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The propagation of magnetoelastic waves in a magnelic insulator having a
nonuniform internal magnetic field is examined in the geomelrical optics
approximation. Hamilton’s ray path equations are obtained from the
slowness relation for the medium, and 1t is shown that for YIG there is a
substantial focusing action in the rod configuration commonly used for
magnetic delay line experiments. When external field shaping is used to
produce a minimum inlernal field at the midpoint of the rod it is found
that divergence of the magnetoelastic waves s to be expected.

I. INTRODUCTION

In a number of experiments,!* propagation of magnetoelastic waves
has been observed in discs and rods of yttrium iron garnet. Coupling is
provided through an internal field variation along the direction of
propagation, radially in a disc and axially in a rod. This permits excita-
tion of the wave in a region of small wave vector,*®* where the magnetic
field can couple to the magnetization, with subsequent tapering into the
magnetoelastic crossover region. The demagnetizing field also varies in
magnitude and in orientation across the direction of propagation. In
regions where the wave vector is large it is appropriate to consider the
effects of this field inhomogeneity in terms of geometrical optics, and it
is to be expected that refraction of the magnetoelastic waves will occur.

II. THE SLOWNESS RELATION AND GROUP VELOCITY

In a cubic crystal with a de magnetic field applied along a [100] axis
x3 and, for simplicity, assumed elastically isotropic propagation of mag-
netoelastic waves is governed by the set of equations®

495



496 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

iwM,, + wu M., — tybk cos 6 R, = 0
(wn, + wysin® 0)M,, — iwM ., — vybk (cos 20 R, + sin 20 ;) = 0
(o — ¢’ k)R, — i(bk/pM) cos 20 M., = 0 (1)
(' — ¢'k*)Ry — 1 (bk/pM) cos 6 Mo, = 0
(W' — ¢k*)R, — i(bk/pM) sin 20 M,, = 0,
where
wa, = y(H + Hed'l’)
wy = yidrM.

The wave vector k is assumed to lie in a (100) plane at an angle 6
with the de field. M., , M., are transverse components of the magnetic
moment referred to axes along [100] directions, and R, , E., R, are
transverse and longitudinal components of elastic displacement. The
saturation magnetization is denoted by M and the mass density by p.
Transverse and longitudinal elastic wave velocities are represented by
¢, and ¢; respectively, and b is the second magnetoelastic constant,
generally designated by b, . H is the internal de magnetic field, H is the
exchange field, and a the lattice constant. In what follows it will be
assumed that the erystal has sufficient magnetoelastic isotropy (b: = b,)
that (1) is valid for a magnetic field applied at a small angle to the [100]
axis and for propagation in any azimuthal direction.

Upon elimination of variables in (1), the secular equation is found to
be

(bk)*
Q(w,k,ﬂ) = (wf - wz) - m
2 2 2 2 .« 2 (2)
Jw cos ¢ 4 9m cos” 20 | wy, sin” 20 —0

W — w? w? — o W — Wt
where

ILI.:F,:E = wgk(wuk + WM Siﬂz 8)

bk)*
wgdz = w;z —_ :MI?I;, GOSz ]
0)‘2 — Ct2k2

2 2,2
wp = cu’c.
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This equation relates the wave vector k or the wave slowness vector
k/w = k/kv,u to w and 6, a relation which may be displayed graphically
by a dispersion diagram (see Fig. 1). In coordinates ki , ko , ks the slow-
ness relation (2) defines a “wave vector” " or “slowness” ® surface for
each value of w. Since the magnetoelastic dispersion curves (see Fig. 1)
have four branches and the dispersion relation is independent of azi-
muthal angle, the wave vector surface is a surface of revolution about xs
and comprises four sheets. For example, a vertical section through the
sheet of the wave veetor surface corresponding to branch III appears,
at w &~ wy , as shown in Fig. 2. The group velocity vector’

Vil

v TN 302/dw

(3)
is proportional to the gradient of @ and is therefore normal to the wave
vector surface, as shown in Tig. 2, the sense of the normal being de-
termined by the requirement that the angle between V, and k be less
than /2. This means that except in the special cases 8 = 0 or =/2, the
group veloeity vector is not exactly parallel to the wave vector; and a
wave packet does not move in a direction normal to its phase fronts, a
phenomenon which is characteristic of anisotropic media.
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Fig. 1 — Magnetoelastic dispersion diagram.
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——— PURE ELASTIC WAVES

MAGNETOELASTIC WAVES

Fig. 2 — Wave vector surface for branch III of the dispersion diagram, at
w = wy .

III. THE EIKONAL EQUATION AND THE RAY EQUATIONS

It is assumed that the magnetic field varies in both magnitude and
direction from point to point in the medium, but is sufficiently strong at
all points to saturate the magnetization. The geometrical optics ap-
proximation is appropriate when the magnetic field is almost constant
over regions comparable with a wavelength in dimension, so that a solu-
tion to the magnetoelastic equations having the form

M (r)eﬁff(r)
R (r)e*®

appears over a small region as a plane wave with relatively slowly vary-
ing amplitude. If the assumed solutions are introduced into the equations
of motion and spatial derivatives of R and M are neglected, equations
(1) are obtained with | Vi | substituted for | k |, and the angle between
the “loeal” wave vector V¢ and the local magnetie field is substituted
for 0. With the same substitutions, the slowness relation (2) reduces to a
first-order partial differential equation for the phase function ¢,
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Q(C":pi 3 Ii) =0

p,»:g%, i=1,2,3. (4)
This is the eikonal equation or equation of geometrical opties. In the
neighborhood of a singularity of the medium the approximations made
in deriving the eikonal equation sometimes break down.’ For the case
of eleetromagnetic propagation in a ferrite, Seidel” has shown that
singularities of this kind occur Lecause of the appearance of logarithmie
derivate coefficients in the field equation. It is not clear whether similar
singularities exist for the magnetoelastic equations, and no attempt will
be made to justify rigorously the use here of the geometrical optics ap-
proximation.

The standard method of solving (4) is by means of the characteristic
or ray equations'

dx;/dw = 3Q/dp; (5a)
dp;/dw = —oQ/dz; , (5b)

where w is a parameter. For any set of initial values of p;, x; satisfying
(4) these equations, which form the basis of Hamiltonian optics,*" de-
fine a unique curve in the space w;, 2;, ;. The significance of this
curve becomes clear when the equivalence of p; to the component k;
of the “local” wave vector is recalled, This shows [from (3)] that the
tangent,

. afl 99 o0
duyidre:dry) = | —i—1—
(dsdisidrs (Bp- ap: ﬁpa)’

to any curve defined by (4) and a set of initial conditions is always col-
linear with the group velocity vector. Therefore the curve, or ray path,
obtained by integrating (5) describes the trajectory of a wave packet
launched at a specified point x; with a specified ‘“local” wave vector
k; = p:. The value of the phase function ¢ at any point on the ray path
is obtained implicitly from

dy a0

dw " op,

a9 a0
+ p — . 6
P + ps o, (6)
where [from (5a)] dw is related to the increment in ray path length ds
through the relation

_[fae Y | [0 ) (39 )2}*
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When the wave vector surface has more than one sheet there are
several initial group velocities corresponding to the same initial wave
vector direction. These are distinguished by the magnitude of the initial
wave vector, and a wave packet will therefore trace out different ray
paths according to the magnitude of the initial wave vector, each path
corresponding in a local sense to propagation in a mode associated with a
particular branch of the dispersion diagram. When there is only a slow
spatial variation of the magnetic field there will be little coupling between
modes and the different ray paths will maintain their distinet identities.

The present discussion will be concerned with ray paths corresponding
to branches T and I1IT of the dispersion diagram. In this case Schlomann®
has shown that, in the region where the uncoupled magnetic and trans-
verse elastic waves cross, the slowness relation can be written ap-
proximately as

(0 — wy){w — ck) — (6/2)wecf(8) = 0,

where ¢ = vb*/aM, w., is the crossover frequency for the uncoupled
waves, a is the elastic stiffness ¢4, and

£(8) = (2 — 5sin® 0 + 4sin’ 0) (1 + } wu'w, " sin* §)*

+ 1 wyw, 'sin' 6(3 — 4sin® 0))]-
At the lower microwave frequencies it can be shown that the & depend-
ence of w, due to exchange has a very much smaller effect on the slope

of the dispersion curves than does the magnetoelastic coupling. If
exchange is neglected

1

Wor = Wy = wg(l + %Si.nﬂﬂ) ,
wy
in which wy = ¥H and the eikonal equation takes the form

o, pi, ) = (p + pd + ) + — @f(0) _w _ 0, (7)

26 0w — w, c;

where 6 is the angle between the vector (pi:p::ps) and the local magnetic
field.

In the following section attention will be directed toward rotationally
symmetric systems, with rays travelling in meridian planes. It is ap-
propriate, then, to use a cylindrical coordinate system, and (5) and (7),
which are written in Cartesian coordinates, must be transformed. Since
the ¢ component of Vy is zero, (7) becomes
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imsf(a) __f-i=0

Q(vaf: P:, "12) = (p"2 + pzz)% + 2Cz W — W, Ci (8)

f=n—¢
where 7 = tan™' p./p. and £ is the polar angle of the local de magnetic

field (see Fig. 3). In a rotationally symmetric system the ray equations
(5) transform into

dr/dw = 9%/ dp;, dz/dw = 9Q/dp, (9a)

dp,/dw = —aQ/adr, Ip./dw = —Q/dz (9b)

IV. PARAXIAL RAY EQUATIONS AND REFRACTION IN CONVERGING AND
DIVERGING MAGNETIC FIELDS

The discussion will now be restricted to the paraxial case; that is, only
rays lying close to the symmetry axis and traveling almost parallel to it
will be considered. Then

R P/Ps .

Furthermore, the rotationally symmetric magnetic field will be assumed
to be almost parallel to the axis (¢ < 1). Since 6 < 1,

f(0) =1 — 25 6,
and, when wy/wy < 10,
Wy X wy + wy(92/2).

If w =~ w, the denominator of the second term in (8) is small and

a9 iw.f(ﬂ) ~ w,f(8)  dw, 90

i 26, 0w — w, T2 (w — w,)? 38 api
20wl o ol (000 | du 20)
ar: 20, @ — wy - 2¢ (w — w,)? \OH dx: ' 90 ox.)’

where p; = p,, p. and x; = r,z. Then

(& _ 5)
aQ Dr gww \P:
ey THRM AP 7 10
ap. P T 2ep: (w — wg)? (10)
a1

=1 10
ap: ) (10b)

where only terms linear in p,/p. and £ have been retained, in accordance
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Fig. 3 — Orientation of the “local’ wave vector Vy relative to the local mag-
netic field.

with the paraxial approximation, and w, & wy has been replaced by w
in the numerator of the second term in (10a). Similarly

on
o _ ‘E____‘Y ar (11)
or 2 (w — wy)?’

From (9), (10) and (11) the paraxial ray equations are
A %(p + fan (/5 — O) (12)

dz 2 (w — wg)?
and
oH
dp. _ _ow " or _ (13)
dz 2 (w0 — wg)?’

In the paraxial approximation p. is obtained directly from (8),

w ag
pi (1= s ) o

Consider now the case of a composite magnetic rod, the middle and
outer sections having saturation magnetizations M and M " respectively,
which is magnetized along its axis (see Fig. 4). The potential function
for the dipolar field on the center line of the middle section, assuming

M’ 2a [—'Z M M’
¥ r

z=-1 z=1

Fig. 4 — Composite rod configuration.
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uniform magnetization, is"
Vo) = 20 (M — MO — 2 + ) — {0+ )" + oY} + 2

if the end effects of the outer sections are assumed to be negligible. Close
to the axis the potential function is

M

_[D(T,Z) = -Vp(z) - 4—:6'(1— Vﬂ(z)

Assuming (a/1)" < 1, this leads to an internal field in the central region
of the middle section

e 2
H =~ Ho—Gar(ﬂ[—-M) ( —272)
(15)
ENGTI'(A’I — MY der

H,. H, Epe

E E
where only terms up to second order in z/1, 7/l have been retained. Equa-
tion (15) shows that the internal field diverges with increasing |z
when M’ < M and converges when M’ > M. This result has been de-
rived under the assumption of uniform magnetization. Actually the
magnetization in the rod will itself be nonuniform, and nonuniformity of
the field will be greater than is shown in (15).

A plane magnetoelastic wave is assumed to be propagating in the +z
direction at the midpoint of the rod, z = 0. Since p, is then zero at this
point and ¢ = 0 from (15), it follows from (12) that dr/dz = 0. This
means that the ray paths are parallel to the axis at z = 0. Elimination
of p, and p. from (12), (13) and (14) leads to a second-order differential
equation with variable coefficients for r (z), and the ray path trajectories
are obtained by solving this equation, subjeet to the assumed initial
conditions. In this case a numerical integration is required for a com-
plete description of the ray paths. If only the direction of refraction is
required, the following simpler procedure may be used.

Substitution of (15) into (13) leads to

r
dp, _ 3ow _ o 2
dz = 4_Ct (wu W) i 3 @ 2\
w —wam"l‘_;(wu—ww)ﬁﬁ
where

wy — war = ydr(M — ]W’)

. gty 22
W, = %Y (Hn + 'i'—'(ﬂj 4 ju )Ellj) .
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Over a small range of z close to z = 0 the value of r will not change ap-
preciably along a ray path and dp,/dz may be integrated directly, giving

_3aw (wM—er)gfgﬂ_' (16)
._4—6: (CIJ - f-"ﬂ'm)2 52 lz

Pr =

to second order in z/{. This shows that the ‘“local” wave vector deflects
toward the axis with increasing z when M’ < M and away from the axis
when M’ > M. The corresponding slope of the ray path is found by
substituting p. and p, from (14) and (16) into (12). That is

2
dr oWy wy | a zr

_ a4l
e e e A L

- 2(e — wn,)

(17)

up to terms of second order in z/I and r/l, where

30(wy — wyr)

A= - .
(- gt a) e

Equation (17) shows that when the field diverges (M’ < M) mag-
netoelastic ray paths which are axial at z = 0 will converge, and vice
versa. This is easily understood in terms of simple physical concepts.
When the internal field decreases with inereasing | z | it increases with
inereasing r, as shown by (15). For a fixed frequency and propagation
angle it is clear from Tig. 1 that the “refractive index” ke./w decreases
as H inereases. If the anisotropy of the dispersion relation is ignored for
the moment, this means that off-axis rays curve toward the region of
higher “refractive index” closer to the axis. This isotropic effect is
enhanced by anisotropy in the dispersion relation. When the wave vector
is deflected from the magnetic field direction the ray path (defined by
the group velocity) is deflected even further, as shown in Fig. 2, leading
to an increased bending of the ray path.

This enhancement of the refractive effect by anisotropy is represented
in (17) by the second and third terms under the bracket. In order to
estimate the magnitude of these effects consider a YIG rod with a/l =
0.1 and wy, = 27 X 10°. For YIG ¢ = 4 X 10°sec ' and wy = 3.08 X
10". According to Schlémann® one-half the minimum frequency separa-
tion of the transverse magnetoelastic branches is

wmin = (ower/2)} & (own,/2)} = 1.12 X 10°

If this value is assumed for @ — wx,, the approximations used in obtain-

m

ing (16) and (17) are valid when z < 0.11, » < 0.01l. At z = 0.1, r =
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0.017 the anisotropic terms in (17) are found to be an order of magnitude
larger than the isotropic term, and the slope of the ray path is

d r 4
— = =77X 10",

dz X
On the basis of an extrapolation at this slope, the ray path should inter-
sect the axis at z &~ 10/. The actual intersection would be closer than
this because the ray path slope changes continuously with z. When the
signal frequency is shifted closer to wy,, , an increased refraction results.
For example, if

W — Wy, = wmin/B

the phase velocity of the magnetoelastic wave is, from (8), still within
a few per cent of the acoustic velocity; but the slope of the ray path at
z = 0.1}, r = 0.01] is now

dr —2
e —-32 X 10
and the extrapolated intersection point occurs at z =~ 0.3{. This large
change in refractive power with decreasing w — wy,, is due to the reso-
nance denominators in (17) and is an indication of the steep slopes of the
wave vector surface, Fig. 2, in the vicinity of § = 0. The approximations
used in obtaining (17) are, of course, not valid at resonance but are still
at least marginally valid in the case considered here.

V. CONCLUSIONS

It has been shown that in a uniformly magnetized medium the phase
and group velocities of a magnetoelastic wave are not collinear except

¢Hs
]
|
1

H, i[Ho
|

k ,_L ...Lk

| v

Fig. 56 — Beam steering by means of an auxiliary field.
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Fig. 6 — Examples of lens configurations.

when the wave veector is either parallel or normal to the magnetic field.
This effect might be used for steering or switching an ultrasonic beam by
means of an auxiliary field (see Fig. 5). Since the direction of the wave
vector remains constant, the phase fronts remain parallel to the trans-
ducer faces.

Substantial refraction effects have been shown theoretically to occur
in a nonuniformly magnetized medium. For the case of a magnetized

i~

rod it is found that paraxial magnetoelastic rays at frequency w = wy

[Ho

——— PURE ELASTIC WAVES
MAGNETOELASTIC WAVES

Fig. 7 — Wave vector surface for branch IIT of the dispersion diagram, at
w = |wploy + wu)ll
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converge when the dipolar field and the applied field are opposing and
diverge when the fields are aiding. In arriving at these results, the ef-
fects of losses and scattering due to imperfections have been ignored. By
a similar analysis it can be shown that an annular permanent magnet or
a circular coil encireling the rod will act as a converging lens if its field
aids the applied field and as a diverging lens if the fields are opposing
(Fig. 6). Paraplanar ray equations can be derived for radial propagation
in an axially magnetized thin disk at a frequency w = {wa(ws + wu) i
In this case the anisotropic refraction effect is found to oppose the iso-
tropic effect and can even cause the net refraction to change sign. The
physical reason for this can be seen by examining the wave vector sur-
face for this case; see Fig. 7. This shows that a deflection of the wave
vector away from 8 = /2 produces a deflection of the group velocity in
the opposite direction.
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