytical expressions to ap-
proximate the losses. For our interest, the most useful form of the ex-
pression for the loss of the TEM,,,, mode obtained by Slepian is

o (SWN) 2-m+n+1g—4:r.-\’

'(m+ DHI'(m+n+ 1)

loss =

(10)

.[1 + c‘('lérlst\aﬂ + higher-order terms in 2-.:N]
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Fig. 5 — Power loss per transit of the TEMi, mode for the symmetry geometry.

where n and m are the azimuthal and the radial mode numbers respec-
tively, and I'(z) is the gamma function. The computed curves for the
plane-parallel or the concentric configuration are in excellent agreement
with those of Vainshtein,? who has obtained an approximate formula for
the loss of the TEM,.,, mode. It is of the form

B0 + 8) an
(M + 8)* + B°F
where v, in the mth zero of the Bessel function J,(z), 8 = 0.824 and
M = (8xN)!. Both formulas (10) and (11) fail for small Fresnel num-
bers where losses are appreciable.

It is seen from Figs. 4 and 5 that the diffraction losses are very sensi-
tive to changes in mirror curvature; also, provided | ¢ | is not very close

2
loss = 8w
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to unity, the losses decrease very rapidly as N increases. By choosing g
and N suitably, it is possible to have a strongly oscillating fundamental
mode in an optical maser with all higher-order modes suppressed. For
example, if a maser tube has a gain of five per cent and the Fresnel num-
ber of the resonator is two, higher-order modes will not oscillate with
g = 0.90. (Loss of TEMg, mode =1 per cent and loss of TEM,, mode
~25.2 per cent).

While the loss of each mode is given by the magnitude of its eigenvalue,
its resonant frequency is determined by the phase of its eigenvalue,
which is equal to the phase shift (relative to the geometrical phase shift)
per transit for the mode. The phase shifts for the two lowest-order modes
are plotted in Figs. 6 and 7. The curves shown are for positive g only;
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Fig. 6 — Phase shift per transit (leading relative to the geometrical phase shift)
of the fundamental (TEMw») mode for the symmetric geometry.
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Fig. 7— Phase shift per transit (leading relative to the geometrical phase
shlft) of the TEMy, mode for the symmetric geometry.

the phase shift for negative g is equal’ to 180 degrees minus that for posi-
tive g. The horizontal portions of the curves can be calculated from the
theory of Boyd and Kogelnik? as

phase shift = (2m + n + 1) arc cos v/gige

(12)
= (2m 4+ n+ 1) arccos g, for g=g..

The problem of mode discrimination in an optical maser can be ap-
proached in two different ways which depend on the available gain of
the active medium. If the gain is large, the relative magnitudes of the
eigenvalues of the different modes are of importance.’®'*'* On the other
hand, if the gain is small, such as in 6328A He-Ne masers, the relative
losses are important.® The ratio of the loss of the TEM,, mode to the loss
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Fig. 10 — Average power loss per transit of the TEMw mode for the half-
symmetric geometry.

of the TEM ¢y mode, which is a measure of mode selectivity for the low-
gain case, is plotted in Tig. 8 as functions of the Fresnel number. The
dotted curves are contours of constant loss for the TEMgy, mode. It is
clear from this plot that the confocal or near-confocal geometry possesses
good mode-selective properties, and that the plane-parallel or the con-
centric geometry is rather poor. However, if an aperture is placed in the
midplane of a concentric resonator, its mode-selective properties have
been shown to improve and to approach the confocal resonator.?

One of the commonly used resonator configurations is the half-sym-
metric geometry consisting of one plane and one curved mirror. If the
spot size of the mode pattern at the plane mirror is very much smaller
than the effective mirror aperture, such as in the case of the half-con-
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centric or near half-coneentric configuration, the half-symmetric resona-
tor can be regarded as equivalent to a symmetric resonator of twice the
length. However, if the mirror configuration is such that it lies between
the half-confocal and the plane-parallel (g; = 1.0 and 0.5 = g, = 1.0)
and the effective mirror apertures are the same, the equivalence of half-
symmetric and symmetric resonators is not valid and the modes and their
eigenvalues must be recomputed. Computations were carried out for
¢g:=1.0 and g.=0.5, 0.75, 0.9 and 0.95 corresponding to g=0, 0.5,
0.8 and 0.9 of the symmetric case. Since the mode pattern at the plane
mirror is now different from that at the curved mirror, the losses and the
phase shifts incurred at the mirrors are also different. As before,* we de-

fine the average loss per transit as 1 — |y®y® | and the average phase
100
80
60
g2=05
40
[~ 0.75
N
20 .\\\\- 0.9} —
\\0_.35
@ 10 o
w 8 -
o N\
8 6
(=]
z 4 \‘
n N
L N
9 o, ™
w \
[y}
<
e
10 AN
08 TEMgo MODE AN
gi=10
0.6
04
02
[N
0.1 0.2 0.4- 06 1.0 2 4 6 8 10 20 40 60 100
N=a%/xd

Tig. 11 — Average phase shift per transit (leading relative to the geometrical
phase shift) of the fundamental (TIEMw) mode for the half-symmetric geometry.
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shift per transit as (phase of y® 4 phase of v®)/2. The computed
average losses and average phase shifts per transit for the two lowest-
order modes are given in Figs. 9 to 12, which are to be compared with
those of the symmetric geometry shown in Tigs. 3 to 6. The ratio of the
loss of the TEM,, mode to the loss of the TEM g, mode for the half-sym-
metrie resonator is plotted in Fig. 13. Comparing Iigs. 8 and 13, it is
seen that the mode-selective properties of the half-symmetric resonator
are very similar to those of the corresponding symmetric resonator.

Although the computed results are for equal mirror apertures (a, = as),
they are also applicable to certain “‘equivalent” geometries with un-
equal mirror apertures. The equivalence relations are discussed and
given in a recent paper by Gordon and Kogelnik.'®
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1V. CONCLUSIONS

The diffraction losses of the modes of interferometer-type maser
resonators can be utilized for mode diserimination. Results of the com-
putation show that the confocal or near-confocal resonator has good
mode-selective properties; but its mode volume is small compared with
those of the plane-parallel or concentric resonator of the same Fresnel
number.2'7.18 Since it is desirable to utilize as much of the active mate-
rial as possible in order to obtain the maximum output power from a
maser, a geometry that is as close to plane-parallel as is consistent with
the requirements of mode discrimination and mechanical stability is
to be preferred. In practice, the perturbing effects of the maser tube
wall, the mirror irregularities, the nonlinearity of the active medium,
ete. will modify the idealized modes and their losses and therefore should
be taken into consideration.
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