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The main purpose of this paper is to present a reasonably complete pic-
ture of the results of the first phase of some recent research on the properties
of solutions of nonlinear functional equations thal frequently arise in the
study of physical systems. We consider in delail the properties of a vector
nonlinear Volterra integral equation of the second kind, and some condi-
tions are presented for the norm boundedness of solutions of a functional
equation of similar type defined on an abstract space.

More specifically, concerning the Volterra equation, conditions are pre-
senled under which the solulions (a) approach zero as t — o, (b) approach
zero exponentially ast — «, (¢) are uniformly bounded on t = 0, (d) are
square integrable on [0,= ), or (e) are ultimately periodic. On the basis of
these results, it appears that an input-output stability theory of a large class
of time-varying nonlinear sysiems of engineering interest is well within
sight.

I. PRELIMINARY NOTATION AND DEFINITIONS

The set of real measurable N-vector-valued functions of the real vari-
able ¢ defined on [0, ) is denoted by 3Cx (0, ) and the jth eomponent
of f £ 3Cx (0, ) is denoted by f; .

The sets Lox (0, ) and Lax(0,= ) are defined by

Loy (0,0) = {fl.feﬁcn(O,OC),fgg [ @F )] < e}

Lon(0, ©) = {flfﬁ'ﬁczv(o, w ), -/u-mfl(i)f(t) dt < w},

in which f'(¢) denotes the transpose of f(¢). In order to be consistent
with standard notation, we let £,(0,% ) = £y (0,0 ) when N = 1.
Let y ¢ (0, ) and define f, by
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fu@®) = f() for tel0,y]
=0 for >y
for any f £ 3¢y (0, ), and let
&v = {f|fedn(0,2), f, e Lan(0,0) for 0 <y < oo},

With A an arbitrary real measurable N X N matrix-valued function
of { with elements {@..} defined on [0, ), let K,» (p = 1,2) denote

{Ai'/n‘mlam(t)|pdt<oo (n,m=1,2,---,N)}.

For an arbitrary f € 3y (0, ), let ¢[f(t),f] denote
Walfr (&), 042 (O8], - -+, alfv @48

where ¥, (w,t),¥a(w,t), -- -, ¥n(w,) are real-valued functions of the
real variables w and ¢ for w ¢ (— «,» ) and ¢ ¢ [0, ) such that
(#) . (0t) = 0forte[0,0)andn =12, --- , N
(7)) dafw(®),d] (n = 1,2, .-+, N) is a measurable function of
whenever w(¢) is measurable.
Let « and 3 denote real numbers such that & =< 8. We shall say that
Vi, -] e ¥y(a,B) if and only if

ag?ﬁﬁﬂgﬁ (n=12--,N)

for ¢ £ [0, ) and all real w > 0; and we shall say that ¢[- , -] e ¥ (e,8)
if and only if

aéwn('wlat)_d’ﬂ(w?vt)éﬁ (ﬂ=1,2,,N)
wy — We

for ¢ £ [0, ) and all real w, , we such that w, # w,.

II. INTRODUCTION

In the study of physical systems containing time-varying nonlinear
elements, attention is frequently focused on the properties of the
equation

g(t) = f(1) +jﬂ k(t — )lf(r),7ldr, £20 (1)

in which g £ &v,f € &x, k € v and ¢[- , -] & ¥o(e,B) for some o and B.
For example, consider the multi-input multi-output nonlinear feedback



NONLINEAR FUNCTIONAL EQUATIONS 873

system of Fig. 1 in which u, v, f, w, z, and y are assumed to denote ele-
ments of &y with the input u & £.5(0,% ). Let the block labeled y repre-
sent N memoryless time-varying nonlinear elements which introduce the
constraint w(t) = ¢[f({),t] for ¢ = 0 with ¢[-, -] € ¥(a,8), and let
the blocks labeled K, , K. , and K3 , which represent linear time-invariant
portions of the system, introduce the constraints

s = | "t = )o(r) dr + ga(D)

2(t) = f Ea(t — w)w(r) dr + gs(2)
0

y() = [ k(b = Da(r) dr + g:(0)

~0

for ¢ = 0, in which the impulse response matrices &y, k., and k; are
elements of X;» and the initial condition functions ¢,, ¢, and g; are
elements of £,5(0,% ). Then

o0 = 50 + [ K= nls), Al dr, 120
where &, the inverse Fourier transform of
fom ky(t)e ™" di fum Jea()e ™™ dt f: les(t)e™™" dt,
is an element of ¥y, and ¢ defined for i = 0 by

(1) = D) + f (e = rutr) dr = [l = r)gu(e) dr

— f k(t — 7) f ko(t — q)gs(q) dg dr
b 0

is an element of Loy (0,0 ).

u v f w
i K,—O—-JI#—O—EKa x

K,

Fig. 1 — Nonlinear feedback system.
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Equations of the form

g%): =g + -/n‘ k(t — r)lf(s), 7] dr, t=0 (2)

also arise in a natural way in the study of physical systems. For example,
this type of equation with n = 1 is encountered in the theory of feed-
back control systems eontaining a motor in the forward path.

This paper is addressed primarily to the engineer interested in the
mathematical aspects of nonlinear systems. Its main purpose is to present
a reasonably complete picture of the results of the first phase of some
recent research on the properties of solutions of (1) and of equations of
similar type defined on an abstract space. The essentials of the material
to be presented are drawn largely from Refs. 1 and 2.

With the exception of some observations in connection with the
problem of determining lower bounds on the decay rate or upper bounds
on the growth rate of solutions of (1), each of the results of Section ITI
constitutes a set of sufficient conditions, in which a certain frequency-
domain conditiont, f{ plays a eentral role, under which the solutions of
(1) are stable in one of several significant senses. More specifically,
conditions are presented under which: f(t) — 0 (i.e., the zero vector)ias
{— o, ge Lov(0,0) implies f & Law (0,0 ), g £ Lo (0,00 ) implies [ &
Lon (0,0 ), and g ultimately periodic with period 7' implies that f is
ultimately periodic with period 7. Conditions are also presented under
which f depends continuously on g. On the basis of these results, it ap-
pears that an input-output stability theory of a large class of time-
varying nonlinear systems is well within sight. In particular, the class
is not restricted to lumped-parameter systems. An example is presented
concerning the neeessity of some of the conditions.

Section 1V is devoted to the proof of a previously unpublished result
concerning (2) with n an arbitrary nonnegative integer, and, for sim-
plicity, f and g scalar functions (i.e., N = 1). A set of conditions is es-
tablished under which g £ £:(0, ) implies that f &£ £:(0, ).

In Section V, we consider some properties of equations defined on an

t For some other results concerned with frequency-domain conditions for the
stability of nonlinear or time-varying systems, see Refs. 3-6. In particular, Ref.
3 describes in detail the work of V. M. Popov.

11 After this paper had been submitted for publication, the following related
papers came to the writer’s attention: B. N. Naumov and Ya. Z. Tsypkin, A Fre-
quency Criterion for Absolute Process Stability in Nonlinear Automatic Control
Systems, Automation and Remote Control, 25, Jan. 1965; and V. A. Yakubovich,
The Matrix-Inequality Method in the Theory of Stability of Nonlinear Control
Systems: I. The Absolute Stability of Forced Vibrations, Automation and Remote
Control, 25, Feb. 1965.
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abstract space. More specifically, the basic problem considered is a
direct generalization of the problem of establishing the £uv(0, )-
boundedness of solutions of nonlinear functional equations (i.e., a gen-
eralization of the central problem of Ref. 1). In particular, Theorem 8 is
of immediate utility in obtaining results similar to those of Section IIT
for other types of equations [e.g., the discrete analog of (1) which is of
interest in the theory of sampled-data systems]. Section 5.2 is essentially
a restatement of the key argument of Ref. 1 in a more abstract setting. In
Section 5.3 some new results are proved.

In the Appendix we state some results concerning an integral equation
gimilar to (1) that arises in the study of ordinary linear differential equa-
tions, and conditions are presented under which all solutions of a system
of second-order equations with varying coefficients approach zero
exponentially as ¢ — .

III. RESULTS CONCERNING THE PROPERTIES OF (1)

3.1 Further Notation and Definitions

Let M denote an arbitrary matrix. We shall denote by M ' M?* and
M, respectively, the transpose, the complex-conjugate transpose, and
the inverse of . The positive square-root of the largest eigenvalue of
M™M is denoted by A{M}, and 1 denotes the identity matrix of order
N.

The norm of f & £ux(0,% ) is denoted by || f || and is defined by

s = ( [ 7w dt)’.

The symbol s denotes a scalar complex variable with ¢ = Re [s] and
w = Im [s].

We shall say that % is an element of the set ®(«,3) if and only if
k ¢ X.x and, with

K(s) =j; k(t)e™ dt for o = 0,

(¢) det [ly + 3(a + B)K(s)] # 0 for o 20
(@) (8 — a) sup Aflly + }(a + B)K (iw)] 'K (iw)} < 1.

Comments: Tt can be shown that conditions (¢) and (#2) above are
satisfied if @« = 0 and [K(iw) + K(iw)*] is nonnegative definite for all

.
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For N = 1, conditions (7) and (#Z) above are met if 8 > 0 and one of
the following three conditions is satisfied:

() @ > 0; and the locus of K (iw) for — o < o < « (a) lies out-
side the cirele €5 of radius 2 (¢ — ') centered on the real axis of the
complex plane at [—3(a " + §7),0], and (b) does not encircle €', (see
Fig. 2)

(#1) « = 0, and Re [K ({w)] > —g" for all real
(##7) « < 0, and the locus of K (iw) for — o < w < « is contained
within the circle C; of radius (8" — « ') centered on the real axis of
the complex plane at [—1 (o' 4+ 87'),0] (see Fig. 3).
Concerning the condition for @ > 0, if 8 = e, then the circle € de-
generates to a point, and the criterion becomes the well-known Nyquist
stability criterion.

3.2 Results

Our first theorem, which is proved in Ref. 1 as an application of an
abstract result similar to Theorem 8 of Section V, is the key result of
this section. It is of direct interest in the theory of stability of dynamical
systems, and it plays an important role in the proof of each of the other
theorems of this section.

Theorem 1: Let k ¢ ®(a,8), let Y[+ , -] & ¥o(a,B), and let
g(0) = 5 + [ Bt = i), ddr, 120
0

where g ¢ Lon(0,0) and f ¢ Ex. Then f & Loy (0, ), and there exists a
positive constant p which depends only on k, a, and B such that

Ifll=elgl-
| i
7
| |
| |
_é _é

Fig. 2 — Location of the “eritical cirele” €y in the complex plane (a > 0).
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’///////

"

Fig. 3 — Location of the “critical circle’”” €y in the complex plane (a < 0).

Corollary 1{(a): Lel k ¢ ®{e,8), let ¥[- , -] e ¥(a,B), and let

() = fil) +f., k(t — o)Wlh(r), ddr, 20

g(1) = (1) + f K(t — l(t), 7l dr, 20

where g1, g2y f1, J2 € 8y and (g1 — g2) € Loy (0, ). Then (fi — f2) €
Lan (0,0 ), and there exists a posiltive constant p which depends only on L,
o, and B such that

Ih=rl=ela—gl
Proaf of Corollary 1 (a): Let ¢;(t) be defined on [0,% ) by

sl — il (0
w0 =R
= }(a + 8), teft|t=0,0,;(t) = fo(8)}

for j = 1,2, ---,N; and let ¢(¢) denote the diagonal matrix diag
[ (8),q2(t), - -+, gv(t)]). Then a < ¢;({) < Bforj =12, ---, N and

n(t) — (1) = fi(t) — fa(2)

teft|tz0,f;(t) #= f(1)}

+ [ k(t — D)a()i(r) — fa(D)ldr, 2 0.
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The conclusion of the corollary follows from this equation and the
theorem.

Remarks: A direct application of the Schwarz inequality and the Rie-
mann-Lebesgue Lemma shows{ that if the hypotheses of Theorem 1
are satisfied and g(¢) — 0 ast— = [ie., g;(t) 2 0ast— = forj =
1,2, ---, NJ, then f(t) — 0 as t — « provided that k ¢ XK.v [observe
that k & Kax if k £ Kinv and the elements of & are uniformly bounded on
[0, )]. Similarly, if the hypotheses of Corollary 1(a) are met and
1) — g2(t)] > 0ast— =, then [fi(t) — fo(t)] > 0 ast — < provided
that & & Koy .

Theorem 8 of Section V leads to a result for the integral equation (1)
that is actually somewhat stronger than that stated as Theorem 1. If
k, ¢[-, -] and f are as defined in Theorem 1, and if g £ &y satisfies the
integral equation, then it can be shown that Theorem 8 implies the
existence of a positive constant p which depends only on %, e, and 8
such that || f, || = o || g, | forally > 0.

Theorem 2: Let
g(t) = £(t) +f° k(t — 7)lf(r), 1 dr, tZ0 (3)

in which ¥[- , -] € To(e,B), f € Ex, and there exists a real constant ¢, such
that
() ge™' & Lav(0,0)
(’H',) kecll & Xawn ﬂ Kon
(#57) ke’ & ®(a,B).
Then there exists a positive constant ¢, such that
15,0 £ ;0] + ™, t20
forj=1,2,---,N.

Corollary 2(a): Let

g(t) = £(2) +fo k(t — r)Ylf(s), 7l dr, 20

wn which Y[ , -] € Tole,B), k £ ®(a,8), f € &, and there exists a positive
constant ¢, such that

() g™’ e Lan(0,0)

(1) ke™ & Kiw N Kow .

t See the proof of Theorem 6 of Ref. 1.
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Then there exist positive constants ¢; and c; such that
i S 1g;0)] +ee™, 20
Proof of Theorem 2: From the fact that f and g satisfy (3), we have

eg(t) = f(t) + fﬂ k(= 1)e Yl (r), ldr, t20 (4)
in which f(1) = f(t)e™". Since

ec.l#.’u[efcllz, t]
xr

for all real = > 0 and ¢ = 0, it follows from Theorem 1 that f £ £4x (0, ).
Thus e Y[f(-), -] &€ L (0,), and by the Schwarz inequality, there
exists a positive constant ¢, such that the modulus of the jth component
of

a =

1A

B (n=1,2---,N)

j: et — 1)eYlf(t), 7] dr

does not exceed ¢; fort = 0and j = 1,2, --+ , N. Thus, using (4),
[fi®)] = g0 + ™, t=0

forj=1,2,---,N.

Proof of Corollary 2(a): Let

K(iw — p) =fo k(1) gy

for p £ cpand — 0 < w < . It clearly suffices to prove that there
exists a positive constant ¢; < ¢, such that ke’’ ¢ ®(a,8) for0 < p < ¢
The existence of such a constant follows easily from the fact that each
element of [K(s) — K(s — p)] approaches zero uniformly in ¢ = 0
as p — 0+. The details are omitted.

For some results related to Theorem 2 and Corollary 2(a), see the
Appendix.

The following theorem is proved in Ref. 2 with the aid of Theorem 1.

Theorem 3: Let k & ® (a,8) with ik ¢ Xyx N Kon for p = 0,1,2. Lety[- , -] e
Yo (a,B), and let

g(t) = f(1) + f k(t — tWlf(r),ldr, 20
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where g &€ Lon (0,0 ) and f & & . Then f &€ Lxon (0, %), there exists a positive
constant p which depends only on k, «, and B such that

max sup | f;(t)| < p maxsup | g;(1)],
3 t=0 i tzo0

and f;(t) > 0ast— = for j =12, ---, N whenever g;(t) — 0 as
t— o forj=12,---,N.

Corollary 3(a): Let k & ®(a,8) with 'k ¢ Kaw N Kaw for p = 0,1,2. Let
Y[, -] e ¥(a,B), and let

gi(t) = f[(t) + _{ k(t — r)¢lfi(r), 7] dr, t=0

gﬂ)=mw+£ku—ﬂMMﬂﬂwn L2 0

where g1, ga, f1, f2 € &y and (g1 — g2) € Lan (0, ). Then (fi — f2) € Looy
(0,), there exists a positive constant p which depends only on k, &, and 8
such that

max sup | f15(t) — f2i(t)| = p max sup [g1i(t) — g2i ()],
i 20 J =

and [f1;(t) — fo;)] —0ast— = forj =12, -+, N whenever [g1;(t) —
i) > 0ast— o forj =12, --- ,N.

Comments: If the hypotheses of Theorem 3 are altered to the extent
that the integrability condition on "k is replaced with the assumption
that there exists a positive constant ¢, such that ek & %y M Kax , then
it is possible to give a considerably simpler proof (than that of Ref. 2)
of the fact that f & Ly(0,=). Specifically, under the new assumptions,
it can be easily verified that for any positive constant c; < ¢, there
exists a positive constant ¢; such that the modulus of the jth component
of

j;y k(y — m)ylf (r),rldr

does not exceed cse *" || e®'f, || forally > Oandj = 1,2, ---, N. By
arguments very similar to those of the proofs of Theorem 2 and its
corollary, it can be shown that there exist positive constants p and ¢,
such that ¢; < ¢; and

Syl < pll e ol
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for all y > 0. Since g € Lwn(0,=), and for y > 0

@) =g — f Ky — DIF () ldr

(N
2,
it follows that f ¢ Loy (0, ). This type of approach, when coupled with
the techniques of Section V, ean be used to establish the L£.y(0, =)-
boundedness of solutions of more general functional equations.

For results similar to Theorems 1 and 3 concerning the diserete
analog of (1), see Ref. 2.

Definition: Let T' be a real positive constant, and let
D=1{f|feLav(—=,=), [f()=Ff(t+T) for

where L.y (— 0, ) is the natural extension of the space L.y (0,%) to
N-vector-valued functions defined on the entire real line.

and

<

e, | < (30) e maxsup [0 |,
i =

—w < I < »}

Theorem 4: Let k ¢ ® (a,8) with "k & Kyx N Ko for p = 0,1,2. Let g, € D,
g2 € £°°N(07m ): go (t‘) —0ast— X, and ’l’[ ) ] £ ‘I’(alﬁ) with "J’n(’w:t’) =
o (w,t + T) for all real w and { = 0. Let f ¢ &y salisfy

= 0.

an() + g:(0) = F(0) +f0 k(t — r)gl(r), 7 dr,

Then © contains an element §, which does not depend on g», such that

F@) —jf®1—o
If, in addition &
¢y, €2, and cz sucl

Bcllk & Kain r

formm =12, -

fﬂ?‘j 1121

forj =12, ---

Proof of Theorem
Theorem 4 are sa

b

ast— =,
b the hypotheses staled above, there exist positive constants
that

0

v

Kovi [ V() [de < 00, o
t

, N, and

lgei@)] S ™™, 20
N ; then there exist positive constants ¢, and cg such that
[7i) — i) S ee™, 120
V.

4+ Assume that the hypotheses of the first part of
isfied. Let ¢, (w,t) be defined for { < 0 by the condi-
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tion that ¢, (w,t) = Y.(wit + T) for all real ¢, all real w, and n =
1,2, --- , N. We need the following result, which is easily provable (see
the proofs of Lemmas 4 and 5 of Ref. 8) with the aid of Theorem 4 of
Ref. 7 and the remarks relating to its proof.

Lemma: The set © contains a unique element f such that
t
a0 =30 + [ k=), ddr, - <1< @,

Thus we have

() — [kt = Dulf(n), 7 dr = (0
+ [ 6= vt 120

mn+mn=ﬂo+£Mhﬂwmaﬂm, iz 0.
Since
() + [ k= gli), ddr 0 as b,

by Corollary 3(a), [f(t) — f(t)] — 0ast— «.
The second part of the theorem follows at once from Corollary 2 (a)
and the fact that here

0
0:(0) + [ k(= I, 71 dr = 1(0) = )

+£Eu—ﬂMﬂ¢ﬂ-ﬂﬂmﬂwn 20

with ¢[- , -] £ ¥(a,8).

Comments: A result similar to the first part of Theorem 4 is proved in
Ref. 8. There it is assumed that gs &€ £ox (0, ).

Under the additional assumptions that ¢,(¢) is a constant N-vector,
and that ¢, (w,?) is independent of ¢ forn = 1,2, - - - , N, it can be shown
that f(t) of the lemma is a constant N-vector, and hence that f(t) of
Theorem 4 approaches a limit as ¢ — <.

It is a simple matter to construct examples involving f’s not contained
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in Loy(0, ) which illustrate that the conclusion of the first part of
Theorem 4 can be false if & does not belong to ®(e,8) (with the under-
standing that the remaining hypotheses are satisfied). The following
example shows that the conclusion can be false in some relatively simple
situations in which f & £+x(0, %), if k does not belong to ®(«,8).

Let N =1, and for { = 0 let

ﬁb(w:t):w: —» <ws=1
= ()}, l=sw=9
= tw + 3, w =9

Let Pk ¢ %n N &Ky for p = 0, 1, 2; and let K(0) = 0 and K(i) = —4.
Here ¢[-,-] e¥(%, 1) and, since K(7) is a point on the real-axis diameter
of the disk of Fig. 2 when « = } and 8 = 1, it is clear that & does not
belong to ®(%, 1).

For ¢t > 0, let

gi(t) = § — Fcos 2t
gult) = ¢ + j: E(t — ) {¢[§ + 4sinr — Leos 2r + ¢ 7,0]
— ¢[§ 4+ 4sin 7 — L cos 2r,0]}dr
— f_: k(t — ) {$I§ + 4 sin + — } cos 2r,0]]dr.
(Observe that gs.(f) is uniformly bounded on [0,%) and that g: () — 0
ast — «.) Then, using the identity (2 +sint) = (§ + 4sint — 3 cos 2()’

whiceh is valid for all real {, it can be verified that fi({) = § + 4 sin
t — % cos 2t + ¢ ' satisfies

t
0@ + gu® = 10 + [ kC— DA 0dr, L2 0.
0
Note that although fi is ultimately periodie, it contains a ecomponent of
one half the frequency of g, .
At this point it is convenient to comment on the necessity of the hy-

potheses of Corollaries 1(a) and 3(a). Let ¢, fi, k, and ¢ be as defined
in the preceding two paragraphs, and assume that

j:” | k(7) | dr & £:(0,0).

Fort = 0, let
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4
gu(t) = ¢ ' + f k(t — )|yl —4sinr — }cos 2r + ¢ ",0]
[1]
— Y[§ — 4sin 7 — % cos 27,0]}dr
0
— f E@ — 7)¢l§ — 4sin 7 — 1 eos 2r,0]dr.

Then, using the identity mentioned above, it can be verified that
fa(t) = & —4sint — 1 cos 2t + ¢ ' satisfies

a() + gu(t) = f22) +f0 E(t — 7)¢lfa(r) 0ldr, t = 0.

Although [g2.(t) — g(t)] approaches zero at infinity and belongs to both
L1(0,¢) and £2(0,=), it is obvious that [fi(f) — f.(1)] (i.e., 8 sin )
does not approach zero at infinity and does not belong to £2(0, «).

1V. SUFFICIENT CONDITIONS FOR THE £:-BOUNDEDNESS OF THE SOLUTIONS
oF (2)

Let f* denote df"/dt" for n = 1,2, --- , and let f° = f.

Theorem 5: Let ¢[-, -] € To(a,8) with N = 1, g £ £0,»), k & X,
and, with n a nonnegative integer,

7' = o) + adlf (0,0 + [ k(= li@), dr, 120
where f £ 3¢,(0, ), " ¢ & , and a is a real constant. Suppose that, with
K(s) = a + fm KOe™dt for o2 0,
(@) s" — 3(a+ B)K(s) #0 for ¢ =20 (s = 1), and
1—3%(a+8)a=0if n=0
(@) 38 — a) sup [[(fw)" — §(a + B)K (i) "'K(iw)| < 1.
Then
e O=)and | fl| = (1 —p)7pllgll + (1 — po)"pz, where
po =38 — o) sup [[(@)" — 3 (o + B)K (iw)] K (iw))|

pr=sup [[(w)" — 3@+ AK @)™ [Gw)” = 1]
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and

_ lf”
P2 = Er—m

[(f)" —3(a + B)K (iw)]™

(n—1)

: ; (iw)’f" " (0)

2 ]
dw]

Proof: Assume that the hypotheses of the theorem are satisfied, and
let ¥ be an arbitrary positive number. From the fact that

forn > 0;forn =0, po = 0.

¢
10 = g0 + allf(0, 0 + [ k(e — 9lf(r), 7 dr, 120
we have for —» < w < =
f e () dt =f e “g(t) dt—i—af eI, (1), 4 dt
0 0 0
+ [ [ ke g, o] e
in which
Ju(t) = f(t) for te[0,y]
=0 for ¢ > y.
For —w < w < =, let

y 5
¥, = f ¢ (1) dt
0
H .
G, =f ¢ g, (1) dt
0

H, = f” R I RONE
0

X = a,f el 1, (0, 1] di + f et [ k(¢ — =)L, (1), 7] dr
v w <0
(n—1)
U = ; ()" y), n>0

(n—1)

V = g (i)’ f"7(0), n>06

U=V =0n=0.
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Then, using the fact that

y - .
f (1) dt = (iw)"F, + € U — V

0

forn = 0and — o < w < =, we have
(iw)"F, + ¢ “U -V = G, + K(iw)H, — X
forn = 0and —» < w < . It follows that
Fy, + [(0)" — }(a + B)K ()] '[X + ¢ U]
= [(@w)" — 3@ + BK @) K @w)H, — i + BF) (5)
+ [(@w)" — }(a + B)K (iw)]'[G, + V]

forn =2 0and — o < w < ™,

Observe that [(iw)" — 3(a + B8)K (iw)]™ is uniformly bounded for
we (—o,o), and that [(w)" — §(a + B)K (iw)]'U is square integra-
ble on the w-set (— @, ). Thus, since Y[f, (t),f] € £2(0, ),

[(@)" = (o + BK )] 'IX + €]

is the Fourier transform of a square-integrable function f,. Further,
since both

n—1

(n=1)
[" — 3a + B)K(s)]™ and [s" — 3(a + BK()]™ 2 &f" " (y)

j=

are analytic and uniformly bounded for « > 0, it follows™" that f, (t) = 0

almost everywhere on (— = ,y).
Using (5), Parseval’s identity, and Minkowski’s inequality,

(1507 a)

< ( [ 150+ ¢ dt)*
< (o [ 116" = e + DRG] K (o
3
H, ~ 3o+ BRI da)

. L
+ (% f_ )" = (a + BK (i))”[Gy + VI dw)
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= (%r fm | [(iw)" — 3(a + B)K (i) 'K (iw)
]
- [Hy — ta+ B)F) dw)
+(1 f”(' )" = 3o + BK (1)]7'G, |ﬂdw)*
I W zla 1w 3

+ e L

[(iw)™ — 3(a + B)K (iw)]™

(n—1

) . P
: 2 ()77 (0)

2 L
“)

with the understanding that the last integral vanishes if n = 0.
Thus

([ 150 1 a)

< (o [ 110" = 3(a + DGO K i)
§
- [H, — $(a + B)F,] |’ dw) + Slip[ [(w)™

~ Ha + B)K (@)™ | ( [lewr dt)* + p

where

p= (g [ 11G0)" = 4 + RGO

(azp !
. Z (z-m)Jf(nél*;)(O) ]2 dw)

=0
ifn>0and p, =0if n = 0.

Since | 27 (x,t) — 3(a + B)|
t = 0, we have

(F | Hy(iw) — §(a — B)F,(iw) | dw)}

1(8 — a) for all real z # 0 and

IIA

v 3

= (27*']0‘ | Wl (t), ] — 3(a + B)f, (1) |* df)
v )
<36 — a) (%fﬂ 0 P .:u) .
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It follows that

([130) ) 5 G = o sup 11" = Ha + DR
” \ . ; (6)
x ([ 1o@1* @) + (1 = w7

in which
m=%w~ampumr—%@+mewwwm

(recall that py < 1 by assumption). Thus, since ps and

S?er—%@+Mmeﬂ

are finite, and (6) is valid for all y > 0, it follows that f ¢ £,(0,% ), and
that
7= (1= p)7" sup [[@w)" = a+ B)K @) | g

+ (1= ) pe.

Comment: With regard to the hypothesis concerning f* of Theorem 5,
observe that if f £ & , and if f* exists and satisfies the integral equation,
with g, a, k, and ¢[- , -] as defined, then [" ¢ & .

V. SOME RESULTS ON THE PROPERTIES OF EQUATIONS DEFINED ON AN
ABSTRACT SPACE

5.1 Definitions and N olation

Let & denote an abstract linear space that contains a normed linear
space £ with norm || - ||

Let @ denote a set of real numbers, and let P, denote a linear mapping
of X into £ for each y £ Q.
Let g ¢ £ if and only if g ¢ X and || P, g || is uniformly bounded on 2.
The norm of a linear transformation A defined on £ is denoted by
A ||, and I denotes the identity operator on X.
We shall say that a (not necessarily linear) operator T is an element
of the set © if and only if 7 maps X into itself and P,T7 = P,TP, on X
for y e Q.7

t As a concrete example, we note that the development of Ref. 1 is concerned
with the ecomplex-valued-function version of the case in which £ = Lay(0,),
K =8y, = [0,»), and P, is defined by: (P,f)(¢) = f(¢) for te [0,y]and (P,f)(t) =
0 for ¢t > y where f is an arbitrary element of &5 . With that definition of P, , an
operator belongs to ® only if it is “causal.”
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As a matter of convenience, we shall let g, denote P,g for g ¢ X and
y € Q. Thus, for example, if f ¢ X and T ¢ O, then (TY,), denotes P,TP,f
for y € Q.
5.2 Results of the Type Presented in Ref, 1

Our first two observations, which are stated as Theorems 6 and 7,
are instructive.

Theorem 6: Let T ¢ Oy f1, f2 £ X; and
o=+ Th
g2=fo+ Tfs.
Suppose that there exists a positive constant k < 1 such that
1(THh)y — (T | S k|| fu — fou |, we
Then

(z) ||f111 - .f'-!u ” = (1 - l"')_l H Gy — G2y ”a I/ Q
@) (fi — fs) € £ provided that (g, — g2) € L.

Proaf of Theorem 6: For y ¢ Q,
Jiw = Jow = g1 — g2 — P[TH — TF]
= gy — g — PThy, — Tfy].
Thus

H.fly - f'-‘-tr H S ” Ty — G I + ”(Tflu)y - (Tfﬂy)u H
H T — G2y ” + & ”fly - _f‘_’y H

IIA

for y £ Q. Hence
[ fu—Ffaull = Q- 'I")_] [ g1 — g2 ”r ye
If (g1 — g2) € £, then

sup [ fiy — full = (1 - k)™ sup || g1y — ga || < =,

and hence (f; — fu) ¢ £. This proves the theorem. A similar argument
establishes

Theorem 7: Let T ¢ ©; f ¢ &, and
g=75+Tr
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Suppose that there exists a positive constant k < 1 such that
Tl = kIfll,  yef
Then

@ Il a=-" el vee

(71) [ & £ provided that g £ £.

Our next result is quite useful. For example, it leads to Theorem 1.
Theorem 8: Let P, be such that | P,h || = || k| and P,P,h = Pyh for
hefandyeQ Let LN ¢ ©, with L linear and L mapping £ into itself.
Let f ¢ X, and

g = f + LNf{.
Suppose that there exists a scalar X (X real if £ is a real space) such that
(@) (I + AL)™" exists on £, and
P,(I +\L) = P,(I +AL)"'P,
on £ foryeQ

(@) |(I+AL)'L| < o
(#31) there exists a positive constant ky with the property that

NSy = Mull S Tl fy || for yeQ
(@) |(I +AL)'L | s < 1.
Then
Ifll = @=n)" P +AL) g, we®
in which
r=||(T+AL)T'L || k.

Corollary 8(a): Suppose that the hypotheses of Theorem 8 are salisfied
and that g ¢ £. Then f ¢ £.

Proof of Theorem 8: Let y £ Q. From the fact that ¢ = f + LN/, we clearly
have

gs = fu + P,LNY.
Since L and N belong to 9,
gy = fu + P,LP,Nf
= fy + P,LP,NJ, .
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Thus
Jv = Py(I + AL)fy + PyLPy(ny - Afy)-

Since (I + AL)™ exists on £ and P,(I 4+ ML) = P,(I + AL)'P,,
we have |

Py(I + AL)"'Py(I + ML)y = 1y,
and hence
fy = =Pyl + \L)"'P,LP,(Nf, — N,) + P,(I + \L)7g, .

Using the fact that
| Py + ML) "PL || = | P,(I 4+ L)L ||

=P - I +AL)7TL I = [T+ ML) L],
it follows that
[l = 1Py + N)TPL - | NSy = Myl + | Py + ML) gy ||

ST+ X)L k|| Sl 4 || P 4+ AL) g, |-
Therefore
Il Q@=r)"P,T+N) g, wyeo
in which

r= (I 4+ AL k.
This proves the theorem.

Proof of Corollary 8(a): Assume that the hypotheses of the corollary are
satisfied. Then

sup || fy || = (1 — )7 sup | P,(T +AL)7'g, |
veld yefd

a-n sup || P, (I + AL)Tg || < »

1A

and hence f ¢ £.
Arguments similar to those of the proof of Theorem 8 and its corollary

establish the following theorem and corollary.
Theorem 8: Let Py, be such that || P,h|| £ || h| and P,P,h = P,h for
he&andyeQ. Let LN € ©; with L linear and L mapping £ into ilself.
Let fl y fg Pl and

G = fl + LNf,

g2 = f:' —+ LNf 2.
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Suppose that there emst.s a scalar » (X real if £ 1s a real space) such that
() (I + ML) exists on £, and P,(I + L)™' = P,(I + \L)"'P,
on £ fory e
@) [T+ AL)TL| < =
(¢41) there exists a posilive constant by with the property that

H(Nflu)u - (N.ny)y - )\(flu - fﬁu)” = ]'7?\ H.fly - .fEIr ”

fory e Q
(@) [|(I + L)L &y < 1.
Then

I fw—fou | = A=) Py +2AL) g — gu)l,  we®
in which
r= || +AL)'L || .
Corollary 9(a): Suppose that the hypotheses of Theorem 9 are satisfied and
that (g — ¢2) € £. Then (fi — f2) € £.
5.3 Results for the Case in Which £ is an Inner-Product Space

In this section we employ the definitions and notation of Section 5.1.
It is further assumed here that £ is an inner-produet space, with inner
product (- , -3. The norm of f ¢ £is || f| = (.

It is also assumed throughout this section that A and B are elements
of ©.

Lemma 1: Let f e X, h = Bf, and g = f 4+ Ah. Then

| Re ((Bfy)y, fo) 4+ Re ((Ahy)y  hdl < [ g |l - [ P |
Jor y e Q.
Proof: Since A and B belong to 0, we have

= (Bf.,), and g, =[, + (4h,), for yeQ.
Thus, for y € Q,
Re ((Bf,)y,Ju) + Re{(4hy,),, hy) = Re(fy, (Bfy)y + Re((Ahy), , by
= Re(fy + (4hy)y, hy) = Re (gy, hy)

and so, by the Schwarz inequality,

| Re ((Bfy)y, ) + Re ((Ahy)y  ha) | = [ gy |- | A ]
for y & Q.
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Remarks: An application of the Schwarz inequality similar to that of
the proof of Lemma 1 shows that if g = f + Af with f e & and if there
exists a constant § > 0 such that

J ”fu ”2 + ((Afu)u:fyH =36 ”fu “2: yeQ

then || f, | < 67" || g, || for ¥ £ @ and thus then f ¢ £ provided that g ¢ £.
Observe that for £ an inner-product space, this is a stronger result than
that of Theorem 7.

Theorem 10: Letge £,fe X, and g = [ + ABf. Let

Re((Aq))y, ) =0 and Re((Bg,),,q) =0

Jor ge X and y & Q. Then f & £ provided that at least one of the following
conditions is salisfied:

() A maps £ info £, and there exist constants @« > 0 and p > 1 such
that Re ((Aqu)y, @) 2 a | ¢ [|" for g e K and y e @

(#2) there exist constants k > 0, a« > 0,and p > 1 such that || (Bg,), || =
k llgy || and Re {(Bq,)y, @) Z @ || gy |" for g ¢ & and y & Q

(#31) there exist constants by > 0, ks > 0, and p > 1 such that Re
((Ag)y, @) 2 k|| (Agy)y |” and [ (Bg)ull = ke |l gy for ¢ ¢ X and
y e
! (iv) A maps £ into L, and there exist constants k > 0 and p > 1 such
that Re ((Bgy),,q» = k|| (Bq,), ||" for g e X and y ¢ Q

Proof of Theorem 10: Let h = Bf. Suppose that condition () is met
Then, using Lemma 1,

allhy |I” = Re((Ahy)y, hy) = [lg | - [ By ]l, e
from which
Ih s @ gD, yeo
Thus
sup || By || < (@)™ (sup [, DT < o
and hence h ¢ £. Since A is assumed to map £ into itself, Ah ¢ £ and

since £ is a linear space, f = (¢ — 4h) ¢ £.
Suppose that condition (i7) is satisfied. Then, using Lemma 1,

a “fu ”p < Re((Bfy))y,f» £ ” Gy ” . ” h, ” =k H ('] ” : “fn ”
for y £ Q, and so
1£, 0 = W)™ (g D™, yea
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Since sup || g, || < =,f¢ L.
Assunme now that condition (é%1) is met. Then, using the lemma,
ly || (AR, |” = Re((ARy)y, by = [lgull - [l
for y £ Q. Thus
byl gy = fulIP S kellgull - 150, weQ
It follows that sup Ifyll < oo.

Finally, assume that condition (i) is satisfied. Then, using the lemma,

kllh|” < Re((Bfy)y,fo) = llgull - Al
for y € Q. Therefore
Il = DT g D

from which it is clear that h £ £. Since A is assumed to map £ into £,
and £ is a linear space, f ¢ £.

Remarks: The requirement of conditions (z) and (#v) that A map £ into
itself can be replaced with the condition that

sup Re{((Bg)y,q,) = += for ge (X — £)

which (through Lemma 1) implies that f ¢ £ whenever h ¢ £ and
Re ((Agy)y,q 2 0 and Re((Bg)y,q) = 0

for g e & and y ¢ 9.

It is possible to extend Theorem 10 in many other directions. For ex-
ample, an argument essentially the same as that used to establish the
sufficiency of condition (i2z7) of Theorem 10 shows that if g ¢ £, f ¢ X,
and g = f + ABYf, then f £ £ provided that (a) Re ((Bg,),, ¢,) = 0 for
geXand y e 2 and (b) there exist constants k1 > 0, k2 > 0, ks > 0,
and p > 1 such that

Re ((Aq)y, @) 2 k|| (Ag)y|” — ksl (Ag)y || — ks

and || (Bg,)y || < k2|l gy | for g ¢ X and y £ Q.

For some earlier material related to Theorem 10, see Ref. 1, Theorem
3, and the observations of Ref. 7 concerning the relation between passiv-
ity and conditions for certain nonlinear operators to be contraction
mappings.

The following lemma and theorem can be proved with essentially the
same arguments used in the proof of Lemma 1 and Theorem 10.
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Lemma 2: Let fi, f» € %; by = Bfi, ha = Bfa; and

0 = f1 + Ahy
gz = f2 =+ Ahsy
Then

IR& ((Bfly - BfEU)u ;fl:r - .f21r> + Re ((Ahly - Ah2v)y ) hlu - hh‘)l
= llgw—gul - ” hay — hay ||

fory e Q.

Theorem 11: Let fy, fo &€ X; and let
g = HL + ABf
gz = fo + ABf,

with (g1 — g2) £ £. Let

Re{((Aqy — Aqu)y,qw — ) = 0
and
Re ((BQm — Bgy)y, iy — @ 2 0

Jorq, e X and y € Q. Then (fi — f2) € K provided that al least one of
the following conditions is satisfied.

(7) (Aqn — Aq) &€ £ whenever 1, g2 ¢ K and (1 — q) € £; and there
extst constanis a > 0 and p > 1 such that Re {(Aq, — Aqsy)y, Quy — Qo) =
ol — g |I” for qu, g2 e X and y £ .

(i7) there exist constants k > 0, a > 0, and p > 1 such that

| (Bqwy — Bag)y “ <k H Qy — Qo ”

and Re ((Bqu - Bun)uquy - 9'211) = ” Gy — Qo ”? for G, ¢z € X
and y & Q.
(79%) there exist constants ky > 0, k2 > 0, and p > 1 such that Re

((AQw - AQ‘zy)u y iy — g2y> g kl ||(A§ﬁy - quu)b’ ”P and
|(Bgww — Bazu)y || < Ko [ quw — g ||

forge X and y € Q.

() (Aqn — Ags2) € £ whenever ¢, g2 K and (qn — @) € £; and there
exist constants k> 0 and p > 1 such that Re ((Bqy, — Bgey), iy — qa) =
k|| (Bqw — Baw)y ” for qu, g2 ¢ K and y e Q.

Results similar to Theorems 10 and 11 can be established for the
equation

g = Af + Bf.
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In partieular, we can very easily prove
Lemma 3: Let f ¢ X, and ¢ = Af + Bf. Then

| Re <(ny)y o + Re ((Afu)y I [ = gy ” : H Ju ”
for y € Q.
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APPENDIX

Some Results Related to Theorem 2 and Corollary 2 (a)

Let Kiy , Kov, Ev and £ax(0,% ) denote the natural complex exten-
sions of the real sets Ky , Kon , &5 and Lax (0,0 ), respectively.

Using arguments very similar to those of the proofs of Theorem 2,
Corollary 2(a), and the lemma of Ref. 11, it is not difficult to prove the
following theorem and corollary.

Theorem 12: Let Q(-) denote a complex measurable N X N matriv-valued
function of t defined on [0, ), and let the elements of Q(t) be uniformly
bounded on [0, ). Let

g(t) = f(t) + f k(L — 7)Q(r)f(r) dr, 20 (1)

in which f € & , and there exisls a real constant ¢, such that

(@) ge™' & £an(0,0)
() ke’ & Kay N Kov
(#13) with

K(iw — c1) :f (e ™ dt for —e <@ < o,
o

stggo) AlQ () _ws:i;r‘):w AMEK@{w — )} < 1.

Then there exisls a postiive constant ¢; such that
5@ = 1O + e, 2

forj=12,---,N.

Corollary 12(a): Let Q(-) denate a complex measurable N X N matriz-

IV
=]
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valued function of t defined on [0, ). and let the elements af Q(t) be uni-
Sormly bounded on [0,= ). Let

g(t) = () + f k(1 — 1)Q(r)f(r) dr,  t20

in which f € &y, and there exists a positive constant ¢, such that

(1) ge™' e Lan(0,20)
(’M‘,) fi‘-ﬂcll & ley ﬂ ic‘gﬁ -

With
K (iw) =f k(e ™ dt for —w <w< ®,
0

let
sup A{Q(t)}] sup A{K (iw)] < 1.
t=0 —mCu<®

Then there exist positive constants ¢ and ¢; such that
FAOIERFOTE N =

forj=12,-.- N.

With the aid of Corollary 12(a) and arguments very similar to those
used to establish the corollary of Ref. 11, it is a simple matter to prove
the following result concerned with conditions under which all solutions
of a well known type of linear differential equation approach zero ex-
ponentially at infinity.f

Theorem 13: Let A denote a constant positive-definite N X N Hermitian
matriv. Let B(t) denote an N X N positive-definite Hermitian-matriz-
valued function of t for | = 0, and let the elements of B(t) be measurable
and uniformly bounded for { = 0. Let [ be a complex N-vector valued func-
tion of { defined and twice differentiable on [0, ) such that

d*f(t) df(t)

- + B = (), 120

4+ 4 ==

with
ge*' & Laxn (0,0)

for some positive constant ¢, .

t Theorem 13 ean be obtained also from the corollary of Ref. 11 by using it to
show that there exists a positive constant 3 such that, under the conditions of
Theorem 13, f(f) can be written as h(l)e % for { = 0 with h({) > 0as t — «=. That
is, the corollary can be applied to the differential equation in A for 5 sufficiently
small.
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Let M A}, M B(t)}, and A{ B (t)} denote, respectively, the smallest eigen-

value of A4, the smallest eigenvalue of B(Z), and the largest eigenvalue

of

B(t). Suppose that
inf MB ()} > 0
0

t>

and that

MA} > (up MBOD! — (inf MBOD)'

Then there exist positive constants ¢» and ¢; such that

[fi@)] S e™, 120

fory=12,---,N.
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