The Optical Ring Resonator

By W. W. RIGROD

(Manusecript received February 1, 1965)

Expressions are derived for the stability parameter, spot size, and wave-
front curvature of a Gaussian beam in a ring resonator confaining up to
four spherical mirrors unequally spaced. Higher-order transverse modes
and aperture effects are not considered. Two methods of analysis are used:
(1) replacement of the mirrors by an infinite sequence of equally-spaced
identical thick lenses, and (2) transformation of the beam info itself after
one circuit of the ring, by means of a ray matrix representation of the equiva-
lent thin lenses. The procedure can readily be extended to ring resonators
with any number of spherical mirrors.

I. INTRODUCTION

In the ring laser, a light beam is directed about a closed loop,
typically by three or four mirrors, and regeneratively amplified at
frequencies for which the circuit path equals an integral number of
wavelengths.”? The only available analysis of a ring resonator with
more than one spherical mirror appears to be that of Clark," who used
a ray-optical approach to derive the stability conditions for a ring with
mirrors of two different curvatures and spacings. However, the means
for a complete analysis of any arbitrary ring resonator are contained
implicitly in the optical-mode theory developed in recent years in
connection with two-mirror resonators.” The purpose of this note is to
trace the connection between this theory and that of ring resonators in
two different ways, and to derive the formulae defining the Gaussian
(fundamental mode) beam in an arbitrary four-mirror resonator. A
third method has been proposed recently by Collins in general form,*"
but will not be employed here because of its greater complexity.

In a two-mirror resonator, the wavefront curvatures of the light beam
coincide with those of the mirrors, since the beams are reflected back on
themselves. This is not the case in ring resonators, in which the beam is
reflected obliquely. The boundary condition of the latter is merely that
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the beam reproduce itself after each circuit, following its passage through
a series of focusing elements or equivalent lenses.

As noted by Boyd and Kogelnik,” the stability conditions and beam
size in spherical mirror resonators are the same as in an equivalent
sequence of lenses. Thus the problem consists of applying the traveling-
wave boundary condition to the appropriate equivalent-lens system.
Owing to the astigmatism of concave mirrors in oblique reflection, they
must be replaced by two different sequences of lenses, and each analyzed
separately. For example, in the quadrilateral resonator of Iig. 1(a), the
equivalent lens sequence for the clockwise traveling wave is shown in
Fig. 1(b), where the focal length of the ith lens is given by"

fei = 3 bicos (pi/2) (la)
in the plane of the ring, and
fy,' = b‘/2 COS (qa,/z) (1b)

in the plane normal to the ring, for a mirror with radius of curvature b, ,

"-d,-*—dz—»’«——dr#:@~ da Wah—dr)t;dz—ia
B

CLOCKWISE =—>

f="fizaa
(b)
Fig. 1 — (a) Ring resonator with four spherical mirrors, unequally spaced.

(b) Equivalent sequence of thin lenses for clockwise wave, with focal lengths
given by equations (1a) and (1b) for tangential and sagittal planes, respectively.



OPTICAL RING RESONATOR 909

subtending an included angle ¢;. The beam, consequently, is usually
elliptieal in cross section.

The circulating beam in a ring laser can be made circular in cross
section, if need be, by the use of astigmatic mirrors or lenses, such that
the effective curvatures of the ith mirror, b.; and b,;, in and normal to
the plane of the ring, respectively, are related through

byi = bai cos” (901'/2)- (2)

When the laser beam is plane-polarized, it is possible to design such
correcting lenses for insertion at the Brewster angle to the optic axis,
to minimize transmission losses. Alternatively, the elliptic output beam
of a ring laser can be transformed into one of circular cross section by
means of a single astigmatic element outside of the ring, placed where
the spot is circular.

1I. EQUIVALENT SEQUENCE OF THICK LENSES

The first method of analyzing the iterated sequence of four thin lenses
shown in Fig. 1(b) is to replace them by a sequence of identical thick
lenses f, whose principal planes are separated by a constant distance L.
The stability condition for this system,”

o<y (3)
i)
is then expressed in terms of the focal lengths and spacings of the
equivalent thin lenses, and the beam deseription (radius, wavefront
curvature, ete.) obtained from the known relations for an equivalent
two-mirror resonator.””

The beam waist w, is located at a distance L/2 from the principal

planes of each thick lens, and is given by

2rwe . (4f !
x (E N ) 4)

where X is the wavelength. At a distance z from the waist in real space
(when there are no intervening lenses), the beam radius is given by

w = w |:1 + (,,—202)2]’ (5)

and the wavefront curvature R by

e[ ()]
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where R has the same sign as z, positive when the center of curvature is
to the left of the surface, i.e., when the surface is to the right of the
beam waist.

The detailed procedure is illustrated in Fig. 2, in which the four thin
lenses are taken in the order f;, di - - fi, di. First f; and f are com-
bined to form a thick lens f» with principal planes located at distances
h, and h, from the two lenses; then fi» and f; are combined to form the
thick lens fis» with its principal planes located at distances by and by’ from
the principal planes of the component lenses; and similarly for the
combination of fis; and fs to form fizs . The principal planes of fia are
located at distances H, and H., respectively, from each of the thin
lenses f, and f; as shown.

The value of f = fizs, as well as of Ly, depends on the way in which
the thin lenses are grouped, i.e., fizss # fausa1 . Thus, whereas L/f is in-
variant for the group of iterated thin lenses, there can be as many dif-
ferent beam waists as there are lenses. For the group shown in Fig. 2,
the waist defined by Ly in (4) above is located at a distance Sy to the
right of lens fi (i.e., measured clockwise from mirror bs in the ring
resonator). Given the location and radius of the beam waist, the beam
size and wavefront curvature at any distance z from the waist can be
computed from the foregoing relations.

The expressions for the significant parameters of the equivalent thick-
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Fig. 2 — Reduction of iterated four-lens system to sequence of identical thick
lenses(f = fias4).
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lens sequence of Fig. 2 are listed below. The remaining three beam waists
in this system of four lenses can be found either by imaging the known
waist about its nearest lens,*"® or simply by permuting the indices for
the thin lenses and their spacings.

s ™ (fl it +f.=) -7 (%*fl‘ﬂ%) . (ﬁ +fz+fs)

1 1 1 didaf 1 1 dy ds
"dz(ﬁ+ﬁ)(ﬁ+ﬂ)+E(ﬁ+ﬁ)+ﬁ(ﬁ+ﬁ) )
didg (1 1 dy dy ds
T Nifs (ﬁ + ﬁ) Chfefafs

_ hdy(1 1,1
—(d1+f12+da+d4)(f+f+f3+f4) fz (fa+f4+f1)

(i) - G a) - Gt s)
(LD e D (D) @

dydady 1.1 d‘zdad4(l _) dad4d1(_ }_)
thh (fﬁfl)*'m ETR) TR GTh

|

dididy (1, 1\ didadad,
T (ﬁ +ﬁ) Jiofo T
= fru(L/F) = Hy + Hy, + ds (9)
_thdy
f”“[ + o (fa f4) +d'(f +fa +f.) W o)
(’3 (11 1 dl d*z dl d2 d3
(; +f) T ( )+ fzfsfq]
_ 1L 1y _ b
i _f“““[ + (f1+f) +d3( fa) M
d[ da 1 1 d‘z dl d2d3
(f‘ﬁfa e ( )+ flfzfs]
= 3Ls — H,. (12)

Less general ring resonators can be reduced to an iterated sequence of
three, two, or one lens, respectively. The corresponding expressions for
an iterated sequence of three thin lenses can be obtained from those for
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four lenses by putting dy = 1/f; = 0 with appropriate redefinition of H,
to locate the right-hand principal plane relative to lens f :

U (L1 1) b1 1) (1l 1), hd
f?f(ﬁ*fﬁfs) i (fz+fa) fa( + )+f1fzfa (13)

L dy dy 1
i (d‘””d“)(f t5 +fa) R (fs+f_1)

d ds 1 15 d dy dy d (14)
o (3 3 by 1 A g
Ja (fl +JT2) h (fz +fa) *7 Tifefs
Ly = fiw(L/f) = ds + Hi + H» (15)
d2 1 1 dl dz
M= 405+ 7) - 57 (16)
dy 1 dy ds
o=t F 4 (3 5) - 47 un

Similarly, for an iterated sequence of two thin lenses, f, , di , f2, ds we
obtain:

1 1,1 d

Rt R TR )
Ly = fu(L/f) = ds+ b1 + ha (21)
hy = fl}zd‘ (22)
hy = ff—d (23)
Sy= 3 — ha = fu Bj_, _ ;_ﬂ (24)

III. MATRIX REPRESENTATION OF LENS GROUP

A second method of analyzing an infinite sequence of thin-lens groups
has been derived recently by Kogelnik," based on the representation of
a lens system by a 2-by-2 matrix of transmission-line parameters 4, B,
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(!, D. He has shown that the same ABCD matrix which deseribes the
transformation of position and slope of a ray, between input and output
planes of the system, also serves to transform the radius w and wave-
front curvature R of a Gaussian beam. The transformation is expressed

by
= (Ag; + B)/(Cq; + D) (25)

where 7 refers to the input plane and j to the exit plane of the system,
and

1 1 . A
b AT (26)
The ray matrix for any lens system is given by
h2 kl h2
- hy + hy —
S I ! (27)
C Dj 1 hy
=z 1 — 7

where ; and hs locate the principal planes relative to the input and
output planes, respectively (Fig. 3), and [ is the focal length of the
system. Because of reciprocity,

AD — BC = 1. (28)

For an element consisting of a thin lens f; followed by a distance d, ,
we have

f = fl} h‘l = 0, hg = dl . (29)

- AFE— dz—a-E—da—Toa—dq—a‘:l—d.—»/\rg—aa—j\g
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a

Tig. 3 — Optical system of four thin lenses for transformation of a beam into
lfH(—‘lf at the reference planes.
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The ray matrix of this element is thus given by
dy

T S
) =| [ . (30)
= 1

The transformation of a beam into itself, after traversing a group
of (say) four thin lenses, each followed by a spacing as indicated in
Fig. 3, is then expressed by evaluating the ABCD parameters of the
product matrix:

‘A B
¢ D

wherein each element matrix has the same form as (30); and then set-
ting ¢; = ¢; in (25), to obtain (at the reference plane):

2B
R =32 (32)

s _ 2B
A Vi—(A+Dp
Combining these expressions with relations (3)-(6), we find the spot
size wy of the beam waist to be given by

mwe'/N = — /4 — (A + D)¥/2C (34)

' = [a] X [as] X [az] X [a] (31)

(33)

and the location of that waist given by
z= (A — D)/2C (35)

where 2z is measured from the waist to the reference plane (just in front
of fy in Fig. 3).

The expressions for the equivalent thick lens of IFig. 2, evaluated in
the previous section, can be related to the ABCD parameters of the
lens system of Fig. 3 with the help of (27), as follows:

H =hWKh=(D-1)/C (36)
H2+d4=h2= (A.— 1)/0 (37)
Li=h+h=(A+D-2)/C (38)
L _ ¢ 39)

Jiza
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?=2—(A+D) (40)
z=dy— Sy =1L, — H, (41)

where z is also given by (35).

The ABCD parameters for the four-lens system of Fig. 3 have been
evaluated as indieated in (30) and (31) and listed in the Appendix.
The parameters for a similar three-lens group fi, d1, --- fs, ds can be
found by setting dy = fi* = 0; and for a two-lens group by setting in
addition d; = f; ' = 0.

Although the ray matrix formalism of Kogelnik offers no economy in
computational labor over the straightforward derivation of the equiva-
lent thick lens parameters, it has greater analytical flexibility and per-
mits almost automatic extension to any number of lenses.
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APPENDIX

Ray Matriz Paramelers of Four-Lens System (Fig. 3)
A=1-gt—d (}‘J’%) _d“(f tr +fs)
( thtgt ﬁ)
P Bt )+ 50 ()
+d4ffll(fa+fs+f4) +d}f*(f1+ﬁ+}s) (42)
o d“(fl +}) (fl +%)
G G n) -t Gorn)

dydyds [ 1 1 dy d» d d,
Thfe ()T+ﬁ)+ Nifefs fa
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- (d1+da+ds+d4)—%(dz—i—ds-Fdi —‘%(d1+d2+dn)
2

_ld it d) gy g B gy (43)

fs f I3 fifs
d4d1 __dldginh
ThET @)~ e h
C= ( ot )+d( +14 )
o f s i\ " fi ' fi
1 1 1
+d°(ﬁ+ﬁ)(fa+ﬁ) "
7 dd(1 1) _ddi(1 1
+f (f1+ +fa) flfz( +f4) Jafs (f1+f2)
dxds 1 2 ds
AN (fz fs) f1f2f3f4
1 d.
+ =+ ) 2( + )—_j
(f i s fa f4 (45)

di ds di1 da ds ds dy ds dy
TR (fa+f)+ T (f+fa)+m“fzhf['

REFERENCES

1. Rosenthal, A. H., J. Opt. Soc. Am. 52, Oct., 1962, p. 1143.

2. Macek, W. M., and Davis, D. T. M., A pl. Phys 'Lett. 2, Ieb., 1963, p. 67.

3. Macek, W. M., Qchnmder J R., and Sa amon, R. M., J. Appl Phys 35 Aug.,
1964, p. 2556,

4. Clark, P. O., Proc. IEEE 51, June, 1963 p. 949.

5. Boyd, G. D. and Gordon, J. p. ,B.S T.J. 40, March, 1961, p. 489.

6. Fox, A G. , and Li, T., B. STJ 40, Mnrch 1961, p. 453.

7. Boyd, G. D., and Imgelnlk H., B.S.T.J. 41 July, 1962, p. 1347.

8. Kogelmk H. , review article in Advances in Lascrs Dekker Pub., New York,
1964.

9. Collins, S. A., Appl. Opt., 3 1964, p. 1263.

10. Collins, 8. A, ﬂng Davis, \/I , Appl. Opt. 3, 1964, p. 1314.

11. Jenkms l" A and Whlte H E Fundamentals of Optws 3rd ed., MeGraw-
Hill Book Co., New York, 1957, p- 94.
12. Pierce, J. R., Theory and Design of Eleciron Beams, D. Van Nostrand and Co.,
New York 1954.
13. hogelmk H Imaging of Optical Modes—Resonators with Internal Lenses,
. 8. T. J., 44, March, 1965, p. 455.



