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In Section I it is demonstrated that the amplitude of the light deflected
or scattered by an advancing sinusoidal acoustic wave, as a function of the
angle between the direction of light propagation and the acoustic wavefrond,
is proportional to the Fourier transform of the amplitude distribution of the
acoustic wave in the plane of the wavefront. Studying the angular depend-
ence of the optical-acoustic inleraction accuralely and directly determines
the angular distribution or far-field diffraction pattern of the acoustic beam
and incidentally determines the angular response of the acouslic transducer
producing the beam. The angular resolution equals the angular spread in
the probing light beam. Experiments illustrating and verifying the tech-
nique are described.

In Section I1 the effect of volume acoustic loss is determined. It is shoun
that loss does mot change the considerations of Section I aparl from a
slight reduction in angular resolution wnless the decay distance is com-
parable to the acoustic wavelength. The loss parameler does introduce a
maximum usable acoustic beam width for the inferaction (coherence width).
In addition, techniques for determining the acoustic loss are described.
Particular attention is given to the near- and far-field energy distribution
of the scallered light beam. It is shown thal the far-field distribution is
Lorentzian only under special circumstances. Consideration is given fo
probing beams with rectangular and Gaussian intensity distributions. Edge
effects are taken into account, and it is shown that these can make important
contributions to the line shape as well as lead to errors in the interpretation
of phonon lifelimes from scattering erperiments. Experiments confirming
the results are described.
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INTRODUCTION

It is well known that acoustic waves in transparent materials can be
used to deflect or scatter light beams.!? As a result, a great deal can be
learned about the energy distribution in the acoustic beam by studying
the angular and positional dependence of the optical-acoustic interac-
tion.

The paper is divided into two parts. Section I is devoted to the theo-
retical and experimental demonstration of the fact that the amplitude
of the light deflected by an advancing sinusoidal acoustic wave, as a
function of the angle between the direction of light propagation and
the acoustic wavefront, is proportional to the Fourier transform of the
amplitude distribution of the acoustic wave in the plane of the wave-
front. Thus the angular dependence of the optical-acoustic interaction
accurately and directly measures the angular distribution of the acoustic
energy. Stated another way, a study of the total power in the scattered
light beam as a function of the angle of the light beam relative to the
acoustic beam yields directly the far-field or Fraunhofer diffraction
pattern of the acoustic beam.

The power in the deflected light beam measures the acoustic intensity
at the position of the light beam. Absolute determination of the acoustic
intensity can be made if the photoelastic constants for the medium
are known. This technique is thereby capable of providing more infor-
mation about the acoustic beam than can be obtained with conven-
tional pulse-echo techniques or acoustic probes, such as described by
Fitch and Dean,® which must be used at a boundary of the acoustic
transmission medium. In particular, volume acoustic loss can be de-
termined directly. The precise direction and phase velocity of the acous-
tic wave can also be determined unequivocally.

In Section 1.1, the theory of the optical-acoustic interaction in the
absence of volume loss is sketched. Experiments verifying the basic
concepts are described in Section 1.2.

In Section II the case of finite volume loss is considered. Particular
attention is given to techniques for determining the volume loss both
by probing the acoustic beam along its propagation path and by ob-
serving the far-field diffraction of the scattered light beam.

I. OPTICAL-ACOUSTIC INTERACTION IN THE ABSENCE OF VOLUME LOSS

1.1 Theory

The geometry of the interaction is defined in Fig. 1. The acoustic
wave is propagating approximately along the z axis, and the light
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Fig. 1 — Geometry of the interaction region. The z axis is out of the plane of the
paper.

beam in the x-y plane. It is assumed there is no z variation. For light
with a given polarization, the photoelastic effect produces a variation
in the dielectric constant which is proportional to the amplitude of the
acoustic wave. The amplitude of the acoustic wave is such that the
dielectric constant of the medium e has a variation Ae given by

Ae(x,yt) = [Ae(y)]. cos (% — Kz) + [Ae(y)], sin (& — Kx) (1)

in which @ is the acoustic angular frequeney and K the acoustic propa-
gation constant (K = Q/v with » the acoustic velocity ). It can be shown
that the optical field £ of angular frequency w is deseribed by the
wave equation’

O’E/ox’ + a°E/oy" — ¢ 0" (1 + Ae/e)E/ol> = 0 (2)
in which ¢’ is the light velocity in the medium. In the absence of a
perturbation in the dielectric constant, ¥ is assumed to be a plane wave
with propagation constant k = w/c’. As in Ref. 1, the perturbed E is
expanded in a set of plane waves appropriate to the grating orders
associated with a periodic index variation,

+a0
E(xy,t) = ;;m Viy) exp if(w + 1)t — (ksin 8, + IK)x &

— ky cos 6] + complex conjugate.

The quantity V;(y) can be identified as the amplitude of the /th deflected
beam of frequency w + I2. The zero-order or main beam makes an
angle 8, with the y axis in the x-y plane. The angle of deflection of the
Ith wave will be discussed shortly. Substituting (3) into (2) yields,
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after performing the required algebra, a set of equations for the ampli-
tudes V; given by
d*V/dy’ — 2ik(cos 60)dV /dy + 2k(cos 6)B:1V
= —3° (1 + 19/0)[([A¢/d. + ilde/e)Vin (4)
+ ([Ae/ele — i[Ae/e) V]

in which

B = [2kK (v/¢’ — sin 8)) — PK*(1 — v*/¢")]/2k cos 6,. ()

In the limit Ae/e << 1, V, is a relatively slowly varying function of
y and d°V,/dy’ is negligible compared to the other terms in (4). Ne-
glecting ©/w << 1 and defining

E(y) = 3 (k/cos 60) ([Ae(y)/ el + i]Ae(y)/els) (6)
(4) can be rewritten (using * to denote complex conjugate)
dVi/dy 4+ 8.V = —3EV i 4 £Vl ()

The initial conditions are V;(0) = 0 for [ > 0, Vo(0) = Vy. The
equation for the deflected wave amplitudes, (7), has been found by
many authors for the case ¢ = constant and real. Solutions have been
found and are described in Ref. 1. More recent unpublished investiga-
tions® have yielded the same results. In what follows the major emphasis
will be given to the case £ = £(y) and to displaying the solution in a
form which has a simple physical interpretation. Consistent with the
experiments to be described, it is assumed that

+a0
[ |«

and it follows that V,;., << V. Thus to a very good approximation,
for { > 0, (7) can be integrated to yield

Vily) = (exp —iBiy) f_ dy'[—3ie(y") ¥V (y ) exp +i8iy".  (8)

A similar equation holds for I < 0 with £"V,_, replaced by £Vi,.
Inspection of (8) indicates that all the V; will be essentially zero unless
L < = (in which L is a measure of the interaction length or width of
the acoustic beam ). An exception may hold when £ is a rapidly varying
periodic function of 3. This exception is of no interest here, since it
corresponds to a situation where the acoustic beam has components
moving at large angles relative to the x axis. When B, is small, the rest
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of the 8L cannot be small unless K’L/k < «. When this inequality
holds, many grating orders can be excited and the interaction is said
to be in the Raman-Nath regime. When K°L/k > = the interaction is
said to be in the Bragg scattering regime and only V; (or V_,) and V,
can be nonzero.

In the region in which the deflected beam is observed, that is, beyond
the optical-acoustic interaction region, £(y) = 0 and one can without
error extend the upper limit of the integration in (8) to 4 . Thus the
amplitude of the deflected beam can be written

+o
Vi (—4iVoexp —iby) | dy't(y" ) * exp +iBy’. (9)

A similar equation holds for V_; . It is assumed that because

o R
f E(y)dy

&1,

Vo is constant. In fact V, differs from its initial value by terms of order

o
lf_ £y )dy

and higher. As an example of the error produced by this approximation,
consider the case where £(y) is constant over a length L and zero else-
where. Equation (9) predicts

Vi~ sin 38.L/B

2

while (7) predicts, in the Bragg scattering limit,’
Vi~ sin 3 (8° + £)L/ (8 + €)™

which differs insignificantly when £, << 1. Note that V; becomes small
when gL > =, as noted earlier.

The quantity 8 can be evaluated as a function of 6, from (5), which
yields

Bir = [£2kK (v/¢" — sin 8,) — K*(1 — v*/¢"*)]/2k cos 6,
= +K (sin ® — sin 6)/cos 6 10)
in which © is an angle defined by
sin @ = v/c’ F H(K/k)(Q — /7). (11)

The upper sign corresponds to [ = 41, while the lower sign is for
I = —1. If v/c’ were zero, ® would exactly equal the Bragg angle for
scattering off the acoustic wavefront. In actuality the scattering plane
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is rotated from the acoustic wavefront by an angle very closely equal
to v/¢’, which for acoustic waves can be neglected. In recognition of
this fact © will be referred to as the Bragg angle.

Substituting (10) into (9) yields

V() =~ (—2iV,y exp +:iKy(sin 6 — sin ©)/cos 6,)

—+-c0
X dy't(y')* exp —iKy' (sin 6, (12)

— sin ©)/cos 6y .

As stated earlier, the amplitude of the deflected wave, resulting from
an interaction at angle 6, is proportional to the Fourier transform of
the acoustic wave amplitude. The relative intensity of the deflected
light beam is given by | V1/V,|*. Since £(y) varies as (cos f0)"" [see
(6)], the substitution y” = 3'/cos 6 puts (12) into a form which
can be recognized as the expression for far-field or Fraunhofer diffraction
for waves with propagation constant K. Thus | V1(6)|* determines the
far-field diffraction pattern of the acoustic beam.

The integral in (12) may also be interpreted by noting that an
acoustic plane wave moving at a small angle ¢ with respect to the x
axis in the a-y plane can be described by a variation

cos [ — Kx cos ¢ + Ky sin ¢| = cos [Ky sin ¢]
. cos [ — K=z cos y]— sin [Ky sin ¢] sin [@f — Kz cos /).
From (1) and (6) it follows that
£(y) = constant X exp —iKy sin y. (13)

Inserting this value of £ into the integral in (12) indicates that the
deflected intensity is nonvanishing only for

tany = (sin 6y — sin ©)/cos 6,

or, sinee y is small, for ¢ =~ 6, — ©. Hence the deflected light intensity,
when the main beam moves at angle 6, , measures only the component
of the acoustic beam moving at angle ¢ =~ 6, — © relative to the «
axis. By studying the variation of the deflected light intensity as a
function of the angle 6, one determines the angular distribution of the
acoustic energy. Since the diffraction angle of the light can, in practice,
be kept small (<107 radians) the angular resolution can be quite
adequate except for the case of very high-frequency (> 10" eps) acous-
tic waves.
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Trom the above discussion it follows that for acoustic beams of finite
width 8, will never differ much from ©® and (12) can be written

Trrl(eu) ~ [—%?,Va exp +iK(9[: - @)y]

+e (14)
x f dy'E(y' ) * exp —iK (6, — ©)y'.
The equation for V_, is the negative complex conjugate of (14) with
the appropriate value of © for [ = —1.

The angle of the deflected beam can be determined directly from (3).
The Ith deflected beam appears at an angle 8; relative to the y-axis in
the x-y plane defined by

(1 4+ Q/w) sin 8; = sin 6, + (K /k. (15)

In what follows /w << 1 will be neglected and only the case [ = +1
will be considered. Thus (15) can be rewritten [using (11)] as

sin ; = sin 6, — 2 sin ©. (16)
Defining the deflected angle as 8, — 8,, (16) can be solved to yield
3; — f = -2 — (Q") —_ Bu)2 tan 91. . (17)

Terms of order (©® — 6,)" and higher have been neglected. The deflec-
tion angle has a magnitude very closely equal to 2 | | and the varia-
tion in 8, — 6 is quite small when 8 is varied through a small angle
about ©. This fact will prove to afford considerable experimental con-
venience.

When discussing the experimental results two distributions of acoustic
intensity will be of interest. The angular dependence of the deflected
intensity will be reviewed here to provide continuity in the discussion
of the experiments.

Case I: A single acoustic beam of rectangular cross-section (see Iig.
2a).

For this case the acoustic beam of width L is assumed to have a
constant amplitude

£()

—3iL 2y = 3L
=0 elsewhere
and

Vi) = (—3t*Vy exp +1K (6 — O)y)
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Fig. 2 — Schematic representation of acoustic beam cross-sections; (a) single
beam, (b) parallel coherent beams.

=y ,
f dy’ exp —iK (8, — O)y
1y

(18)

LTV o rln & sin 3K (6, — (-))L:I
= VE* LV, exp +iK(6, — O)y) [ 1K (6 — O)L

The angular dependence is precisely the same as that for single-slit
Fraunhofer diffraction. Note that the first zeros on either side of the
central maximum are separated by an angle

Ay = 4x/KL (19)
which is a direct measure of the acoustic beamwidth L.

Case f: Two parallel coherent acoustic beams with phase difference ¢
(see Fig. 2b).
From (6) it follows that

E(y) cos (U — Kz — ¢) — £(y) (exp ip) cos (U — Kzx)t

hence
E(y) =& W4+ L)ysy=s —3(W-1L)
—tepip AW -L)Sys 3V +1L)
=0 elsewhere.

Each beam has width L and the center-to-center spacing is W. For this
case

Vi(8o) = (—3it*Vy exp iK(6, — O)y)
{(w—L)
[f_ dy’ exp —iK(8, — © )y
—§ (W)

T This is not an equality but is written to indicate that a change in the phase of
the acoustic wave implies an equivalent change in the argument of £(y).
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F(W+L)

. ’ . ~ 1
+ (exp —1p) dy exp —iK (6, — (_))y] (20)

1(W—L)

mn 1 —
= (-if*LI"oEXp ?:[K(ﬂu -0 )[j - %(pl) I:w

1K(6 — © )L
X cos K6, — O )W + (p]:l .

As would be expeected, the angular dependence is precisely the same
as for double-slit Fraunhofer diffraction (Young’s experiment).

One other point is perhaps worth noting in passing. The relative
intensity of the deflected light beam at the optimum angle is given by

| 3L [P = &[(ae/e) + (Ae/e).Ik"L"/cos’ o

which is directly proportional to the acoustic power. Quantitative de-
termination of the acoustic power in the transmission medium can be
made if the photoelastic and elastic constants of the material are known.
Thus direct measurements of transducer efficiency can be made.

1.2 Kaperiment

The experiments to be described were performed using ultrasonic
waves in the frequency range 50-250 me/s. The transmission medium
was fused quartz (v = 5.96 X 10° em/s) with rectangular eross-section
of 1 X % inch and length one inch. A thin-film cadmium sulphide longi-
tudinal wave transducer was evaporated onto one end of the delay
line.t The faces through which the light entered and left the medium
were optically flat and parallel and were antireflection coated for 6328-A
radiation. In some cases the face opposite the transducer was terminated
with a mereury pool, which reduced the reflected amplitude by about
10 db.

Light from a 6328-A He-Ne laser operating in the lowest-order trans-
verse mode with a power of a few milliwatts was polarized at 45° to
the direetion of acoustic propagation. The acoustically produced strain
makes the quartz uniaxial; for longitudinal acoustic waves the optic
axis is along the direction of propagation. Hence, for the geometry
employed, the privileged axes corresponded closely to the x and z axes
and Ae for E. differed from Ae for E.. As a result the deflected beam
polarization was rotated from the 45° position. This was convenient
experimentally, since the zero-order or main beam could be effectively
eliminated with a crossed analyser without drastically attenuating the

+ The transducers were prepared by N. F. Foster.
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Fig. 3 — Experimental arrangement for observing angular dependence of deflected
light intensity.

deflected beam. A lens focused the deflected beam through a narrow
slit mounted in front of a photomultiplier. Deflection angles were of
the order of one degree.

The experimental arrangement is shown in Fig. 3. When necessary
the acoustic energy was pulse modulated. A mechanical table rotator
was also used since, as noted earlier, the angular position of the deflected
beam was essentially independent of the orientation of the acoustic
wave relative to the incident light beam, and it was unnecessary to
change the photomultiplier or laser position as #, was varied. Thus by
supplying a voltage proportional to the angular rotation of the table
to the X axis of the oscilloscope and the photomultiplier output to the
Y axis, the deflected energy as a function of 6, could be displayed. A
baseline was produced by pulse modulation of the acoustic energy.

A typical display is shown in Fig. 4 and very closely follows the pre-
dicted [sin 1K (6, — O)L/3K (6, — ©)L]® behavior for a single acoustic
beam of rectangular cross-section. It should be noted that the angle
6, is that of the light within the medium and is smaller by the factor
n = 1.46 than the angle measured on the table because of refraction
in the quartz. (Severe errors are introduced when the surfaces are not
optically antireflection coated, because of multiple reflection. The
multiple reflection can be used to greatly enhance the optical-acoustic
interaction and will be discussed in more detail in a forthcoming paper.)
Using (19), the measured acoustic beamwidth corresponded very closely
to the width of the transducer. For very wide transducers (>2 em)
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Fig. 4 — The angular dependence for a rectangular beam cross-section which
closely followed the theoretical (sin x/x)* behavior, The angular separation between
zeros adjacent to the central peak was 0.6° at the frequency of 248 mce; using this
value in (19) one calculates the width of the acoustic beam to be 4.2 mm, which cor-
responds very closely to the width of the transducer. The peak deflected light in-
tensity was in the range 0.1 to 1 per cent of the intensity of the zero-order beam.
The acoustic intensity was of the order of 0.1 watt/em®

deviations from the ideal (sin x/x)* behavior were observed and ascribed
to nonuniform transducers and finite resolution associated with diffrac-
tion of the light. The width of the beam was still deseribed by (19),
however.,

The angle for optimum interaction, 8, = ©, is predicted by (11).
The difference between © for deflection into the I = +1 beam (0,)
and O for deflection into the I = —1 beam (©_) is given by

A, —O_~sin®, —sinB_

, (21)
= —K/k = —(Q/w)(c'/v)

using (11) with »*/¢” <« 1. Direct verification of (21) in the range
/2% = 50-250 me/s was obtained by using a narrow slit in front of the
photomultiplier and determining the angular difference between the
peaks of the (sin x, x)* eurves for [ = +1.
The angle of deflection is given as 8, — 6, = (IK/k). This was veri-
fied also for I = 1. No higher orders were observed, consistent with the
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fact that K’L/k > =, placing the interaction in the Bragg scattering
regime.

It is interesting to note that when the delay line is unterminated an
acoustic standing wave is established. The [ = +1 deflected wave at
frequency « + © associated with one of the traveling acoustic waves,
and the I = —1 wave at frequency « — @ associated with the oppositely
moving acoustic wave are deflected into the same angle [see (16)] and
can mix in the photodetector. A beat at the difference frequency 2 (2/2r)
was detected, and it was found as expected that the light was essentially
100 per cent modulated. The amplitude of the beat as a function of
8, also followed the (sin z/x)* variation.

Fig. 5 illustrates the results of an experiment in which the frequency
of the acoustic wave was swept periodically. When the deflected beam
was allowed to travel several feet and fall on the wall of the room the
reciprocating motion of the beam could easily be observed. The oscillo-
scope display shows the output of the photomultiplier as a function
of the acoustic frequency. The horizontal axis is approximately linear
with acoustic frequency. The narrow slit in front of the photomultiplier
sampled the Gaussian light distribution in the deflected beam as it was
swept across the slit. The “frequency width” of the beam using (16)
agreed well with the “angular width” of the beam associated with
diffraction. Successive photographs (top to bottom) show decreasing
sweep rates and sweep widths. When the sweep rate was sufficiently
slow, the acoustic resonances, separated by approximately 120 ke/s,
built up the acoustic energy to its steady-state value as seen in the
bottom photograph. The unequal spacing of the acoustic resonances
can be attributed to some residual FM in the swept oscillator which
produced a slightly nonuniform frequency base. The vertical gain was
kept constant, and it can be seen that no great advantage was ob-
tained in the resonant condition because the acoustic Q was not very
high. The attenuation of the fused quartz was measured to be 0.6
db/em or about 4.5 db for the round trip.

An interesting property of the transducer was uncovered during the
course of the experiments. The far end of the delay line was untermi-
nated and the driving signal was pulse modulated with pulses short
compared to the length of the delay line but long compared to the width
of the optical beam. The spacing between applied pulses was suffi-
ciently long that there was no overlap between each successive decaying
pulse train. Synchronized, variable-delay pulses were applied to the
7 axis of the oscilloscope with the correct timing so that the optical-
acoustic interaction was observed for only one of the pulses in the
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Fig. 5— Light intensity at a fixed angular position as a function of acoustic
frequency. The photomultiplier samples the intensity of the approximately Gaussian
beam as it is swept across the defining slit.

decaying train. Successive pulses in the train could be studied by in-
creasing the delay.

Fig. 6 illustrates the appearance of the (sin a/x)* display associated
with each of the pulses in the train. Multiple exposures were taken to
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Fig. 6 — Multibounce appearance of optical-acoustic interaction indicating angu-
lar divergence of successively reflected beams. The angular divergence is less than
0.1°.

record the data on one photograph. In addition, each exposure covered
about 20-50 angular sweeps and each angular sweep covered many
thousands of pulses. Thus there is no doubt that the data were entirely
reproducible and that the observed displacement of the optimum angle
for successive pulses in the train was real.

The photograph can be interpreted in the following way. The face
of the delay line opposite the transducer was optically flat and parallel
to the transducer face. Thus, if the acoustic wave were launched in a
direction normal to the face, it would be expected to follow the same
path after reflection from the opposite face at normal incidence (see
Fig. 7). For the first passage of the forward pulse, the peak of the
(sin x/x)? curve indicates the optimum angle for the [ = 1 interaction
and, incidentally, marks the precise direction of the first forward wave.
If the first backward pulse were exactly parallel to the first forward
pulse, the peak of the I = —1 interaction should have appeared at
precisely the same angle, although reduced in amplitude because of the
acoustic loss. This is seen to be the case. However, the second forward
pulse was slightly displaced in angle from the first forward pulse, indi-
cating that it was not parallel to the first forward pulse. Since the
opposite face should reflect specularly, the second backward pulse



ACOUSTIC BEAM PROBING 707
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Fig. 7 — Postulated paths of successively reflected beams. The angular spread is
greatly exaggerated.

should have been displaced by the same angle from the first backward
pulse except in the opposite direction. This is also seen to be the case.
The third forward pulse was displaced again from the second forward
pulse by the same amount and in the same direction as the second was
displaced from the first.

The behavior of these and succeeding pulses (see Fig. 7) can be ex-
plained by assuming that reflection of the transducer face was specular
with respect to a surface which was not parallel to the opposite face.
This could happen if the transducer were wedge-shaped but somehow
launched an acoustic wave normal to the delay line interface. Such be-
havior could introduce spurious results in conventional pulse-echo ex-
periments, since the angular dependence of the transducer response
is given essentially by the same (sin x/2)2

Further corroboration of the angular variation appeared when the
delay line was allowed to resonate. The acoustic intensity in the beam
cross-section showed variations which did not appear in the pulsed
beam.

A more critical test of the Fourier transform relation between the
acoustie intensity and the angular dependence of the deflected beam
was performed using the arrangement shown in Fig. 8. In this case two
identical terminated delay lines were separated by a fused quartz
parallel flat. The 250 me/s signal was divided, isolated, and applied
to each transducer with a variable phase difference. The characteristic
(sin x/x)? behavior for each delay line individually peaked at the same
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Fig. 8 — Experimental arrangement for double acoustic beam interaction.

angle and with the same amplitude, indicating that the acoustic beams
were aligned and had the same intensity.

The photograph in Fig. 9 exhibits the behavior predicted by (20).
The envelope has the behavml [sin K (6, — @)L/3K (6, — 0)L)
superimposed on the cos® 3[K (6o — ®)W + ¢] behavior required by the
spacing W. The lack of a perfect zero can be aseribed to the finite angu-
lar spread of the light beam, which was not negligibly small compared
to the spacing between minima, 2r/KW, and thereby tended to slightly
wash out the perfect cos’ x behavior. The observed number and spacing
of the minima are consistent with the spacing . In Fig. 10 the upper
photograph was taken for ¢ = 0 and the lower photograph for ¢ = #/2.
The peak deflected intensity is four times that for each beam, in agree-
ment with (20).

II. FINITE VOLUME LOSS

2.1 Theory

When the acoustic beam is attenuated, (1), which desecribes the acous-
tic wave propagation, must be modified by including a factor exp —ax,
in which 2« is the reciprocal decay distance for the acoustic energy.
If the intensity of the acoustic wave is sufficiently low that the condi-
tions of Section I

([ tayl<
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Iig. 9 — The angular distribution for two coherent acoustic beams,

are satisfied, then a suitable solution for the deflected light amplitude
can be written

oo

Eeant) = 2 Vi(y) exp —| 1 |ew exp i[(w + 12)¢
!

— (ksin 8y + IK)z (22)
— ky cos 6] + complex conjugate.

Note that (22) differs from (3), the solution for the nondecaying acous-
tic beam, by the factor exp — |/ |ax associated with the /th deflected beam.
Substituting into (2) yields an equation identical to (4) except that
the term in V4, (for { > 0) has the factor exp —2ax. Therefore, strictly
speaking, (22) is not a proper solution. However, when V;,, < Vi,
to a very good approximation, (22) represents the scattered wave
amplitudes and V', is defined by (4). One additional difference arises:
the term B, is no longer given by (5) but rather must be written

8/ = B + ila(sin 6, + IK/k)/cos 6o (23)

in which 8, is given by (5). A term in (a/K)* < 1 has been left out.
. . . . !

The significant point here is that B, can never be zero even when

6 = 0, corresponding to the optimum deflection condition. In this
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Fig. 10 — The
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region, which is the only region of interest, K/k &~ —2 sin 6, and 8,
can be written

B ~ By — ia tan 6, . (24)

With the substitution of 8" for 8, all the results of Section I are valid
for the angular dependence of the optical-acoustic interaction. Thus

—K(f —0)—> —K(6, — ) — ia tan 6. (25)

As an example of the consequences of this substitution, consider the
angular dependence of the scattered intensity | £, (6o, x)|* corresponding
tol = 1. For finite o, (18), derived for a rectangular distribution and an
infinitely wide light beam, becomes

| (8, x) [* = lexp —2ax — aL tan 6]

| sin 3K (80 — ©) + i tan 6)]L [ (26)
K2 (80 — © ) + o tan® 612

Nonessential constants have been suppressed and | E, |° normalized
so that it has the value unity for 8, = 0, @ = 0. This result has a straight-
forward interpretation. Since the scattered beam has an exponential
deeay in the ecross section, the effective beamwidth is of order (2a)”"
cos 6, and the angular spread is 2«/k cos 6 .f The product K (2a/k
cos 6y) gives rise to the term « tan 6 in (26) and limits the angular
resolution in observing the variation of | V1 (6)/".
For scattering at the Bragg angle, 6, = O,
_ lexp —2ax — al tan O] sinh® 4oL tan ©

| Ei(O) [P = Ll tan? © . (27

It is instructive to note that this result ean be obtained from a very
simple ray picture of the scattering interaction. Consider Iig. 11, which
shows a typical scattered ray for interaction at the Bragg angle. Along
this path, defined by * = xy + y tan ©, the contributions from each
scattering point are additive and proportional to the product of the
acoustic and light amplitude. Thus one can write for the normalized
scattered intensity

2

L
[ E\(©),x0) |2 =L f dy exp —alxy + y tan ©) |. (28)
0

Evaluating the integral yields a result identical to that given by (27).
T See (36).
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ACOUSTIC BEAM

Fig. 11 — A typical scattered ray for interaction at the Bragg angle.

Note that the intensity of the scattered light is reduced from its value
at «L, = 0 and can be related directly to the decreasing amplitude of
the acoustic wave along the ray path. This effect will be referred to as
“finite coherence width,” which arises because of the acoustic decay
and defines a maximum useful acoustic beam width L = (a tan ©)7",
Note that the coherence width is important relative to the considera-
tions of Section I only for a« =~ K.

In what follows the relatively simple geometrical picture described
above will be exploited to determine the near-field distribution of the
scattered light from incident light beams with a Gaussian intensity
distribution as well as for uniform beams of finite width. From this it
will be possible to calculate the shape of the far-field diffraction pattern
of the scattered light. Experimental confirmation of these far-field
distribution patterns, which will be described later, constitutes a much
more rigorous test of the theory than direct observation of the near-
field pattern. In addition, it often offers considerable experimental
convenience.

2.2 Diffraction of the Scattered Light

The results of the previous section indicate that when the acoustic
wave amplitude decays as exp —ax then the scattered beam will have
superposed on its normal spatial dependence the factor exp —ax. Thus,
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Fig. 12— Beam with Gaussian amplitude distribution incident at the Bragg
angle,

if the light beam is translated in the x direction by an amount Ax,
the scattered light energy will be changed by an amount exp —2aAx
independent of the width of the light beam. Thus it is not necessary
to use narrow light beams to probe the exponential decay of the acoustic
energy.

In cases where it is inconvenient or undesirable to translate the light
beam relative to the acoustic beam, the decay constant can be deter-
mined by studying the near-field decay of the scattered light beam in a
direction parallel to the acoustic beam. In performing this experiment,
it is convenient to use a Gaussian beam as obtained directly from a
gas laser (TEMg mode). However, the beam must be modified, as
can be seen from the following discussion.

If the incident beam has a Gaussian distribution, so that

xeos ©® 4 ysin @:]2

(29)

Ey(2y) = exp —%[ +

as shown in Fig. 12, in which w is related to the spot size of the beam,
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then it is shown in Appendix A that the scattered beam amplitude can
be written

Ey(®x) = exp — (axy + $(x0/w)* cos’ ©)

Y+X
X {X_l exp Y* [[ exp —y'dy (30)
0

Y
—f exp —yzdy]}
0

X = /2 (L/w) sin ©
Y = 1 4/2 (aw/cos © + 2(xy/w) cos O)

where the variable x, denotes that the scattering originates from a
point * = w0, ¥ = 0 on the incident beam. When X <« 1, the term in
braces can be expressed as

1 — 3[aL tan ® + (xo/w) (L/w) sin 20)]. (31)

The term ol tan © arises from the coherence width of the acoustic
beam. In faet, for w — o, (30) and (27) are identical. The linear
term z, indicates that the distribution is no longer perfectly Gaussian
nor is it symmetrical. Except for this slight deviation, however, the
distribution is a displaced Gaussian with the same spot size as the
incident beam. Thus the scattered beam shape contains essentially no
information concerning the decay constant of the acoustic wave. This
situation can be changed merely by partly blocking the incident Gaus-
sian beam so that, for example, the part of the beam described by x
less than some value xq is removed. Under this circumstance the shift
in the peak of the Gaussian can be discerned and a can be determined.
Alternately, the far-field diffraction of the scattered light beam can be
observed. This is given by

with

1

4o
V.(8) = dxE,(©,x) exp —ik(sin § — sin O)x. (32)

zo

Using E,(©,x) as given in (30), neglecting the small change resulting
from the term in braces, yields

Vi(n) = Vx/2 w " cos © [exp 3a’w’ (1 + in)*/cos’ O]
erfe [(xo/4/2 w) cos © + aw(l + in)/4/2 cos O]

in which erfe denotes the complementary error function and

(33)
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n = (k/a)(sin 8 — sin ©). (34)

For the unblocked beam (2¢ = — =), the scattered intensity has the
form, exclusive of constants,

| Vi(n)* = exp o’w'n’/cos® ® = exp k'w’ (sin § — sin ©)*/cos’ ©

which, as would be expected, is Gaussian in angular distribution., In
particular, the angular spread is independent of «. Contrast this be-
havior with the situation in which approximately half the Gaussian
beam is blocked, so that | xo/w | < 1 and the beam is wide compared
to the acoustic deecay distance aw 3> 1. In this limit

(using erfe z = (\/7 2) "' exp —2°)

lim z»x

[ Vit = 1/(1 + »") (35)

which is Lorentzian with an angular width at half power determined
by (using 34)

A =~ 2a/k cos 0. (36)

It is perhaps instructive to rewrite the parameter 7 in a slightly differ-
ent form. Suppose an experiment is performed, similar to that asso-
ciated with Fig. 5, in which the scattered light beam is observed at a
fixed angle ® but the acoustic frequency is varied. Clearly the angle 8
can be considered to represent the peak of the energy distribution as a
function of the acoustic frequency. Using (15), which defines the scat-
tering angle for a given acoustic frequency and a given k, ¢ can be written

7=2(Q— Q)7 =2(w — w)7 (37)

in which @, is the acoustic frequency corresponding to interaction at
angle © and @ corresponds to angle 6. The parameter + = (2a0)"
corresponds to the phonon lifetime if (2a)™" is interpreted as the pho-
non mean-free path. As would be expected, the full width of the Lorent-
zian at half power is 7 . The difference @ — @ also appears at the
optical frequencies.

The basic conclusion here is that one can study phonon lifetimes
(or mean-free paths or acoustic decay distances) by observation of the
Lorentzian linewidth in a scattering experiment such as described, but one
cannot use a full Gaussian beam such as might be obtained from a gas
laser. Rather, a half-Gaussian beam whose width is large compared to
the decay distance is required. A discussion of this result relative to the
case of Brillioun scattering with thermally generated phonons is beyond
the scope of this paper and is reserved for future consideration.
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Fig. 13— Uniform beam of finite width w incident at the Bragg angle.

Another distribution of interest because of experimental simplicity
is the uniform beam of width w. With reference to Fig. 13, the near-
field distribution of the scattered heam amplitude for interaction at

the Bragg angle may be written as
Ei\®2) = (v/d) exp —ax

= exp —at
= [(w' +d — x)/d] exp —ax w<r=w +d

0=ax<d

<
d<az=w (38)

1A

in which d = 2L tan ® and w’ = w/cos ©. The far-field distribution

can be written as
w'+d
Vilm) = [ deli(8) exp —iama (39)
0

which yields after some manipulation
1 — exp —a(l + in)w’
v = -
o = [ R
When the coherence width is sufficiently large that ad = 2al tan ©
<& 1, the scattered energy distribution has the form

1 —exp —a(l + ’in)d:l
][ (1 + in)d - (40
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1 4+ exp — 2w’ — 2[exp —aw'] cos aw'n
a*(1 + 7*) '

Note that the angular distribution is Lorentzian only in the limit
aw > 1. When aw’ is not large, diffraction associated with the beam
of width w modifies the line shape. (Even when a = 0, if d/w’ is not
very small, the “edge effect” will change the far-field diffraction pat-
tern.)

When ad is large so that the coherence width dominates, the line
shape becomes a Lorentzian squared. In the intermediate region where
ad is small but not negligible, one can write (40) in the form

[ V1(7?) !2 = (41)

1 — ad + (1/12)a?d7 — 77
1+ 7

Thus the line shape is essentially Lorentzian except that the wings have
a value somewhat less than that of a true Lorentzian.

| Valn) [F = : (42)

2.3 Frperiment

The experiments with finite a were performed using water at about
250 me/s. The water cell consisted of two parallel quartz flats which
were antireflection coated on the air side. Reflection at the quartz-
water interface was negligible. One end of the water cell consisted of the
fused quartz delay line described in Section I, which acted as a reso-
nant buffer rod with evaporated-layer C'dS as the longitudinal wave
transducer. The opposite end of the cell was sufficiently far away that
no reflections oceurred. The traveling acoustic wave was square-wave
modulated at 1 ke/s to allow synchronous detection of the scattered
light.

A narrow slit was mounted in front of a photomultiplier and the entire
assembly mounted on a micrometer-driven stage. The intensity dis-
tribution of the scattered light as well as that of the main team could
be mechanically scanned in the near or far field.

Near-field traces were taken with the slit as close to the water cell
as possible; far-field traces were taken with the slit in the focal plane
of a im foecal length lens. The output of the phase-sensitive detector
was applied to the Y axis of an X-Y¥ recorder. The X axis was driven
by the reference voltage from a Hewlett-Packard sweep drive unit
attached to the micrometer stage. Visual confirmation of the recorder
traces was made by observing the scattered light with a telescope focused
on the cell for near field, and to infinity for the far field. The acoustically
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Fig. 14 — Deflected light intensity in arbitrary units vs distance along the acoustic
beam.

scattered light could easily be distinguished from other “dirt” scattered
light, since there was no granularity as is common for stationary scat-
terers.” Acoustic streaming® could also be observed.

As expected, the far-field diffraction of the acoustic beam, observed
as described in Section I, exhibited little “coherence-width” degrada-
tion, i.e., the angular smear introduced by the term « tan 6 in (26)
was only 107 of the zero spacing. In what follows all observations were
made at 6, = ©.

The decay constant « was measured using a Gaussian beam from the
laser and translating it along the acoustic beam. Fig. 14 is a semilog
plot of the deflected intensity in arbitrary units vs distance. The curve
yields the value « = 12.6 em™'. For comparison, it is necessary to ex-
trapolate values of a measured at lower frequency.® The measured
value a/f* = 2.1 X 107 (em™ sec’) (f is the acoustic frequency =
245 me/s) gives results in good agreement with the low-frequency results.
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L

Fig. 15— Far-field diffraction pattern of the beam scattered from a 245 me/sec
acoustic wave in water. The open circles correspond to a true Lorentzian matched
to the peak and half-power points of the experimental curve.

The spot size of the Gaussian light beam was several times wider than
the acoustic decay distance.

Near-field traces of scattered Gaussian, half-Gaussian, and uniform
beams were obtained and gave results in qualitative agreement with
the results of the previous section. No quantitative measurements were
made.

Quantitative measurements were performed on the far-field pattern.
A typical result is illustrated in Fig. 15 and was obtained with a half-
Gaussian beam with a spot size in excess of one centimeter. The open
circles are for a true Lorentzian matched to the experimental curve at
the peak and half-power points. Note that the wings of the experi-
mental curve are slightly less than the true Lorentzian value, as might
be expected from the edge effect. The measured angular width [using
(36)] agrees with the measured value of « within 5 per cent.

2.4 Conelusion

A technique for probing acoustic beams in optically transparent
materials has been described. The technique is based on a Fourier
transform relationship between the intensity distribution in the cross
section of the acoustic beam and the angular dependence of the optical-
acoustic interaction. It allows unequivocal determination of the volume



720 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1965

acoustic loss or phonon lifetime independent of the transducer and
other boundary effects, precise determination of the average direction
of the acoustic beam, and observation of the far-field diffraction pattern
of the acoustic beam. It also determines the angular response of the
transducer. When there is reason to believe that there is no phase shift
in the eross-section, or if there is knowledge concerning the phase shift,
the spatial distribution can be determined from the inverse Fourier
transform of the measured angular distribution. Experiments illustrating
and verifying these relationships have been described. Some of the far-
field results for the scattered light intensity have relevance to optical
beam deflection devices.
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APPENDIX
The amplitude of the incident Gaussian beam is given by
Ey(2,y) = exp —"/w’,

Fig. 12 shows that for a beam incident at angle ® with respect to the
i axis

r=ysin® 4+ vcos®
s0 that

Ey (zy) = exp —*% (y sin © :}-2.1: cos @)%

The scattered wave originating from (xy, 0) travels along the line
¥ = xy + y tan ©. The acoustic wave amplitude is given by exp —au.
The total scattered amplitude associated with the point (2o, 0) on the
incident light beam can be written

L
E(Ou) « f dy exp —alx,+ ytan ©)
' (42)

Ly sin ® + (x + y tan ©) cos O
—1 5

following the discussion in Section II. Multiplying out and completing
the square in the exponential yields
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2

E; (®0) = exp —axo — %:?”‘ cos” O + v (a tan ©

8 sin? @
2 sin 2 OV’ E 2 sin® ©
-+ T) X fu dy exp — — (43)

. 2 2
|:y + (ae tan O + o Sﬁf ®) 0o @:I .

4 sin?
With the substitution
- w i~ T
y'=(y+%[aw +?—'}-"cos(§)] )\/28111@

cos @ w sin © w

(43) becomes

o 2 . 2
Fi(0,0) « exp —axo —3 ilbﬂ? cos’ © + g( aw 2T c0s @)

cos @ w
w (1+1 [0 4 220m0) ey vBMnE (44

X V2 sin © Vi [ e 8

exp —y" dy’ .
This reduces to (30) upon substitution of

X = \/Q(J—Tf)sinG
w
— 1.5 ( 2% o
Y = 4-\/2((.%@4—2(10)‘303 @)).
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