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Some of the properties of random traffic in nonblocking connecting net-
works are described and proved. Even though nonblocking networks are
rare, they represent an important limiting case, approached as blocking s
reduced by adding switches. For many purposes they provide a useful first
approximation in the calculation of system parameters. The number of
calls in progress is extensively studied in both equilibrium and transient
regimes, and its properties are used to distinguish between the wide and
strict senses of ‘“‘nonblocking.”

I. INTRODUCTION

In the continuing effort to understand the nature of congestion in
telephone connecting networks, it is important to have a thorough
knowledge of the special case of no congestion, exemplified by traffic in a
nonblocking network. Such knowledge is useful not merely as a guide to
theoretical investigations, but also in answering questions that are of
immediate practical import in the design of networks with small con-
gestion,

It is the purpose of this paper to describe some results concerning
random traffic in nonblocking connecting networks; these results have
important applications to traffic in networks that are not nonblocking,.
For although nonblocking networks are rare in present telephone prac-
tice, and are therefore of limited immediate interest to engineers, they
form an important limiting case that is approached as the probability
of blocking is reduced by the addition of links and switches to the net-
work. Moreover, many parameters descriptive of the traffic can be
calculated with ease for a nonblocking network, and only arduously or
not at all for a network that has a nonzero probability of blocking.
Hence for low blocking, certain results pertaining to the nonblocking
case can be used to approximate those in the blocking case.
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In other words, for many purposes the nonblocking case serves as a
useful first approximation, as a guide for intuition and computation,
in the general case. It is important not to misconstrue our claim. We
are not making the banal and useless point that zero is a good first
approximation to the probability of blocking when the blocking is
small. We are making the point that if the blocking is small then various
interesting parameters of the system, other than blocking, are very
nearly related as they would be in the nonblocking case. This point has
direct practical value.

The present work is, nevertheless, restricted to depicting the proper-
ties of nonblocking systems, and no attempt is made here to apply the
results to systems with low blocking. Such applications are to appear
in later papers, e.g., Ref. 1.

II. THEORETICAL MODEL

Let S be the set of permitted (i.e., physically meaningful) states of
the one-sided connecting network » (of 7 terminals) under study.t The
set S is partially ordered by inclusion =, where

r =y
means that state z can be obtained from state y by removing zero or
more calls. If = is a state, the notation | x | will denote the number of

calls in progress in state 2, while if X is a set, | X | will denote the num-
ber of elements of X, We also use, for a state z, the notations

A, = set of states accessible from = by adding one call
B, = set of states accessible from x by removing one call.

The following two probabilistic assumptions are made:
(7) Holding times of ecalls are mutually independent random vari-
ables, each with the negative exponential distribution of unit mean.
(#2) If w is an inlet idle in state  and » # w is any outlet, there is a
probability
Mo+ o(R), A>0

that w attempt a call to v in the next interval of time of length A, as
h— 0.

The choice of unit mean for the holding times merely means that the
mean holding time is being used as the unit of time, so that only the
one parameter A need be specified.

We can complete the description of the traffic model to be used by

t A given (network) graph can give rise to several networks » depending on what
states are permitted, i.e., belong to S.
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indicating how routes for calls are chosen. For this purpose we introduce
a routing matrix £ = (r,), with these properties: For each = ¢ S let
11, be the partition of A, induced by the equivalence relation of ‘‘having
the same callsin progress’’; then, for each Y ¢ I, , r4y is a probability dis-
tribution over y € Y; in all other cases 7., = 0. As in Ref. 2, the interpre-
tation of R is this: any Y e Il, represents all the ways in which some call
¢ not blocked in 2 could be completed when » is in state x; for y e ¥,
7.y is the chance that if ¢ is attempted in z, it will be routed through
the network so as to take the system to state y. Evidently,

> rs = number of calls each of which could actually be put up in
veds state x
= s(x), (“successes” in x)

the second equality defining s(-) on S.

A Markov process x, based on the preceding assumptions has been
studied in previous work,? and is used here again as a mathematical
description of an operating connecting network subject to random
traffic.

We restrict attention entirely to the important case of “one-sided”
networks in which all inlets are outlets.? Analogous results are valid for
two-sided, and other, cases.

IIT. SUMMARY

The wide and strict senses of ‘“nonblocking” are reviewed in Section
IV, where it is also pointed out that for most of our purposes it will not
be necessary to distinguish them. The equilibrium distribution of the
number of calls in progress is calculated in Section V. The terms of the
distribution are proportional to the (corresponding) terms of the
Poisson distribution with parameter A, the factors of proportionality
indicating the “finite source effect”” that is present.

In Section VI various relations among the moments of the distribu-
tion of calls in progress are explored. It is noted that the mean deter-
mines the variance, and that, as functions of X, successive moments are
related by a difference-differential equation, and can be obtained by
logarithmic differentiation of the generating function of the number of
assignments of k inlets to k outlets. An extremal property of the dis-
tribution of the number of calls in progress, closely related to the author’s
““thermodynamic’” model® for telephone traffic, is studied in Section VII.
In Section VIII it is shown that the number of calls in progress assumes
a Poisson distribution in the limit as A — 0 and the number T of ter-
minals becomes large, with AT? constant.

The remainder of the paper is concerned with the transient behavior
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of the process x, representing network operation. The principal result
of Section IX is that the past of the process (prior to 0) and the actual
state at 0 are both irrelevant to the number of calls in progress at ¢ > 0,
if it is known how many calls are in progress at ¢ = 0. It follows from
this that the number |z, | of calls in progress at ¢ is actually a Markov
process, indeed, even a birth-and-death process. These results make it
possible to calculate the covariance of |z, | in terms of 1 4 [$7] char-
acteristic values rather than the astronomical | S | associated with z,,
and to give natural approximations (Sections X and XI). This co-
variance, it is to be recalled, is the essential ingredient in estimates of
sampling error in traffic time-averages. In Section XII, finally, we
conclude with characterizations of both the wide and the strict sense of
“nonblocking” in terms of the stochastic properties of | z, | .

IV. WIDE AND STRICT SENSES OF ‘“NONBLOCKING”

In a previous paper! we have distinguished between a wide sense and
a strict sense of the word ‘“nonblocking,” as follows: a network » is
nonblocking in the wide sense if there exists a routing matrix B which
confines the trajectory of the operating system to nonblocking states,
i.e., such that use of the rule R makes the system nonblocking; and » is
nonblocking in the strict sense if no call is ever blocked in any of its
states. Topological equivalents of these properties were derived in the
cited paper.

It is apparent that if » is nonblocking in the wide sense, then for each
rule R that makes » nonblocking there exists another network »’ whose
states are exactly those of v that are accessible from the zero state under
R, and »’ is nonblocking. For this reason most of our results can be
(and are) stated for nonblocking networks without specifying whether
the sense is wide or strict. The only excepted results are in Section XII,
where the stochastic properties of | z, | are used to distinguish the wide
sense of “nonblocking” from the strict.

V. THE NUMBER OF CALLS IN PROGRESS

The equation of statistical equilibrium for the stochastic process x is’

[l +Ms@pe = 2p+ X 2 piee, e S, (1)
Hedg yeBg
We let
pk:EPZ: k=0,1:"':maxlx|:
|z |=k ze8
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be the probability that k calls are in progress. Our first result is the
observation that the {p} depend only on X and T, if » is nonblocking.
Let o, = number of idle inlet-outlet pairs of state x.

Theorem 1: Let » be nonblocking. For k = 1, ---, max |z | = [T,
TeS
NS (T — 25
to e LID ( ° (2)
() T

TP TR (T =2t
Proof: We sum (1) over |z | = k. Since (with the third equality a

definition)
-2
s(r) = o, = (T o |:r|) = Qg

if » is nonblocking, we obtain

(k 4 New)pr = E et N X 2 P

|z|=k ved |z|=k yeB,

In the first sum on the right, each p, gets counted (k£ + 1) times, be-
cause if |y | = (k + 1), then y e A, for exactly (i + 1) values of .
Thus this sum has the value

(k+ 1) Z :D,, = (k 4+ Dppyr -

lyl=t(k

The second sum is

Pyl'yr = Z E Tyz -

le|=k |ly|=k—1 ly|=k— L IzI—A

However, by the definition of the routing matrix K,

Z Tyz = Z Tyz

|z|=k zedy
= s(y)
= Qyl,
because » is nonblocking. Hence the second sum is
Pr-1Q—1,
and we have shown that

(k 4+ haw)pi = (F + 1)pryr + Ae—aPi—r,
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with the convention p, = 0if £ < 0 or & > [3T]. Thus
kpk = )\ak—lpk—l k= 1; T [%T']'

By iteration, the theorem follows.
We remark that the probability p, that no calls are in progress,
determined from the normalization
[47]
P = l:
k=0
is just
1
Po = AT] (143 ) .
1+ Z (2& L (3)
= k! (T — 2k)!

VI. MOMENTS OF THE NUMBER OF CALLS IN PROGRESS

From the formulas (2) and (3) giving the distribution of the number
of calls in progress, any moment of the distribution of calls in progress
can be calculated in principle. More important, though, are the several
systematic relationships that obtain among the moments and the
parameters A and T of the system. To these we now turn our attention.

We use the abbreviations

‘[Ef'—kr(—f’i}m' k=0, - [57T],
a =1, k> BT
m,-=§|:r;|"p£ 1=1,2 .-
= 4th moment of {p:},
d(\) = k; Ny,
o = my — m;" = variance of calls in progress

and m; = m.

First, it has been shown® that whether » is nonblocking or not, a
stochastic process x, based on our assumptions has the property that
the probability Pr {bl} of blocking, the mean m and variance o of the
number of calls in progress, and the parameters A and 7', are all related
by the formula, for one-sided networks »,

1 2m
AT = 2m)* — T + 2m +46*

1 — Pr{bl} =
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(A similar, but different, formula obtains for two-sided ».) It follows
that when » is nonblocking, the mean and variance of calls in progress
are related by

(T — 2m)* — T + 2m + 46 = 2m/A, 4)

and thus determine each other uniquely when A and 7 are specified.
This means that for a nonblocking » the important parameters m and
o cannot assume just any values, but must lie on the curve defined by
(4).

Second, it is intuitively obvious that, for many networks », m = m())
should be an increasing function of A. The rationale for this claim is, of
course, that if the calling rate per idle pair A increases, the network will
carry a greater (equilibrium) load. For nonblocking networks », the
claim is a consequence of

Theorem 2: For nonblocking v,and 7 = 1, 2, -,

im-*l(m- — mima)
dA 1_)\ i+1 iffel /.

Proof: We have

Z N

my = =20
! B(N)

] (3 K ) o () — (2 kata) (5 ')

w me = k>0 k>0 k>0

dn ot B2(A)

1
=3 (Mg — many).
In particular

dm _ a'(\)
w0 (5)

and so m is a strictly increasing function of A.

Corollary 1: The mean number m of calls in progress as a function of A
satisfies the differential equation

dLn_i_(T—Qm)g—T-l—Zm
dn - 2)\ oY

2

with the initial conditions m(0) = 0, m"(0) = (T) .
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Proof: We substitute (5) in (4) with Pr {bl} = 0. The initial conditions
follow from

m(\) = A (,T) + o(X), as A —0.

It can be verified that Theorem 2 can be rephrased as saying that all
the moments of {p:} can be obtained from the logarithmic derivatives
of the generating function ®(-) of the numbers {a,}. Thus for example

d
= = —_— @
m = m Ad)\k)g ,
d* d
2 2 2 @&
o = A d—vlogfb-l—h d)\log@'

Indeed, it now becomes apparent that {p:} has the same relationship
to the function ®(-) as the distribution of calls in progress in the
“thermodynamic’” model of Ref. 3 had to the generating function of
the number of ways of having % calls in progress. It will turn out in the
next section that @ (-) is actually the generating function of the number
of assignments of & inlets to & outlets, without reference to how many
states of », if any, actually realize a given assignment.

VII. AN EXTREMAL PROPERTY OF THE DISTRIBUTION OF CALLS IN PROGRESS

With X the set of 7' terminals of the network », let us consider the
set A of all fixed-point free maps of X into itself, together with all sub-
maps thereof. The physical significance of A is that it consists of all the
possible “‘assignments” of k inlets to & outlets with 0 = & = [3T]. The
fixed-point free restriction reflects the physically realistic circumstance
that no customer will request connection to himself. It is readily seen
that the set A of assignments is partially ordered by inclusion, and in
fact forms a semilattice. Also there is a natural map of S onto A, the
map v (- ) of Ref. 4, which takes every state of » into the assignment it
realizes. It can be seen that v (-) preserves order and intersections, so
that v (- ) is a semilattice homomorphism of S onto A.

Let us now pose the problem of finding a probability distribution
{Pa,a e A} which maximizes the entropy functional

H(p) = — 2_ palog pa

aeAd

subject to the condition that

2 la|p.=m,

aed
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where m is a given positive number with 0 < m < [37], and |a |, the
norm of a, is the number of inlets mapped into outlets by g, i.e., the num-
ber of “intended ecalls in progress” called for by the assignment a. It fol-
lows from Lemma 1 of Ref. 3 that this maximum is achieved by

Alel
Pa = 3™\l
aed
i.e., the “canonical” distribution of thermodynamics, with | - | playing

the role of energy (see Ref. 3), and A > 0 determined uniquely by

3\ 4 lal_
m ?\ Y log a%: A
It follows that the probability assigned by {pa , @ ¢ A} to the set of assign-
ments with & “intended calls in progress’ is just

AF 21
Z)\'“' = P

Ted

since there are exactly

T
. . S < L < [A7
2 =gy 0 S k=BT
fixed-point free maps of k elements out of a set of 7' into k others from
the set, so that ®(A) = > A"\,

a€A

Thus the distribution {p:} of the number of calls in progress in a non-
blocking network arises naturally from maximizing the entropy func-
tional for a probability distribution over the set A of assignments sub-
ject to a given average value for | a |, and then calculating the probability
of the set of assignments of & calls.

In a similar way, it can be shown that {p;} maximizes the entropy
functional —; p;. log pi , subject to

m = kak,

over all distributions having the form b.ay .

VIIT, A POISSON LIMIT THEOREM

It is intuitively reasonable to expect that a nonblocking network
with a very large number T of inlets (= outlets, here) and a very small
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calling rate A per idle inlet pair will behave roughly like Palm’s “infinite
trunk” model for telephone traffic.® In particular, if A becomes small
and 7 becomes large in the right way, the distribution of the number of
calls in progress in equilibrium should become Poisson. That this occurs
is the content of

Theorem 3: Let a be a positive number, and let A\ — 0 and T — « in
such a way that

a = \T%/2.
Then
P — ¢ " (a*/k)), Ek=0,1,2,---.

Proof: We have
(ATZ k
T) 1 2% — 1
Pe/P =~ (I_T)"'(l— T )

-,
k!

Since
[371

P =14 kZ; Pi/Po

the result follows.

The reason why AT®, and not, e.g., AT, must be of the order of the
average carried load, is that A is the calling rate per pair of idle inlets
(= outlets, here), so that if all are idle, this calling rate is just

T
(2):
omitting attempts by a customer to himself. Indeed, the load carried by
one customer’s line is
g= @m/T) = \T((1 — )" = T7'(1 — @) + T""40")).

It is casily seen that ¢ and T "¢" are bounded independently of A and
T, so that

g~AN"—0

in the limit taken.
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IX. TIME-DEPENDENT BEHAVIOR OF THE NUMBER OF CALLS IN PROGRESS

So far all our results have concerned only the equilibrium behavior
of the process x, representing the operation of a nonblocking connecting
network. We now turn to the transient or time-dependent behavior.

The matrix @ = (g,,) of transition rates of z, is given by

1, zredy,

Ny, z e By
S P W M

0 otherwise.

The matrices P(t) = (p(t)), t real, of transition probabilities, i.e.,
such that

Pay () = Prize = y|m = 2},
satisfy the Kolmogorov equations
P'(t) = QP(t) = P()Q, P(0) =1.
We let

pii(t) = Pr{ || =j]la]| = 1)
peit) = Pri{|a | =720 = 2}.
Intuitively, if » is nonblocking and | z, | = 7, then the (conditional)

probabilities of the possible changes in the number of calls in progress
in the next interval of time of length £ are

jh + o(h), for a hangup,
— 94
A(T 9 ‘J) + olh), for a new call,

as h — 0. Indeed, one expects that these evaluations remain true even
if information about z, for s < ¢ is added to what is known at time ¢,
for the reason that only the fact that |2,| = j is relevant to what
happens to | z, | for s > {. In other words it is natural to expect that for
nonblocking »,

E

is itself & Markov process, indeed, a birth-and-death process. Tt will be
shown that these conjectures are true, and that they have important
practical consequences.
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Theorem 4: If v is nonblocking, then knowledge of the actual state x
is irrelevant to | z, | if | 2o | is known, i.e.,

D=k (t) = Plx|k (i), for all 2.

Proof : The backward Kolmogorov equation for the process is

%pzy = e[+ 2@ poy + 2 Puw+ X 2, 2P
Summing on |y | = k gives
%sz = —[|a |+ rs(2)]lpax + ;B:x Pur + A ZA: TeuDuk -
Since u € B, for exactly ( |z | — 1) values of «, and since
2 = (@) = (T _22 = |),

it is enough to show that the result is true in a neighborhood of { = 0.
Evidently, though,

1 f;L‘ ’ =l
pzk(o) -
0 |a| &=k
R X TP I I
a pzk(o) =
and
pzkm)(o) = + A ZA rzupuk(n_])(o)l I‘TJ =k
0 |z | #= k.

Since p.x (-) is analytic in a neighborhood of ¢ = 0, the theorem follows.
Theorem 5: If » is nonblocking, then

£
is a Markov stochastic process.

Proof: Set y; = | @, |. Sinee x; is a Markov process, for &, < £y < <
t, < t we have a.e.
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Priy.=klzy,i=1,---,n} =Priy.=k|a},
=Pr[y|=kly‘n}

by Theorem 4.

X. TRANSITION PROBABILITIES OF |2, |

It follows from Theorem 5 and the forward Kolmogorov equation for
for x, that the transition probabilities p;;(-) of y. = | .| satisfy the
equations

d I T — 2§ .
i Pij = [J + A( 9 ):l Pij
(6)

+ (7 =+ Dpigsn + A(T B gj + 2) PiGg-1

with obvious conventions at the (reflecting) boundaries 7 = 0 and
7 = [3T]. These are the equations of a birth-and-death process on a
finite number of states, and so the known results of Karlin and Me-
Gregor® can be carried over at once, as summarized below.

The matrix A (T,\) governing the system (6) is given by

0 [i—71>1
i JH1=1
ai; = —w—(T;m i=j @)
A(ngi) i+ 1=
With
T = )\kak k=0,1, :[%T]:
and
Q@) =1,
@) = (3 et +2(3 e,
@ = k@ = [k 5 ) Jew

T — 2k
("5 e, 1< k< BT

. . 6 “e
there is a unique®’ positive regular measure y on 0 < x < = such
that
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® 8ij ..
[ @@ @) =% ij= 01,07
7
The transition probabilities of | z; | are represented by the formula

polt) = m; [ " T 0u(2)Q(x)dv (2) )

XI. THE COVARIANCE OF ||

As has been pointed out,*® the covariance function of the number of
calls in progress is of great practical interest in connection with esti-
mates of sampling error in telephone traffic averages. This covariance is
defined as

R(t) = Ef |z | |2 |} — E¥{ [},

and does not depend on s, since it is understood that z, has its equilib-
rium distribution. The variance of the continuous time-average

1 T
T j.; | Ty Idt

27" fT (T — t)R(t)dt,
0

is then

while that of the periodic scanned average

1 n
"'z:lwﬁla T > O:
n =1
with scanning interval = is
n

2 (= [5])R().

j=—n

It is easily seen from the integral representation (8) that the covariance
of |z, is

w

Z ijmim; ‘/:“ e "'Qi(x)Qi(x)dy(x) — mz,

1,7=1

R(¢)

I

w = [1T] = max|z|.

ze8

The orthogonality of the Q;(-) with respect to ¢ (-) allows the simpli-
fication of this formula to

R(1) = fum e [; zar,-Q.-(a:)]' dp(z) — m*
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It is easily verified that for & > 0
Q:(0)

Il
—

and that

¢(0+) — ¢(0-) (_Zu vr,-)".

=
Hence the contribution of ¢ (-) at the origin (to the first term on the
right of R(t)) gives precisely m®, and we have proved the important
result that

R(l) 2

We note next that the matrix A (T,A) of the differential equations
for p;;(+) is symmetrizable, and so has real nonpositive characteristic
values. In a standard way®® it is deduced that one of these is zero,
and that the dominant characteristic value r, satisfies

—(WL/O'Q) é r < 0

[§
l{(t) 2 rll. (J)

As in the theory® of the finite trunk group, it is expected that this
upper bound for R (-) will be a good approximation for low to mod-
erate traffic levels. Together, the two inequalities suggest the alterna-

tive estimate
R(t) ~ ¢*exp — (:2 t),
also used in Ref. 8.

Since the equilibrium distribution {p:} of the number of calls in
progress approaches Poisson’s as A — 0 and T — « with AT” constant,
it is to be expected that the characteristic values of the matrix A (T,A)
of the system (6) will concentrate at the nonpositive integers in this
same limit. In this connection it is instruective to see how the lower
bound —m/¢* to r, behaves in the above limit. With AT* = 2a > 0,
we find

ﬂ=2A+A(T—2m)+_T—2m
o 2 o’ o?
. , (10)
_ 1
- e 2 R0 r T+ a(®) ]

Since the variance of a Poisson distribution equals its mean, «* — a,
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and it is easily verified that o*/a depends only on 7 and not on \ so
that

dfa =14+ o(l)
with o (1) depending only on 7. It follows that for any a > 0,

liminfr, =2 — 1,
A0
T+

AT2=2a

i.e., the lower limit of the dominant characteristic value is at least —1.
If we retain only terms of order AT in (10) we obtain

4a — 1
T
as an approximate lower bound for r,, indicating that r; actually ap-
proaches —1 from above or below according as @ < } or a > i, the
latter case being overwhelmingly prevalent in practice.

Actually it is not necessary that T — o in order that the lower
bound in (9) approach —1. It suffices that A be small, for with T'

fixed, as A\ — 0,
T
m 7\(2) + o(n)

i A(é) — x-’(T 5 2) + o(\)

- -1+ A(T Y 2) + o(n).

=

-1 —

(11)

KA E

We note that the correction term is quite different from that in (11).

XII. STOCHASTIC CHARACTERIZATION OF WIDE AND STRICT SENSES OF
“NONBLOCKING”

In the following, we regard the process z. defined in Section II as a
funection of », A and the routing matrix R, T = T'(»), ete.

Theorem 6: » is nonblocking in the wide sense if and only if for some
routing matrix R, | x| is a birth-and-death process whose semigroup of
transition probabilities is generated by A (T\).

Proof: The necessity follows from Theorem 5. For the sufficiency we
argue that if » is not nonblocking in the wide sense then any choice of
R gives rise to a nonzero probability of blocking. Thus by the basic
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formula (4)

1 2m

K(T_zm)ﬂ—T+2m+4a2<l

for any R, which contradicts the condition that for some R, p = {p:}
satisfies

with the convention (Ap); = Z a;;p; . In a similar way we can prove

i

Theorem 7: » is nonblocking in the strict sense if and only if for every
R, |x;| is a birth-and-death process whose semigroup of transition
probabilities is generated by A (T ,\).

The proof is a minor modification of that of Theorem 6, and is
omitted.
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