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Distortion in transmission channels causes intersymbol inlerference in
digital communication systems. This distortion may be partially corrected
at the receiver through the use of a tapped delay line having adjustable tap
gain settings (lransversal filler). The problem of minimizing distortion with
a finite-length transversal filler is examined. In the region of small initial
channel distortion where most existing systems operate, the best tap gain
settings satisfy a set of simultaneous linear equalions. For larger initial
distortion, iteralive techniques are required to find best gain seltings. The
distortion is shown lo be a convex function of the tap gains, so mathematical
programming lechniques may be employed for optimization.

The practical problem 1is that of evolving a logical sirategy whereby the
tap gains of the transversal filter may be set to optimum values. An easily
implemented system for automalic equalization is described which makes
use of a steepest-descent technique of minimization. The equalizer is auto-
matically set prior lo dala lransmission in a training period during which
a series of lest pulses is (ransmitted. Only polarity information is re-
quired, so digital logic may be used in the equalizer. For application to
high-speed data transmission, great accuracies are required for the tap
gain settings. Thus the problem of noise in the channel during equalization
is quite timportant. The final error due {o noise and channel distortion and
the equalizer seltlling time are discussed and evaluated. Finally, the effect
of a transversal filter equalizer in lerms of the system frequency-domain
characleristics is considered,
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I. INTRODUCTION

Present data rates on voice telephone channels are limited to about
2400 bits per second. Although the noise margin on these facilities is
sufficient tp parmit much higher rates, the nonuniform transmission
characteristics of the channel cause what might be termed a distortion
barrier, prohibiting faster transmission. The distortion of data pulses by
the channel results in these pulses being smeared out in time so as to
overlap other transmitted pulses. This intersymbol interference is one
of the chief degrading factors in present systems and bhecomes the de-
termining factor in the design of higher-rate systems. To alleviate the
effects of intersymbol interference it is necessary to equalize the channel.

In the past equalization has generally been accomplished by flattening
the amplitude characteristic and linearizing the phase characteristic
using fixed amplitude-frequency and phase-frequency networks. Al-
though this type of equalization is adequate for speech transmission
requirements, it does not provide the precise control over the channel
time response which is necessary for high-speed data transmission. Thus
to realize the full transmission capability of the channel there is a need
for automatic, time-domain equalization.

Among the basic philosophies for automatic equalization of data
gystems are pre-equalization at the transmitter and post-channel
equalization at the receiver. Since the former technique requires a feed-
back channel, we will concentrate our efforts here on equalization at the
receiver. This equalization can be performed either during a training
period prior to data transmission or it can be performed continuously
during data transmission. The typical voice channel changes little
during an average data call, so pre-call equalization should be sufficient
in most cases. Many of the principles and techniques which will be
discussed here can be applied to the continuous or adaptive equalizer,
although our main concern will be in the pre-call automatic equalizer.

Most engineers are agreed that multilevel vestigial sideband trans-
mission offers the best hope for higher-speed transmission on voice
channels. There are good theoretical reasons for this choice of modem
on a channel of limited bandwidth and high signal-to-noise ratio. The
equalization problem we will discuss is based on the use of VSB trans-
mission or what is equivalent, baseband transmission. The equalizer is
to be placed at the receiver directly after the demodulation process.
Thus as far as the equalizer is concerned the transmission is baseband.

Suppose now that the equivalent baseband system transmits ampli-
tude a, at time nT, where a, is chosen from a set of M possible discrete
amplitudes. The single-pulse response of the over-all system, including
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channel and equalizer, we call h(f). The received signal y(f) is then

o

y(t) = 2o adh(t —nT). (1)
At some suitably chosen sampling time f, the output voltage y (f,) may
be abbreviated

o

Yo = 2. Guh, (2)

where
hy = Rty + nT). (3)

This voltage is the sum of the wanted term a, plus an intersymbol
interference term

Yo = ho l:ﬂo+ E anh_“]. (4)

hg n=—00

(The prime will be used very frequently on summations to indicate
deletion of the n = 0 term.)

Now in the second term of (4) the a, coefficients are chosen by the
data system user according to some probabilistic rule. Since in a VSB
system the maximum positive and negative of values of a, are equal
in magnitude, say @mu, the maximum value the intersymbol inter-
ference term can assume is

w /

. a
max interference = ™= >~ | h,|. (5)
h[) n=—w,

We thus define an interference criterion proportional to (5) called dis-
tortion and labelled D

1 o

= . Z (6)
The so-called eye opening for an M-level VSB system is simply and
monotonically related to D.

I=1— (M —=1)D. (7)

The eye opening is a widely accepted criterion of a data system’s per-
formance. In what follows we shall always use the equalizer to mini-
mize the distortion D defined by (6). A particular advantage of this
criterion is that it is not dependent on noise statistics or on the statisti-
cal distribution of the customer’s data sequence {a,}. It is a minimax
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criterion in that we seck to maximize the eustomer’s minimum margin
against noise over all data sequences. A heuristic argument can be
made for a criterion using the sum of the squares of the h,’s. Obviously
neither criterion minimizes average probability of error — a mathe-
matically intractable problem even when assuming Gaussian noise and
independent, equally likely input symbols. Practically speaking the
minimization of either criterion leads to negligibly different results.
Now what we need is a variable filter for an equalizer which can
exercise wide control over the time response samples {h,}. The trans-
versal filter shown in Fig. 1 is ideal for this purpose.'* This filter con-
sists of a continuous delay line tapped at T'-second intervals. Each tap
has an associated attenuator which in combination with an inverter is
capable of giving variable gain. The filter output is the sum of all the
attenuated tap voltages. Such a filter is capable of flexible control of the
output time sequence {h,} when used in tandem with the channel to be
equalized. In fact, under suitable conditions, derived in the final section
of this paper, a transversal filter of infinite length may be used to com-
pletely eliminate distortion in a channel. Generally speaking, a trans-
versal filter of finite length cannot eliminate distortion, so we will
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SIGNAL | | oo oom e = — = = —— — N e m— = = — == . [
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Fig. 1 — Elements of a transversal filter.
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study the minimization of distortion D with a transversal filter of
finite length. We then show an implementation of an automatic equalizer
which achieves minimum distortion under certain conditions generally
satisfied on voice telephone channels.

In succeeding sections the theoretical and practical limitations of the
equalizer as implemented are studied. In order to effectively eliminate
distortion in voice channels great accuracies are required in the setting
of the tap gain eoefficients. Background noise and settling time for the
equalizer become extremely important. Finally we discuss the behavior
of the transversal equalizer, essentially a time-domain device using a
time-domain eriterion, in ‘the frequency domain.

II. THE MINIMIZATION OF DISTORTION

We will assume that the transversal filter has ¥ + 1 taps with as-
sociated tap gains. One of these taps is taken as the reference with its
gain denoted ¢y, while the other N taps are placed somewhere at
integer multiples of T seconds before or after tap ¢ . The positions of
these taps are usually the locations — (N/2)T, (— (N/2) + T, -+,
(N/2)T, but since these particular locations are not necessary to any
of the theorems we use a more general formulation. Let Ky be the set
of integers denoting the positions of the N 4 1 tap locations

Ky = |n | tap loeation exists at time T from reference}.

The tap gains will be denoted ¢;,j € K .

The impulse response at the input to the transversal filter is denoted
r(t) and its samples at times T form the time sequence {v,}. We will
assume for convenience that this response is normalized so that 2y = 1.
Thus the distortion in the pulse .r(t) prior to equalization, called initial
distortion Iy, is

w f
D[] = Z |.l'" ' (8)
The transversal filter serves as a deviee to multiply time sequences.
In this case the input sequence {x,} is multiplied by the tap gain se-
guence {¢,} according to the rules of polynomial multiplication. It can
be seen by inspection that the output sequence {h,} is formed by the
rule

h,. = Z Cilp—j « (9)

IC Ky

The final distortion we seek to minimize is
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w0 I
D=L |h| (10)

G n=—mx
The reference response sample hy causes somewhat of a practical
problem. In a multilevel system the slicing levels are generally fixed so
that the gain must be closely controlled. In other words it is necessary
to provide a normalizing control to adjust h to unity, the assumed
value of ;. This ean be done two ways which lead to slightly different

mathematical problems.

Problem 1:

Fix the tap ¢, at unity. Minimize the criterion D over the N variables
{c};j € Ky, j # 0. The output pulse may be normalized if desired by
an over-all gain control outside the transversal filter.

Problem 2:

Let the tap ¢ be variable. Minimize the criterion D over the N + 1
variables {c;}, 7 © K, subject to the constraint hy = 1.

A study of these two problems reveals that the minimum distortion
in either case is the same. Except in isolated cases (¢ = 0 in Problem 2)
the optimum tap gains in Problems 1 and 2 are related by a constant
factor. There is a practical difference in the range of tap gains required
and a mathematical difference in the type of function involved. (Prob-
lem 1 is nonlinear, while 2 is piecewise linear.) Since the minima are the
same and the optimum gains related, we concentrate on Problem 2
because of its simpler properties.
The constraint on #, may be written

]?0 =1= Z Cil_j . (11)

iCEN

Solving for the gain ¢y we have

Cy = 1 — Z’ Cil_j. (12)
iCKy
We substitute (12) into (9) to obtain
h‘u = Z’ cj(-Tn—j - -l'nr—-j) + Ty o (13)
iCKNn

Now since hy is unity the distortion (10) becomes

o

D= 2| 2 e — aar—;) + . (14)

n=—w JCEKy
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Now that ¢, has been eliminated to satisfy the constraint on A, we de-
sire to minimize D in (14) over the N variables ¢; ;7 € Ky, j # 0.

First observe that D is a continuous, piecewise-linear function of the
variables {¢;}. We can rewrite (14) in the form

o0 @«
D= 3" ¢ 2 (xuj — xox_;) sgn h, + > x.sgn he (15)
ICKy n=—w n=—uw
>
sgn h, = {i_}’ :" : g

In this equation the coefficients of the ¢,’s are constant over certain
regions of the N-dimensional space of definition of {c;}. Breakpoints
where the coefficients assume new values oceur whenever an output
sample h, is zero. A minimum cannot oceur between breakpoints where
the funetion is linear; thus at least one value hy, is zero at the minimum.
The equation i, = 0 may be used to eliminate one of the N variables
¢; . The reduced equation is of the same piecewise linear form, requiring
at least one more output sample i, = 0, ete. We arrive at the con-
clusion that at least N samples of the output time sequence {h,} must
be zero at the minimum. But N equations of the form b, = 0;¢ = 1,

., N are sufficient to determine the values of the tap gains {c,}.
We need only solve N simultaneous linear equations using (13) with
n=rhk;i=1 -, N.

The question remains as to the values of the ks, i.e., which N zeros
in the output response sequence does one force to achieve minimum
distortion? In most cases of interest this question is answered by the
following theorem, which is proved in Appendix A.

Theorem I

If Dy < 1, then the minimum distortion D must occur for those N tap
gains which simultaneously cause h, = 0 for allm € Ky, n # 0.

Another important property of the distortion funetion which is both
useful and descriptive is the following: -
Theorem 11

If the tap ¢y is used to satisfy the constraint ho = 1, then the distortion
D is a convex function of the N variables ¢; ;7 € Kn ;5 # 0.

Proaf

Tor econvenience denote settings of the equalizer by the N-component
veetors & and ¢. To prove convexity of D it is necessary to show that
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for any two settings & and ¢ and forall X, 0 = X = 1,
Da+ (1 —N)gl = AD(a) + (1 — N)D(a). (16)

This equation would show that the distortion always lies on or be-
neath a chord joining values of distortion in N -space.
From (14)

00

Dha+ (1 —=Nal = 2| 2 Ma;+ (1= Mo
n=—w JCKN (17)

N (-rn—j - -rn-r—f) + Xy {

])[A& + (1 - ?\)&I = Z’ |A { Z’ a’j(-rrr—j - .!',,.l'_j) + Iu}
n=—= ICKyN

B _ (18)
+ (1 =) [J_CXK:' 0i(Xnj — Tax_;) + xa}|
Dha + (1 — N)a] £ AD(a) + (1 — \)D(a). (19)

One of the most important properties of convex functions is that they
possess no relative minima other than their absolute minimum. Thus
any minimum of D found by systematic search or other mathematical
programming methods must be the absolute (or global) minimum of
distortion,

In summary, we have shown that D is a continuous, piecewise-linear,
convex function of the N tap gains. This function has a single minimum
which must oceur when N zeros appear in the output time sequence
{ha}. If the initial distortion is less than 100 per cent (D, < 1), then the
minimum oecurs when the N samples of the output time sequence which
correspond in location to the N taps on the transversal filter are simul-
taneously zero. This description is illustrated in two simple cases in
Figs. 2 and 3. In Fig. 2 only one tap is variable (N = 1), while in Fig. 3
equal distortion contours are plotted for an example of a 2-tap equalizer.
In both cases the initial distortion is less than 100 per cent, so the minima
are ea§i1y located.

11I. EQUALIZATION STRATEGIES AND IMPLEMENTATION

3.1 Strategy When D, < 1

The condition Dy < 1, which is sufficient for easy location of the mini-
mum distortion, is equivalent to the condition that the unequalized
channel is capable of supporting binary transmission without error in
the absence of noise. It may be seen from (7) that Dy = 1 implies a
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completely closed binary eye. In almost all cases of interest on voice
telephone channels the modem will support binary transmission without
equalization, and so the condition is met. In these cases equalization
enables multilevel operation to take advantage of a relatively high
signal-to-noise ratio. For the present we will deal with the design of an
equalizer where Dy < 1.

To make matters more concrete we will henceforth assume that the
N adjustable taps of the transversal filter are divided equally before
and after the reference tap. In the several equalizer models which have
been built the normalization has been carried out sometimes by an
outside gain control and sometimes by an adjustable center tap. In
either case the task of the automatic tap gain setting apparatus is to
zero the N output samples h, ; |n| = N/2, n # 0. By Theorem I this
achieves minimum distortion. One can, of course, derive the tap gains
by the simultaneous solution of N linear equations, but from an instru-
mentation point of view there are many simpler schemes. The condition
Dy < 1 ensures a “loosely coupled” system where the interaction be-
tween tap gains is weak. Thus there are a number of iterative strategies
which converge to the desired settings. In all these schemes a sequence
of test pulses is transmitted prior to actual data transmission. After
each test pulse the tap gains of the equalizer are readjusted in such a
way as to eventually result in the proper N zeros in the output time
sequence. The choice between such schemes is dictated by ease of in-
strumentation, settling time required for equalization and accuracy of
the final settings.

It is true that with a special-purpose computer the optimum tap
settings could be computed using only a single test pulse; however, this
overlooks the presence of background and impulse noise on the facility.
Each test pulse is in itself unreliable, so many pulses must be averaged
in some way to give accurate settings. The equalization system must
also be relatively unaffected by any large bursts or impulses which
occur during the setup period.

An equalization strategy has been devised which meets all require-
ments and is easily instrumented. The motivation for this strategy is
based on a steepest-descent technique. Consider the use of an outside
gain control for normalization with the center tap gain fixed at unity.
Solving the N simultaneous equations b, = 0 for |n| < N/2,n # 0
is equivalent to minimizing the “truncated distortion”

N/2

Dy = 2 |hal. (20)

n=—N/2
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The function Dy is a convex function amenable to solution by steepest-
descent techniques. After each test pulse has been received the tap
gains are incremented so that the N-dimensional incrementing vector
is in a direction opposed to the gradient of Dy . This gradient may be
written

N/2
VDy = 2. Dy a; (21)
i—n/2 9C;

where @; is a unit vector in the direction of the ¢; coordinate. The com-
ponents of the gradient are

a])N 1\'/2’ alhn

66,- - n=—N/2 a(,‘; Seh h" (22)
aD =

Y= 3 z.ssgn ha. (23)
ac; n—N/2

Now we approximate (23) by assuming the samples z, , for n # 0,
are small in comparison to x,, which is unity.

dDy

ac; ~ sgn h; (24)

_ N/2

VDN ~ Z’ sgn hj{ij . (25)
j=—N/2

The approximation has resulted in an extremely simple expression, since
all steps are of equal magnitude and the direction of each step is de-
termined by simply taking the polarity of the corresponding output
sample. No analog voltages are involved, so digital logic can be used
in the tap gain setting circuitry. Before describing this circuitry, it is
necessary to demonstrate that this iterative scheme does indeed con-
verge to the desired minimum. After each test pulse, each tap gain
¢, is incremented by an amount —A sgn h;, so that the new output
samples are

N/2
ht' = 20 (e; — Asgnhj)v, ;i + x (26)
=N /2
N/2
hu* = hrl — A ! sgn lh.?".t-'i—.l‘ (27)
J=—N/2
N/2
he* = h, — Asgnh, — A Z' sgn hr,_; (28)
i—N/2

i#n
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R = || ha| —A| 4 ADy. (29)
Since Iy < 1, we have
[ b | <1l ha| = A+ A (30)
If | h, | > A, then
| ha™ | < [ | (31)

and each output sample that we desire to zero is always decreased.
On the other hand, if | , | < A, then

| ha™| < 24A. (32)

Thus the process must converge to within an error of 2A on each out-
put sample. As the step size A goes to zero the truncated distortion
Dy approaches zero, which implies that the over-all distortion D has
been minimized.

3.2 Equalizer Implementation

An equalizer implementing this strategy is shown in Fig. 4. This
equalizer employs a 13-tap delay line with 6 variable taps on either
side of the reference tap. The action of the equalizer is as follows: A
suceession of test pulses is sent through the transmission line and trans-
versal filter. As each test pulse comes out of the transversal filter it is
sliced to retain only polarity information and then sampled at 7-second
intervals. These polarity samples are stored in a 12-stage shift register.
When the shift register is full, a gate is opened, and all taps are simul-
taneously adjusted one step up or down in attenuation according to
the polarities in the shift register. At this time a pulse height or normali-
zation adjustment is also made on the over-all gain by means of the
upper slicer-sampler circuit shown in Fig. 4. The method of obtaining
electronically controlled steps of attenuation for the equalizer taps is
shown in Fig. 5. It can be seen that reversible counters, directed by the
12-stage shift register, control the attenuation of a ladder network by
means of relays.

In the particular equalizer which has been constructed, the quantum
steps on the tap gain controls are about 0.25 per cent (A = 0.0025).
Tor high-quality voice channels utilized by the VSB data system, about
100 test pulses are required for settling of the tap attenuators to opti-
mum values. This settling time depends on the size of the quantum
step, the initial distortion, and the channel noise. The settling time
and residual distortion are the subject of the following section on
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Fig. 4 — Automatie equalizer.

equalizer performance. Note that the equalizer is relatively unaffected
by large impulse noise, since the output voltage is sliced and a large
impulse can cause only one wrong step, which is subsequently corrected.

I'igs. 6 and 7 show the results of equalization in a typical example
using the 12-tap automatic equalizer, The single-pulse response together
with the binary and 8-level eye patterns are shown before and after
equalization. Before equalization only binary transmission was possible
in this example. Since the equalizer has enabled 8-level operation in

place of binary, a threefold inerease in speed capability of the channel
has been obtained.

3.3 The Initial Distortion Limitaiion

Thus far we have only considered equalization strategy when the
initial distortion is less than 100 per eent. When 1%y > 1, there are two
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Fig. 6 — Unequalized pulse and corresponding “eye patterns.”
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Fig. 7— Equalized pulse and corresponding “eye patterns.”

sources of failure for this equalizer. T'irst, the equalizer convergence
algorithm may fail to converge to the tap gains which force zeros in
the output response for { = — (N/2)T, ---, (N/2)T. Second, these
settings may not be the optimum (minimum distortion) gains. In
either case the condition Dy < 1 is sufficient but not necessary to prevent
failure, and it is quite possible that the equalizer will converge and be
optimum over a wider range of inputs.

In computer simulations of the equalizer strategy it has thus far been
impossible to induce failure of the convergence algorithm without
causing failure in optimality. Examples of the converse are, however,
easily constructed. One such example is illustrated in Figs. 8 and 9.
The channel to be equalized in this example has a 50 per cent cosine
roll-off amplitude characteristic and a linear delay characteristic. The
final distortion after equalization with an N-tap equalizer is shown in
Tig. 8 for two different values of peak delay. With a peak delay of 5
pulse intervals the initial distortion Dy = 1.4. In this case it happens
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that the equalizer converges and is optimum. The more taps N which
are used on the equalizer, the lower the final distortion.

When the peak delay in this example is increased to 6 pulse intervals,
we encounter a radically different behavior. The equalizer still eon-
verges to the tap settings which satisfy h, = O for |n| = N/2,n # 0,
but this solution no longer minimizes distortion. The initial distortion
here is about 2.1 and after equalization with a G-tap equalizer the final
distortion is over 3. Clearly this is not optimum, since the zero tap set-
tings gave better performance. As is shown, increasing the number of
taps results in larger residual distortion.

The equalizer’s failure in this latter case is more clearly illustrated in
Fig. 9. The impulse response before equalization looks harmless enough,
but after the equalizer has forced 3 zeros on either side of the response
peak (6-tap equalizer) a large side lobe is created outside the equalizer
time range on the right-hand side of the response. This side lobe con-
tains more distortion than was present in the original response. In this

/|
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Fig. 8 — Tixample of equalizer [ailure—linear delay.
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(a)

(b) /\
-aT -2T -T T 2T ___aT \
1 1 P

Fig. 9 — (a) Impulse response for channel with linear delay, m = 6; (b) after
equalization with 6-tap equalizer.

example minimum distortion settings of the equalizer do not set zeros
at the samples b, for [ n| = (N/2),n # 0. The actual optimum settings
may be obtained by methods we will discuss presently, and for com-
parison purposes the minimum obtainable distortion for this example
is plotted in Fig. 8.

3.4 Strategy When Dy > 1

We described the situation when the initial distortion was less than
100 per cent as “loosely coupled.” In this range many iterative schemes
can be devised which converge to the optimum. Conversely, when
Dy > 1 the tap gains become more strongly interdependent. Also, the
optimum may shift so that it is impossible to simply instruect the auto-
matic equalizer to forece N zeros in the impulse response at the loca-
tions of the N variable taps of the equalizer. Thus the equalization
strategy for the general case becomes more subtle and complicated
than the simple strategy previously explained.

Tortunately, Theorem IIT describes D (using center-tap normaliza-
tion) as a convex funetion of the tap gains. Therefore the distortion has
a single minimum, and mathematical programming methods may be
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used to locate the optimum tap gains. A steepest-descent method may
be applied to D [see (14)]. The gradient of D is

. N/2
vD = 2 ‘31—)@,- (33)
i=—n/2 0C;j
gg = 2. (2y_; — 2,0_;) SEN b . (34)
J n=—=ux

If each tap gain ¢, is incremented proportional to its gradient component
(34), the system will eventually approach the optimum tap gains. The
dotted lines showing minimum distortion in Fig. 8 were calculated using
this strategy on a digital computer.” Such a strategy can be implemented
with a modification of the ecircuitry previously described. In this im-
plementation the term involving w,r_; in (34) is neglected as small in
comparison to x,_; . The remainder of (34) may be derived physically
by a two-pulse cycle. The first test pulse is sliced to obtain the sequence
{sgn h,} which is stored in the shift register. This sequence is then
used to control the polarity of the gains at each tap. A second test
pulse is transmitted and the transversal filter serves to multiply the
input sequence |z,} by the tap gain sequence {sgn A,}. The output volt-
age is approximately the sequence {dD/dc;} from (34) and may be
used to digitally increment the tap attenuators.

In any such scheme it is now necessary to have a transversal filter
about twice as long as the number of variable taps to be used. This is
hecause the sum in (34) is infinite, but practically speaking an N-tap
transversal filter will affect the impulse response for not more than
9NT seconds. Thus the test pulses must go through a 2N-tap delay
line, all of whose taps are equipped to handle the &1 gains which store
the sequence {sgn h.}. However, only the inner N taps need have
associated variable attenuators. This complication comes about because
the distortion depends on what happens outside the N7 range (witness
Fig. 91) as well as what happens inside.This information must be meas-
ured by “listening posts” established by taps on the delay line outside
the normal range and then taken into consideration in incrementing the
variable tap gains.

1V. THEORETICAL PERFORMANCE OF THE EQUALIZER

4.1 Design and Performance Paramelers
Our attention will now be confined to the equalizer described in
Section 3.2 and illustrated in Ilig. 4. In this fairly simple system there

* The distortion minimization can also be formulated as a linear programming
problem, so that using a digital computer the exact optimum can be reached in a
finite number of steps.
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are only two parameters which the designer has under his control to
affect the performance and cost of the system. These are:

N — the number of variable taps on the transversal filter.

A —the step spacing on each electronically controlled attenuator,
(More generally this is A;, since different tap positions may take
different-sized steps.)

The economics of the choice of these two parameters may be readily
appreciated. The cost of the equalizer is nearly directly proportional to
N, since not only does a larger N entail a proportionally longer delay
line, but also proportionally more logie circuitry. A major portion of
this logic circuitry is taken by the reversible counters for setting the
attenuator tap coefficients. To decrease the step spacing A, each of the
counters must be augmented by additional stages.

In judging the performance of the equalizer we shall be interested in
the following two parameters;

D, — the final distortion or residual distortion after equalization.
T, — the settling time or the time required to set the equalizer during
the training period.

Obviously, the smaller the residual distortion D, the better the data
system will performi, but on the other hand it is too expensive to at-
tempt to reduce this residual distortion much below the required toler-
ance for a given system. The settling time 7', on an experimental im-
plementation of the automatic equalizer has been on the order of a
second. When compared with the time required for establishing the
call and acquiring timing synchronization this seems negligible. How-
ever, we shall find that when greater accuracy is required the time 7,
can become quite appreciable.

The performance parameters D, and 7', depend on the design parame-
ters N and A and upon the channel to be equalized. Since it has been
common to deseribe the channel by frequency-domain characteristics
we shall do so here. The channel characteristies of interest are:

A (w) — the amplitude characteristic of the system, including trans-
mitter shaping filter and the attenuation characteristic of the channel.

8 (w) — the delay characteristic of the channel.

S/N — the signal-to-noise ratio of the channel. The noise is assumed
to be Gaussian and white since the effects of impulse noise are not
particularly important in the automatic equalization system,

Fig. 10 shows how the parameters N and A affect the performance of a
noiseless system example. In these curves the distortion is plotted as a
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function of time. It can be seen that increasing the number of taps N
results in a lower residual distortion without affecting the settling time
of the system. After the required settling time has elapsed, the system
reaches a limit eycle where all taps oscillate one step up and down
about the optimum values. Decreasing the step spacing A decreases
the oscillation of distortion and increases the settling time required.
When noise is introdueed into the model, the curve of distortion versus
time becomes a random walk with final values of distortion becoming
random variables.

The residual distortion is composed basically of two components.
One component is the theoretical minimum distortion for the given chan-
nel and length N of transversal filter available. This corresponds to the
case where /N — = and A — 0. No settings of the filter can reduce
the residual distortion any further. This distortion component will be
designated D.. It is a function only of the channel characteristics
A (w) and B’ (w) and of the number of taps N.

The second component of residual distortion arises from our inability
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to reach optimum tap settings because of the oscillation of the final
tap settings due to noise and finite step spacing A. This component is
approximately independent from tap to tap. On a per-tap basis it is a
funetion only of step spacing A; and signal-to-noise ratio. This com-
ponent will be designated D, , where D, is the contribution from a single
tap. Thus for an N-tap equalizer the distortion may be resolved as
follows.

N/2

D, = D.N,A8)+ 2" D,(A;, S/N). (35)

j=—N/2

b} 1

The subseripts “¢” and ‘s
distortion respectively.

In the next section we will discuss generally D)., the channel distor-
tion, and show curves relating D. and N for various shapes of amplitude
and delay distortion. The subsequent section then deals with the system
distortion D, . Curves are shown relating D, and A for various signal-
to-noise ratios. The question of settling time is also discussed in this
latter section.

stand for channel distortion and system

4.2 Restdual Channel Distortion

When D, < 1, the minimum distortion is obtained by setting h, = 0
for |n| = N/2, n # 0. The remaining distortion we describe as D, ,
the residual channel distortion,

D, =1

h[) ln|>Nj2

| A |- (36)

This expression for the residual channel distortion is easily calculated
on a digital computer from N, A («), and B (w) by first computing the
response samples {x,] from the Fourier transform of the channel’s
frequency characteristic and then solving the N simultaneous equations
h, = 0for |n| £ N/2, n # 0. A number of curves obtained by this
procedure are presented in Figs. 11 through 13. In all of these figures
the transmitter shaping characteristic was raised cosine with a 50 per
cent roll-off. (Full raised cosine shaping gives very similar results.)
The reference time was taken at the peak of the response x(¢). This is
not necessarily optimum, but usually is fairly close to optimum.

Fig. 11 shows the residual channel distortion for parabolic delay over
a wide range of equalizer size N. Fig. 12 is a similar presentation of the
residual distortion resulting from linear delay. In Fig. 13 the channel
has no delay distortion, but has an attenuation characteristic which
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falls off with various slopes. These curves are intended to answer the
question of how well a given transversal filter can equalize a given
type of distortion. These curves represent theoretical minima. To see
how well an actual equalizer can approach these values, the system
distortion D, for the given A and S/N must be added. From (36) the
residual distortion consists of all the response samples h, removed from
the center of the response by more than #7/2 seconds. This is approxi-
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mately composed of two components: what distortion was already out
there in the original channel response x(t), and what distortion has been
squeezed out into this range by the equalization process. We know from
echo theory that the former component results from delay and amplitude
ripples of greater than N/2 cycles in the bandwidth and increases ap-
proximately linearly with the amplitude of the ripple content. The latter
component of the residual channel distortion which is squeezed outside
the transversal filter range is more difficult to conceptually visualize,

05
o.70— /
0.65|— B'lw) //

08— 4 2oew f /

Z3

w
LINEAR DELAY

0.551— 509 RAISED COSINE
ROLLOFF
0.50 / /
0.45 // /
040 -
035
—
4-LEVEL EYE
030 CLOSES HERE
0.25 / / |
/ /
/ NO EQUALIZATION )
0.20 /
_ 8-LEVEL EYE
; / N=2,

CLOSES HERE —
-—

RESIDUAL CHANNEL' DISTORTION , De

0.15 / /
0.10 / / ______’-’
e 4 | — 16— LEVEL EYE
—] CLOSES HERE
// —
005 /’
// _ 5 38
ol — 10
0 05 10 15 20 25 30 3.5 40 4.5 50 55 60

m, MAXIMUM DELAY IN PULSE INTERVALS
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We can show that this component of D. increases approximately with

the square of the delay or amplitude variation in the channel.
Removing the large terms involving ¢ and xo , which are unity, from

under the summation in (9) we arrive at

N/2

he = a0 + 0 + Z Cilnj .

G=—N/2
J#=0,n

(37)
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In order to make h, = 0 for —N/2 = n < N/2, n # 0, it can be seen
that a first approximation for the tap setting c; is

;R —u. (38)

After equalization we will have h, = 0 inside the range of the filter.
Outside the range we will have approximately, using (37) and (38)

N/2
he X, — D Xl . (39)
n|l>N/2 J=—N/2
J#=0,n

The first term in (39) is the initial distortion term and the second is
distortion outside the range of the filter generated by the equalization
process. Since the samples v, vary approximately linearly with ampli-
tude and delay ripple amplitude, it can be seen that the two components
of h, vary linearly and quadratically with ripple amplitude respectively.

The curves in Figs. 11 through 13 show that the linear term domi-
nates in the case of parabolic or linear delay in the channel. This indi-
cates that very little additional distortion in the range [¢{| > NT/2 is
being pushed out by the equalization process. In Fig. 11 directly be-
neath the N = 2 curve is plotted the initial distortion outside the range
of this particular equalizer. This dotted curve marked ‘“‘approximate”
indicates the quantity

D,(approx.) = 2. |x.|. (40)
Inl>1
In the upper range of the N = 2 curve the second eomponent involving

“squeezed-out’ distortion becomes important.

As long as the linear term dominates we can think of the transversal
filter as completely equalizing any delay or amplitude variation of less
than N /2 eycles in frequeney content. For example, a Fourier expansion
of the parabolic delay reveals the major content at low frequencies;
thus few taps are required to equalize parabolic delay. The higher-
frequeney content of the parabola is unequalizable by a short trans-
versal filter.

Frequently the delay and amplitude characteristic of a channel con-
sist of approximately sinusoidal ripples. This is generally the case
when an equalization network has been incorporated in the channel.
A good rule of thumb is that it takes twice as many taps on the equalizer
as there are ripples in the bandwidth. Thus the better a channel has
been previously equalized the longer a transversal filter will be required
to further improve equalization. I'requency- and time-domain equaliza-
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tion are very similar in the respect that they both leave ripples of delay
and amplitude of higher frequency after equalization.

4.3 Residual System Distortion

The term D), , residual system distortion, results from the inability
of the equalizer to reach the actual optimum tap settings. In the case
of very high signal-to-noise ratio the value of D), is obvious. The tap
¢; will end in a limit eyele of one step A; about the optimum tap setting.
In one position

¢; = c;j(optimum) + e (41)
while in the other position
¢; = c;(optimum) + ¢ — Aj. (42)

Assuming that A; > | €| and neglecting the last term in (37), we ob-
tain the average system distortion for this case.

D, (4, (S/N) = =) = 34;. (43)

Thus the system distortion is one-half step for high S/N. However, a
system will very seldom operate in a true high-S/N environment be-
cause the tap steps themselves are usually well within the noise. For
example, with a A of 0.01 the step-to-noise ratio is 40 db below the
signal-to-noise ratio. With noise the taps end in a random walk instead
of the limit cycle of the noiseless case, and the average system distor-
tion will be considerably higher than that given by (43).

Let’s examine the behavior of an individual sample /#; when noise is
present in the channel. The receiver then bases its decision on whether
to advance or retard tap ¢, by the amount A on the sign of the quantity
(h; + n;), where n; is Gaussian with mean zero and variance o, and isin-
dependent over index j and from test pulse to test pulse. Assuming that
the sample h; is affected only by tap setting ¢, [equivalent to drop-
ping the last term in (37)] we write

hj%.l'j"-('_,'. (44)

Since ¢, takes on only values which are integral multiples of A, we can
without any particular loss of generality quantize h; in steps of A. The
behavior of each of the samples h; is similar, so in order to keep con-
fusion to a minimum we shall drop the /"’ index and define

Prob [h = kA, after m test pulses] = p{k,m). (45)

Now we can write a difference equation for this probability as follows
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plkym 4+ 1) =plk—1m)P(k—1) +pk+ 1,m)Q(k+ 1) (46)

where P (k) and @ (k) are the probabilities of noise being less than or
greater than — kA respectively.
—k A 1

Pk) = | Vors P —(2%/26%) dz = 31 — Exf (kA/A/20)] (47)

Qk) =1—P(k). (48)
Initially the value h; starts at position x; = [A so that we can use the
initial condition

i k=1
p(k0) = {0 it koL (49)

The difference equation (4G) then defines a probability distribution
which spreads out as time (m) progresses and eventually ends in a
stable symmetrical distribution centered at zero. [Actually there are
two final distributions reached: one for m even and one for m odd. Since
the system could be turned off in either state with equal likelihood,
these distributions must be averaged. This effect is equivalent to the
averaging of (41) and (42) in the noiseless case.]

A number of these final distributions were computed using (46),
(47) and (48) on a digital computer. The contribution to the residual
distortion owing to oscillation of tap ¢; is the random variable | h;|.
The system distortion D, (A;, S/N) is defined as the expected value of
A |

D, = E[|h;|] = 4; 2 [ k| pk,=). (50)

A number of curves relating D, , A and signal-to-noise ratio are shown
in Fig. 14. Observe that these curves are nearly piecewise linear with a
break point approximately where A = . Above this point the high
signal-to-noise condition prevails and D, = }A. Below this point the
steps A are within the noise and the slope of the curve changes. By
making a low signal-to-noise approximation we can derive equations
for these curves.

TFor A/e small we use the first term of the series

92X X, x X
and obtain
kA

]J(’\:) = % - ‘\/2:0_. (52)



574 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1965

& 10! <
o~ 8 //
e /
[+ 4 d /
H-J 4
g %
& 2 //
;’ s/N=2008 1| /
w 1072 // —
2 ° // /’/ ///
w >
o o FS0DB d
2 4 /'/o/ =
4 1
& Z0DB
3 2 /// /
A = )
] / //
2 4 88,5 2 4 e85 = 4 68 a 81 2

TAP SPACING BETWEEN STEPS, A

Fig. 14—D, vs A for various S/N ratios.

Using this transition probability in the difference equation (46) we
obtain an equation similar to the classical problem of the random walk
of an elastically bound particle:

1 (k — DA
pton+ 1) = ot = 1w [ = S5
(53)

(k + 1)A:|

"I'P(A:*f’lm)[ ‘\/Z‘.vra

An exact solution to this difference equation assuming the initial condi-
tion (49) is given by M. Kac in Ref. 3. Since this solution is more
complicated than the asymptotic distribution obtained as A — 0 and
is no more useful for our purposes, we will not repeat Kac’s formula here.

It is simple to derive expressions for the mean and variance of A;
after m test pulses have been transmitted. Using (53) we obtain for
the mean value

Efh(m)] = A X, kp (k,m) (54)

v — 1 A
Elh(m)] = A Iig + Vor cr:{ ZL:
Klp(k = 1m — 1) + p(k + 1,m — 1)1 (55)

Clp(k + 1w — 1) — plk — 1m — 1)].

+\/2
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The various summations in (55) can be rearranged with changes in
variable to give

Elh(m)] = Elh(m — 1)] (1 - \/22‘—2 g). (56)

Since the initial value of h; is x; = [A;, the average value of h; after
m test pulses is

24, \"
Elhj(m)] = 1a; (1 — \/_Tjg) . (57)
T

One can derive a similar expression for the variance of h; after m
test pulses

Bl (m)] = (1a))? (1 - \;‘% )

w Vo o (- Y o
4 i7 A 2rco '
As m — = the final distribution is obtained and
lim Elh;(m)] = 0 (59)
lim Elhj(m)] = @f Ajo. (60)

Equation (60) is particularly interesting, since the variance of h; is
proportional to the square root of the noise variance o,

Now suppose the tap-to-noise ratio A/e tends to zero and test pulses
are sent at a rate 1/r which tends to infinity. Using the difference
equation (53) we can derive a differential equation for the probability
density of the sample h; after { seconds have elapsed:

ap(ht) _ _ 25 [ ap(h.,t)] A* a*p(hyt)
o~ 2mer | P TR 2 ok

A solution to this equation, attributed to Lord Rayleigh, is given in
Ref. 3. Assuming 4, starts at v, , the probability density after ¢ seconds is

1
plhi,t) = Norall —¢ ) P [= (b = e )/2°(1 — )], (62)

(61)

where o’ is the same as E[h,’ (= )] in (60)

o\ 2%

“ T

Ajo (63)
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and
20
T Voror

As t — o« the density (62) tends to Gaussian of mean zero and
variance o’, We can thus easily derive the low signal-to-noise ratio value
of D, .

(64)

D, = El[|hi]] =2 fw \/%a exp — (hi"/2a") dh; (65)
D, = V2/ra = (c8i/\/2x) (66)
D, ~ 0.633 \/5A; . (67)

The straight-line portions of the curves D, versus A in Fig. 14 match
nearly exactly with (67).
In summary, we have found

A;/2 if A;>a@

~ - ) (68)
0.6334/0a; if A; < a.

The important fact about (68) is that the residual system error goes
down as the square root of both tap spacing A and the standard devia-
tion of the noise o. Thus once the step spacing and noise are comparable,
cutting the steps A by a factor of ten cuts the residual system error due
to tap uncertainty by about 3.16. An interesting sidelight is that cutting
A by ten might seem equivalent to averaging ten samples of A; before
taking one step of A. In the latter case the noise ¢ would be cut by
4/10 = 3.16 and the residual system distortion D, cut by only 4/3.16 =
1.77. However, as might be guessed this latter technique will require
less settling time than the former technique using 0.1A and moving
ten times as fast.

This leads us into an abbreviated discussion of settling time. The
time required to settle is usually determined by the largest distorting
sample z; for j # 0. If the step-to-noise ratio A/s is large, then the
settling time is obviously

T, = mjmax/ﬂj . (69)

When the noise becomes important, then we need to make some sort of
arbitrary definition of settling time. This definition could be based on
the time required for the mean of &; or the variance of %; to reach some
predetermined position or percentage, or it could be based on the time
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constant 1/y in the density given by (62). All these types of definition
lead to similar expressions differing chiefly by constants, so we’ll use
the simplest and define

T, = 1‘,«/'}4 = ‘\/‘_),_‘n' UT/IZA,‘. (70)

Recall that 7 is the interval between test pulses. This expression is
independent of @ jmax for low tap-to-noise ratios. Using a binomial ex-
pansion of the term to the mth power in (57), (70) can be derived as
the point where the first two terms of the expansion for E[k;(m)] eancel.

Going back to our previous example, where we compared decreasing
the step spacing A with averaging several samples of h;, we can now
show that cutting the tap spacing A by a factor of N is exactly equiva-
lent in settling time and system error to averaging N* consecutive sam-
ples of h;. This is evident from the proportionalities involved in (69)
and (70). In either case the same amount of time is required to achieve
a given level of accuracy in equalization.

V. FREQUENCY-DOMAIN CONSIDERATIONS

5.1 I'requency-Domain Relationship

The equalizer that has been desecribed is intended for the correction
of distortion in digital data transmission. This equalizer is strictly a
time-domain device which corrects the pulse response of the channel
to the best ability of a finite-length tapped delay line. The question
which most frequently arises concerning its operation asks what happens
to the frequeney characteristics of the channel as a result of the time-
domain equalization. This question is asked not only out of curiosity
and because engineers tend to think in terms of the frequency domain,
but also because the time-domain equalizer is sometimes considered
for the equalization of analog channels,

In this section we will develop a general formula for the frequency-
domain characteristics of an equalized channel in terms of the un-
equalized characteristics. This formula allows us to compute final
characteristics and to make a few general observations about the re-
lationship between initial and final characteristics. In addition to
these results we are able to derive conditions as to when a channel
may be equalized successfully, and we find one additional technique
of computing optimum tap settings for long equalizers.

Henceforth we will assume an infinite-length transversal filter. If
the equalizer is long enough to do its job properly, the final characteristics
will closely approximate the infinite length characteristics we will
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derive here. An outline of this derivation is as follows. If the equalized
pulse response is to have zero distortion, it must have Nyquist frequency
characteristics implying symmetry in real and imaginary components.
Knowing the channel characteristics and the type of characteristic
capable of being assumed by the equalizer, we show there is only one
such Nyquist characteristic the produet can assume. This characteristic
must be the final frequency response of the equalized channel.

The impulse response of the channel in terms of the amplitude,
A (w), and phase, 8(w), is

h(t) = 1 f Alw) cos [wt — Blw)ldw. (71)
m Yo
We assume that the time base has been adjusted by the removal of a
flat delay (linear phase) component from 8(w) so that the peak of the
output response oceurs at time zero. For zero distortion we require

ha =0 = ! f Alw) cos [neT — Blw)]dw alln,n # 0. (72)
m™ Yo

Changing (72) to use real and imaginary components we arrive at the
equivalent condition

f A (w) cos nuTdew = 0 all n, n = 0 (73)
1]
f Ay(w) sin nwTdw = 0 all n (74)
0
where
A;(w) = A (w) cos B(w) (75)
Ay(w) = A () sin B(w). (76)

Let us assume that A (w) = 0 for @ > 2r/T, i.e., the channel has no
frequency component higher than twice the Nyquist band for its signal-
ing rate. It would be an unusual case if this were not true. We row make
a change in variables to shift the origin to the Nyquist frequency =/T
and redefine the characteristics about this frequency.

A(w) = A, (w + ;n) (77)

A, (w) = A, (w + WT) (78)
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(In general, a circumflex on any variable indicates that it is defined
about the frequency =/7T as origin.) With this change the conditions
(73) and (74) become

/T
f A.(w) cos nwTdw = 0 alln,n # 0 (79)
-x/T
/T R
f A (w) sin neTdew = 0 all n. (80)
-/ T
We also have the normalizing condition for the center sample,
1 x/T N
ho=1= = A w)dw. (81)
T Y—x/T

Equation (79) says that A, (w) must be orthogonal to all cos nwT
between —=/7T and =/T. This implies that its IFourier expansion con-
sists of a constant to satisfy (81) plus any arbitrary sine components.
In other words it must be a constant plus any arbitrary odd function.
Similarly, A, (w) must be any arbitrary even function to satisfy condi-
tion (80). Simply stated, the conditions are then

A.(w) = (T/2) + odd function (82)
A,(w) = even function. (83)

These conditions were first derived by Nyquist,' although engineers
are generally more familiar with the case of flat delay where (82) and
(83) reduce to the statement that A («) has Nyquist symmetry,

Now that we see the conditions that the product of the equalizer
and channel responses must meet for perfect equalization, let’s look
at the type of response the equalizer alone can have. The Fourier trans-
form of the equalizer’s time response is

o0

(!(w) — E (‘,,(’7]-an (84)
where the ¢,’s are the tap gain settings. As before we shift the origin
of definition for ('(w) to /7. The change in variables and definition
gives

Clw) = C.(w) + jC,(w) (85)

II

with

CY: ((.d)

Il

e+ 2 (=1)"(en + c_a) cos neT (86)

n=1
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C,(w) = i (=1)"(en — €—n) sin nwT. (87)

Observe that ¢, () is an even function and C, (w) is an odd funetion.
Now let us suppose that the unequalized channel frequency response
in terms of real and imaginary components defined about w = =/T is

Aw) = A.(w) + jdy (). (88)

The product of the unequalized frequency response A(w) from (88)
and the equalizer response C(w) from (85) must satisfy the odd and
even requirements on its real and imaginary components as given in
(82) and (83). After separating the product A (w)C(w) into real,
imaginary, odd, and even components, it is possible to arrive at simul-
taneous equations for €. (w) and C,(w). The details of this process are
quite straightforward and have been relegated to Appendix B.

The final equalizer response is found in terms of the even (labelled
with an “e” subseript) and odd (labelled with an ‘o’ subseript) com-
ponents of the unequalized channel response. The equations derived
are

T .

. ‘.)T flze(m) (89)

Colw) = =— =
L‘lzu (w) +Ayu (f.d)
T 4
C' (w) _ - § Ayu(m) (90)
! ﬁxf(m) + ﬁyou(w) ’
where

Are(w) = HA:(w) + 4. (—w)] (91)
Aso(@) = 3A:(0) — A:(—w)). (92)

These equations determine the real and imaginary components of the
equalizer frequency response.

Using this response for the equalizer, the equalized channel response
becomes

A‘ze(w)fizo(m) + jw(“)liye(“’)]
Al () + 4,07 (w)
+ J I:Azc(w)Aye(w) - Ayn(w)Aro(w)]

%C(w)ﬁ(w) = [1 +
(93)

=

A:cz(wJ + A-yuz(w)

which is the result we have been seeking.
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5.2 Interpretation of the Frequency-Domain Relationship

The frequency response of the equalizer [from (89) and (90)] is
T/2
ze (@) + Ay (w)

Recall that A,.(w) is the even component of the real part of the channel
response taken about the Nyquist frequency, =/7T. Similarly A,,(w)
is the odd eomponent of the imaginary part of the response. Notice
that C(w) does not depend on A, (w) or A,.(w), so that these com-
ponents may be specified arbitrarily without changing the equalizer
settings. This points up the difference between frequency-domain
equalization and time-domain equalization. Our data distortion eriterion
is such that we don’t care about the components A.,(w) and Aye(w)
of the frequency response. However, these components affect the shape
of the final equalized characteristic, as can be seen from (93).

It is clear from (94) that the channel cannot be equalized if A.(w)
and A, (w) are both zero for some w, 0 £ w < #/T, in which case C ()
is unbounded. If this does not happen, practical considerations indicate
that the channel is capable of being equalized. (These practical con-
siderations require that both [A (w)C (w)] and its Fourier transform are
continuous and absolutely integrable.)

Clw) = yi [Are(w) — jA,0(w)]. (94)

Equalization Condition:

A channel with complex gain A (w) is capable of being perfectly
equalized with an infinite transversal filter if and only if the even com-
ponent of the real part of 4 (w) and the odd component of the imaginary
part of A (w) do not simultaneously vanish for some w, 0 < w < «/T.

Note that a channel ean be equalized even if it transmits no energy
in some interval [w;, ws], w: < 7/T, 50 long as the missing energy com-
ponents are replaced in a symmetrically located region ahove /7,
ie, [Cr/T) — w, Cr/T) — ).

Now let’s go back to (93) to try to get some feel for the shape of the
final response. The equation itself is not complicated, but it unfortunately
requires us to break A (w) into even and odd components about the
Nyquist frequency =/7T and then further to break these components
into real and imaginary parts. By this time we have almost no idea what
the final response will be when we put everything back together as in
(93). To take a special case which simplifies this process, suppose that
the channel has perfectly flat delay, so all the “y”’ components are zero.
Then
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PR T Aolw)
Aw)C(w) = [1 + == . (95
2 Aze(w) )

The first term represents a rectangular characteristic and the second
term is an odd function about the frequency x/7. Thus we have a
familiar Nyquist characteristic which is easily determined from the
initial characteristic A (w). Fig. 15 shows a sample case of this type
having flat delay (linear phase). The components A..(w) and A, (w)
and the equalized spectrum are shown for this example characteristic.
With a little study it is possible to get a good feel for the sort of final
characteristic which is obtained by equalization in this purely real case.
However, the introduction of nonlinear phase results back in the compli-
cated expression (93).

Typically, the channel to be equalized cuts off somewhere before
w = 2x/T, so there are no energy components in the interval
[(x/T) 4+ we, (2r/T)]. In this case we have

433(“’) = _430("—‘)
Aye("-’) = _Ayu(m)

EZE(W) = A:xn(‘-‘-’)
Ay(w) = Ayo(w)

Substitution of (96) and (97) into (93) shows that
fi(w)é(w) =7/2 for —w/T =2 w= —w. (98)

v

= We (96)

/T Z w

/T £ 0= —aw. 97)

1A
€

! ~UNEQUALIZED

AMPLITUDE —>

o

0 \/ 2T /T
FREQUENCY

Fig. 15 — Equalization of amplitude distortion.
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Which means

A@)Cle) = 5 for 05 ws T = (99)
We can boil this equation down into the most significant observation
we can make about the frequency-domain relationship:

If the channel response cuts off at the frequency (w/T) + w., then
the channel must be equalized to constant amplitude and linear phase
in the region 0 £ 0w £ (#/7T) — w..

This observation is important in the equalization of analog channels
to flat amplitude and linear phase. In order to get the largest possible
interval of perfect analog equalization we should arrange the tap spacing
T so as to approach the Nyquist interval corresponding to the channel
cutoff. However, if the channel cuts off before =/T then by the previous
results the channel is unequalizable. The closer T is to a Nyquist interval
the more taps will generally be required to effect a good equalization.
One final note to add to the confusion — if w, is large very little of the
spectrum will be equalized flat. If the tap spacing T cannot be changed
we can increase this region of flat equalization by inserting a low-pass
filter during the equalization period which has a cutoff frequency close
above 7/7T. The filter may then be removed after the equalizer tap gains
have been set,

Some of the principles involved are exemplified in Fig. 16, which
shows the equalization of a channel which has a linear delay charae-
teristic (quadratic phase). Initially the amplitude response of this
channel is a 50 per cent raised cosine response cutting off at w = 37x/27.
This amplitude characteristic is a Nyquist shape in the absence of delay
distortion. After equalization both amplitude and phase are flat from
w = 0tow = x/27T, as required by our previous observation. From
w = 7/2T to w = 37/27T the phase still appears parabolic. In this region
there has been an interaction between phase and amplitude which has
resulted in a change in the amplitude characteristic away from its
Nyquist shape. The combination of equalized phase and amplitude in
this region is such as to satisfy conditions (82) and (83), although this
is not evident from casual inspection,

One additional important usage of (93) for € (w) is in the caleulation
of optimum tap settings for the equalizer. Starting from the unequalized
channel pulse time response samples {x,] we construet A.(w) and
A, (w) exactly as in (86) and (87) for €. (w) and C, (w), i.e., let
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Tlig. 16 — Equalization of linear delay distortion,

Ap(w) = 20 + > (=1)"(x, + x_.) cos naT (100)

n=1

Ayo(w) = Zl (—1)"(x, — x_,) sin nwT' (101)
The other components, A, and 4,., are of no concern to us, since they
affect neither {,} nor the equalizer settings. Now calculate C(w) from
(93) and evaluate its Fourier transform at time n7. Each of these
values may be identified with tap settings through (96) and (97). This
procedure may seem complex, but it is by far the fastest way to caleu-
late tap settings for long transversal filters on a digital computer. Time-
domain techniques involve the solution of simultaneous equations or
iterative methods depending on the input pulse. The time required for
this type of minimization usually increases with the square of the num-
ber of taps involved. As each new tap is added, all the previous tap
settings change to readjust for the new minimum for the increased filter
length.
On the other hand, using the frequency-domain technique the time
required for computing tap settings increases linearly with the number
of taps involved and each new tap setting does not change any of the
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previous settings. The ecatch is that the settings calculated by the
frequency-domain method apply only to an infinite-length line. For
lines of finite length the settings calculated by frequency- and time-
domain methods will differ. The time-domain settings are calculated
on the basis of minimum distortion — a quantity defined on the basis
of time samples. The frequency-domain settings for a finite line are a
root-mean-square approximation to the final equalizer frequency char-
acteristic for an infinite line. As the number of taps goes to infinity the
tap settings computed by each method approach the same value. For
any finite line the time-domain settings are better (lead to less distor-
tion), since they are by definition optimum. However, for equalizers of
about 12 taps or more the results are practically the same. (Indeed, one
should remember that the distortion eriterion itself is somewhat arbi-
trary.) Thus the frequency-domain technique deseribed here is a fast
and accurate way of computing tap settings for long equalizers. Un-
fortunately the method does not lend itself to implementation, since it
involves a number of difficult operations, i.e., division, Fourier inversion.
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APPENDIX A
Statement and Proof of Theorem [

Theorem [

If Do < 1, then the minimum distortion I must occur for those N tap
gains which simultaneously cause h, = 0 for alln C Ky, n = 0.

Proaf

We prove this theorem by assuming a minimum has oecurred at some
point other than that specified in the theorem and showing this assump-
tion leads to a contradiction. Thus we assume that D is at a minimum
for some sequence of tap gains {c;| and that h. # 0 for some k C Ky,
k # 0. Now we will show that there exists another sequence {¢;"} for
which D" < D and henee the contradiction.
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Let
c;'=¢; JjCKy,j#0,j#k 102)
e = e — Asgn hy
where
| >A>0 (103)

which is possible, since by hypothesis 7. # 0. The value of distortion
corresponding to the tap gains {¢;"} is, from (14)
D* = Z’ | .Zf Cj (-l'ﬂ—j - 't.li"lﬁj) + Tn
n=—=x };EJ.-"N (104)
+ (e — Asgn hy) (v — xur—) + % |
Using (13) this reduces to

o0

D* = 2" |hy — Asgn he(, s — T0a_s) | (105)
D = 2" | hy — Asgn he(e, — raa_y) |
N (106)

+ | he — Asgn by (1 — apr—) |-

We concentrate for the moment on the second term of (106) and use
hy = | Iy | sgn Ay to obtain

| e — Asgn by (1 — wpe) | = | [he| — AQ — ;) |0 (107)

But | vpr— | < 1 sinee

o0

Dy= 2 |&| <1 (108)
Therefore 2 > (1 — xa—) > 0and, by (103),
| he | — A1 — =) > 0. (109)

Thus we are able to drop the absolute value brackets around the second
term in (106) and write
D* = E' | b, — Asgn hy (v, — x0-) |
e (110)

+ lh;,‘ — A(l —_ '.!'.(-.l'._k)
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D* = Z [ B | + A Z | Tnok — Tali
e o (111)
- A(l - .‘l'k.'l‘,k)
D*< D+ Af > Lt |+ o] 3 (2]
= n (112)
- (1 - .’t';.-.”t'_;,)}
D" <D+ A{Dy — |a | + |a| (Do — |2k ])
(113)
-1+ ||}
D*=D— A1 = D)1+ |z|) (114)
and since_Dy < 1
D* <D (115)

which is a contradiction, since we assumed that D was originally at a
minimum. This completes the proof of Theorem I.

APPENDIX B
Derivation of Equalizer Frequency Response in Terms of Unequalized

Channel Frequency Response

The equalizer frequency response taken about the Nyquist fre-
quency «/7T is

C'(w) = Cm(‘-") + jéyo(w) (116)

where we use the subseripts “a2” and “y”’ to denote real and imaginary
components and the subscnptb eV and “0” to denote even and odd
components. Breaking the unequalized channel frequency response
similarly into its components gives

A(0) = Adre(@) + Auo(@) + jAu(@) + jdi(@)  (117)

with
Ae(w) = s (@) + Ao (—w)] (118)
Azo(w) = HA:(w) — d2(=w)] (119)

étc.
We are now ready to put together the equalizer response and the
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channel response to get the equalized channel response. Using (117) and
(116) for this purpose we obtain

A ()0 (@) = [Ae(@) + Azo(@)Cr(w) — [Aye(w)
+ Ao (@)]Cyo (@) + jlldze(w) (120)
t Ao (@) Co(w) + [Aye(w) + Ayo(@)]Cac(w)}.

This equation must meet the conditions (82) and (83). If 4, is an arbi-
trary odd function, condition (82) dictates that

Re [4 (w)C ()] = (T/2) + 6  (121)
(A (0) + Aro(@)]Cre (@) — [Aye(@) + Ayo(@)]Cho(w)

(T/2) + 8o

A (0)Ceo(w) — Ayo(w)Cyo(w) = T/2 (123)
Ao (@)Crel(w) — Aye(@)Cholw) = 8. (124)

Since &, is an arbitrary function, (124) is automatically satisfied.
Let 6. be an arbitrary even function. Condition (83) now requires

Im [4(0)C(0)] = 8 (125)

(Ao (w) + Aso(@)]Cho(@) + [Ayel@) + Ayo (0)]Cro(w) = 8., (126)
The even and odd ecualities from (126) are respectively

Ao (@)Co (@) + Aye(@)Cae(w) = b (127)

Ao (@)Cho () + AyCac(w) = 0. (128)

Again (127) is satisfied trivially and we are left with two equations,
(128) and (123), in the two unknowns C;.(w) and Cye(w). These equa-
tions may be solved simultaneously and we arrive at

(122)

Il

T .
. B § Aze(w) (129)
CZ(“’) A T2
Aze (w) + Aya (W)
T .
I Ayo(w)

-Azez(w) + A-yoz(w) )
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