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Sufficient conditions are presenled for the boundedness of the solutions
of a vector nonlinear Volterra integral equation of the second kind that fre-
quently arises in the study of automatic control systems containing an arbi-
trary finite number of time-varying nonlinear elements. Similar conditions
are given for the boundedness of the solutions of the discrete analog of the
integral equation.

A direct application of the resulls yields a Nyquist-like frequency-domain
condition for the ‘“bounded-input implies bounded-output stability” of a
large class of feedback systems containing a single time-varying nonlinear
element.

I. NOTATION AND DEFINITIONS

Let M denote an arbitrary matrix. We shall denote by M', M¥,
and M, respectively, the transpose, the complex-conjugate transpose,
and the inverse of M. The positive square root of the largest eigenvalue
of M*M is denoted by A{M}, and 1y denotes the identity matrix of
order N.

The set of real measurable N-vector-valued functions of the real
variable ¢ defined on [0,= ) is denoted by 3Cy (0,2 ) and the jth com-
ponent of f ¢ 3¢y (0,% ) is denoted by f; .

The sets £.v (0, ) and L.y (0, ) are defined by

Loy(0,2) = :f|fsJCy(0,oo),§gg [F(Of(1)] < =}
Loy(0,0) = {rrfascy(o,ao), fwf’(t)f(t)dt < oo}
0

The norm of f &€ £ay (0, ) is denoted by || f || and is defined by
439
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151 = (fuwf'u)fu)dx)i.

With this norm £.x (0,0 ) is a Banach space.
Let y £ (0, ) and define f, by

fu(t) =f(t) for tel[0y]
=0 for t>y
for any f € 3y (0,% ), and let
ey = If | fedey (0,0),f, & Lo (0,2) for 0 < y < oo},

With A an arbitrary real measurable N X N matrix-valued function
of ¢ with elements {@.»} defined on [0, ), let X~ (p = 1,2) denote

{Allwlanm(t)|”dt <w (nm = 1,2, ---,N)}.

Let ¢[f(t),t] denote
Walfr ()Wl fa O8], -+ ealfn ())& 3w (0,0)

where yi(w,t), ya(w,t), - -+, yn(w,t) are real-valued functions of the
real variables w and ¢ for —» < w < » and 0 < t < « such that
(1) yn (0) = 0forte[0,0)andn = 1,2, --- | N
(i7) there exist real numbers a and 8 with the property that

aéwgﬁ (n=12---,N)
w
for ¢t € [0, ) and all real w = 0.
(1) Y 0 (t),l](n = 1, 2, ---, N) is a measurable funetion of ¢
whenever w(t) is measurable.
The symbol s denotes a scalar complex variable with ¢ = Re [s]

and @ = Im [s].

1I. INTRODUCTION AND SUMMARY

In the study of physical systems such as nonlinear automatic control
systems containing an arbitrary finite number of time-varying nonlinear
elements, attention is frequently focused on the properties of the
equation

g(t) = f(¢) + j; k(t — 7)ylf(r),rldr, tz0
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inwhich g e &y ,fe &, k(-) & Kox , and ¢[-,-]is as defined in the previous
section.
In Ref. 1, the following theorem is proved.

Theorem 1: Let k &£ Xyn , and let
t
o) = w(®) + [ k(e = ki) ldr, 120
0
where v £ Loxy (0,0 ) and w £ & . Let

K(s) = fw ke dt, oz 0.

0

Suppose that
(2) det [y + 3(a + B)K(s)] =0 for o 20
(@) 3(8 — «) Sup Allly + 3 (o 4+ BK (f)]  K(iw)} < 1.

Then % ¢ Laon (0,%0), and there exists a positive constant p which depends
only on k, a, and (3 such that

full = pllvll

The primary purpose of this paper is to prove the following related
result.

Theorem 2: Let t*k € 3w N Kow for p = 0, 1, 2. Let
o) = 10 + [ Kt —ulf()dr, 120
where g € Lon (0, ) and [ € &x . Let
K(s) = f:k(&)e“”dt, = 0.

Suppose that
(i) det [y + 3 (@ + B)K(s)] # 0 for o =20
W) (8 — a) sup A{lly + 3(a + B)K (iw)] K (iw)} < 1.

—00< w <%0

Then f € Lo (0, ), there exists a positive constant ¢ which depends only
on k, a, and 38 such that

mazx sup | f;(t)| £ ¢ mazx sup | g; (£)],
i t20 i t=0

and f;(t) = 0ast— = forj = 1,2, -+, N whenever g;({) — 0 as
t— o forj =12 ---,N.
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A direct application of Theorem 2 yields a frequency-domain condi-
tion for the £.-stability’ of a well-known type of feedback system.
This is diseussed in Section 1V. In Section V, sufficient conditions are
stated for the boundedness of the solutions of the diserete analog of the
nonlinear integral equation considered in Theorem 2. In Seetion VI, we
describe some additional results that can be proved by combining the
methods of this paper with the Loy (0,0) arguments of Ref. 1 and
another earlier paper.

1II. PROOF OF THEOREM 2

Assume throughout this section that the hypotheses of Theorem 2 are
satisfied.

Let g;(¢) be defined on [0, ) by

g;(t) = M te{t|t=0,f(t) =0)

Ji(t)
=La+8), teft|tz0[(t) =0}
forj = 1, 2, ---, N; and let ¢(¢) denote the diagonal matrix
dia’g [%(”ﬂz(t): Ty QN(t)l. Then

t
0t) = f0) + [ k= Da(e)f(r)dr, 20,
0
Let a be an arbitrary positive number, and for each nonnegative
integer n let g™ () be defined on [0, ) by
g™ () = g@), na =t < (n+ 1a
= 0, 0<t<naandi = (n+ 1)a.
Lemma 1: For each integer n = 0, Lox (0, ) conlains a unique element
™ such that
(7) f(")(t) = 0, 0st<na

(33) ¢™(t) = F(1) +]D k(t — r)g(r)f™ (7)dr, tz0.

Proof of Lemma 1:

Clearly g(") € Lox (0,0 ) for n = 0. Let I denote the identity operator
on Loy (0, ), and let K and Q denote the mappings of £:v(0,%) into
itself defined by’
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(Kh) (1) = fu! k(¢ — 7)h(7)dr, t=0

(QR) (1) = (Wha(t), @(Oh(t), -+, av(Ohx (1)), 20
where h is an arbitrary element of £ax (0, ).

According to Lemma 5 of Ref. 1, the operator [I + 3(a + B)K]
possesses an inverse on £.y (0, ). Thus the functional equation

g™ = ' 4+ KQr™, B & £ (0, )
can be written as '™ = ThA'™| in which T is defined by
Th® = I + }(a + BRI ¢
— [+ 3+ BKITKIQ — 3(a + A)IA™.
Using the bounds of Lemma 5 of Ref. 1, and the fact that « < ¢;(f) < 8

forj=1,2, ---, Nand ¢ = 0, it can easily be shown that T is a con-
traction mapping of Ly (0, ) into itself. Thus, it follows from the
contraction-mapping fixed-point theorem that £.y(0,%) contains a
unique element, f'™ which satisfies condition (#7) of the lemma.
Since [I 4+ % (a 4+ B)K]| ™" is necessarily causal, and
™ = lim T™,

in which 6 is the zero-element of £.x(0,% ), we see that f = 0 for
0=¢{<naandn > 0.

Lemma 2: Let f'™ be the associate of ¢g'™ in accordance with Lemma 1.
Then

El

fiy=>7"w, t=zo.

n=0

Proof of Lemma 2:
Let

%
<

o = Zﬂ,f“’)(t), L=
Then
g(t) = f(t) + f Lt — r)g()f(7) dr, =0
0

and hence
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0 = 150y — fl + [ Bt = Dg(O) = He)dr, £z 0. (1)

Theorem 1 implies that (f — f) & £ax(0,%¢) and that || f — f| = 0.
Since the integral in (1) must therefore vanish for ¢ = 0, we have

f(t) = f(t) for t=0.

Lemma 3: Let f'™ be the associate of g™ in accordance with Lemma 1.
Then there exists a positive constant @ which depends only on k, a, and B
such that

FAGIEArA0]
+ (1 +t—na)7Q01 + a)*(Na)'maz sup | ¢, (t)|,
i t=0
t = na

forj =1,2,-+-, N and every n =z 0.

Before proceeding to the proof of Lemma 3, it is convenient to state
the following result, which is easily provable with the aid of Parseval’s
identity, the well-known extremal property of the largest eigenvalue of
a Hermitian matrix, and the Schwarz inequality.

Lemma 4: Let w € Kan N Kow , 2 € Lov (0,0 ), and
i
y(®) = [ wit = Da(r) dr for 120,
0

Then:
(@) y & Lan(0,0)

(#7) with W(jw) = j;"' w(t) et dt (—0 € w < ®),

lyll = sup AW () 2]
—ow<w

N o ¥
(i) 1wt | 5 (2, [ 1w P at) 121
m=1 ¥0
fort=20andn=12,---,N.

Proof of Lemma 3

Let n denote an arbitrary nonnegative integer.
Since

JM () = ) +fu Kt — D)g()f™(r) dr, €20
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it is eertainly true that for each positive integer p

(14t —na)%™ ) = (1 4+t — na)’F™(t)
+ _/; E(t — r)[(1 4+ 7 — na)

+ (t — )Pqg(+) ™ (7) dr, t=0
or, what is the same thing,

hipt) = (1 4+ ¢t — na)”f™(t)
-+ j; k(t — 7)g(r)(1 + 7 — na)pf(")(r) dr, t=0

in which

hmn=u+t_mymm

qlr)(1 + 7 — na) f‘ ’(T) dr, t=0.

From Lemma 4, our assumption that tk ¢ 3~ , and the fact that
T & £ax (0,00 ), it is clear that £ (1, ) & Lax (0, ). A direct application
of Theorem 1 to (2) with p = 1 shows [recall that « = ¢;(¢{) = 8 for
t=0andj =1,2, ---, N| that (1 + ¢ — na)f'™ & L (0, ) and
that there exists a positive constant ¢, that depends only on k, «, and g8
such that

[+t —na)f™| £ al 2@,-)].
Since by assumption £k & Xy, this argument can be repeated for
= 2. Thus, (1 + ¢ — na)’f'"™ & £.v(0,% ) and
1A+t — na)™|| < el R(2,)].

Using Lemma 4, our assumption that {'k ¢ Xon (r = 0,1,2), (2) with
p = 2, our bounds on ||(1 + ¢ — na)f™| and ||(1 + ¢ — na)’f™|,
and the fact that || f”] = e ¢"||, it is a simple matter to show that
there exist positive constants e., 3, and ¢s, each depending only on
k, a, and B, such that

0= W+ A+t —na) el 1+t — na)’g™
+ el (1 + t — na)g™ | + el g™]), ¢ = na

forj=1,2,.--,N.
Since
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Ig™l = 11+t — na)g™|l < |1+t — na)y"™,
and
(1 +t—na)™ | = (1+a)]g" |

(n+1)a i
= (14 a)* (f g (t)g(t) dt)

na

A

(1 + a)*(Na)* max sup | g;™ (1) |,
i tz0

we have, with @ = ¢ + ¢z + ¢,

L @] = g5 @
+ (1 +t—na)Q1 + a)*(Va)' max sup | g, (t)],
itz

t = na

forj = 1,2, --- , N. This proves Lemma 3.
Let ¢ satisfy ma < t < (m + 1)a where m is an arbitrary nonnega-
tive integer. Then, by Lemmas 1, 2, and 3

0= 500 = L100,

and

|75 ()]

IIA

nizolfjw ®)]
1 g, ()]

+ ¢s(a) max sup | g;(t)lzo (1 + ma — na)™
itz n=

IIA

forj = 1,2, -+, N, in which
es(a) = (1 + a)*(Na)*.
Let

cs(a) = E (1 + na)™

n=>0

Since

i 1+ ma — na)”t < > @+ na)_2,
n=>0 n=0
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we have
|£i(t)] < sup | g;(t)| + ¢s(a)es(a) max sup | g;(t)]
tz0 b t=0
for every integer m = 0 (and hence every t = 0) andj = 1,2, --- , N.
Therefore

max sup [ fi)] = [1 + es(a)es(a)] max sup | gi(t)].
bl = 7 =

Now suppose that ¢;({) — 0as{— = forj= 1,2, .-, N. We will
show that for each ¢ > 0 there exists a {. > 0 such that |f;(t)] < e
fort > teand j=1,2,---,N.

Let ¢ > 0 be given, and again consider the relation

]

HOEWAIO}
Since

i |7 ()] = max sup Ig,(f)l[l + cs(a) Z (1 + ma — na)‘{l

n=n) 7 tzna n=n,

IIA

max sup | g,()|[1 + es(a)es(a)]

7 tzna
for ma = na =t < (na + 1)a, with n; and n, positive integers, it is
clear that there exists a positive integer ny such that

S @) < %e for t=Zma and j=1,2, .-, N.
n=njy
TFrom the inequality

(n3g—1) (n3g—1)

Zn | /i ()] £ es(a) max sup | g;(1)] Zﬂ (1+t—na)”, = na
n=l 1 = n=

it is evident that there exists a positive integer ny > ns such that

(n3—1)

S| < e for t>mna and j=1,2, .-, N.
0

=l

Thus

150 = 216" <e for t>na and j=1,2, .. N

n=0

This completes the proof of Theorem 2.
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Remarks:

With regard to the hypotheses of Theorem 2, it can easily be verified
that if the elements of & are uniformly bounded on [0, ), then the
assumption that f ¢ &y can be replaced by f ¢ 3ty (0, ) with locally
integrable elements.

In most cases of interest the elements of ¢”k are uniformly bounded
on [0, ) for p = 0,1,2. In such cases {’k ¢ Xy N Kox for p = 0,1,2
provided that 'k & Ky .

IV. AN APPLICATION: A FREQUENCY-DOMAIN CONDITION FOR THE L.-
STABILITY OF FEEDBACK SYSTEMS CONTAINING A SINGLE TIME-VARY-
ING NONLINEAR ELEMENT

In a recent brief,” a two-part sufficient condition is given for the
£.-stability of a well-known type of feedback system conta.mlng a
single time-varying nonlinear element. In another publication,’ condi-
tions are presented for the Lo-stability of the same type of feedback
system. Unlike the conditions for £o-stability of Ref. 4, which are ex-
pressed entirely in the frequency domain, the key condition of Ref. 2
for £_-stability is that the integral of the modulus of a certain function
be less than unity.

A direct application of Theorem 2 shows that under somewhat
stronger assumptions than those of Ref. 2 or Ref. 4 concerning k(- ),
there the impulse-response function of the linear time-invariant portion
of the forward path, the conditions given for £;-stability are also suffi-
cient conditions for £.-stability. Specifically, the following result is a
direct consequence of Theorem 2.

Theorem 3: The feedback system described in Ref. 2 is £.-stable if

(7) f | k() |di < andf | *k(t) [*dt < » forp =0,1,2
0 0

(43) with K(s) = f k(e dt fore = 0,
0

(@)1 4 3(a+ B)K(s) #0 fora =0
(b) 3(8 — @) max | K (iw)[1 + 3 (e + B)K ()| < 1.

—olwn

Part (b) of (i%) above is a weaker condition than the condition of the
theorem of Ref. 2 that it replaces [i.e., (i) of Ref. 2]. From an engineer-
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ing viewpoint condition (¢7) above possesses an interesting frequency-
domain interpretation.*t

V SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF SOLUTIONS OF
THE DISCRETE ANALOG OF THE INTEGRAL EQUATION CONSIDERED IN
THEOREM 2

Sufficient conditions for the boundedness of the solutions of the dis-
crete analog of the nonlinear integral equation considered in Theorem
2 can be obtained by modifying in a straightforward manner both the
arguments presented in Section IIT and the arguments of Ref. 1 that
lead to Theorem 1. In order to state the result (Theorem 2’, below)
we need some notation.

Let = denote the set of nonnegative integers. Let JCx be the set of real
N-vector-valued functions defined on =, and let the jth component
of f £ 3y be denoted by f; . Let

v = 1f|f¢ ff'C:v,fgg [f' ()f(n)] < o,

oy = {f|feBon, 2 m)f(n) < =},

n=0

and

e = (S F ) () for fe By,

n=0

With B an arbitrary real N X N matrix-valued funection of n with
elements {b;n(n)} defined on Z, let K,v(p = 1,2) denote

[B‘ i lb"""(n)tp < = (llm = 1;2; Tt 1N)}.

n=0

Let ¢[f (n),n] denote
(erfi () nligalfo () m], o onl (v (m),n])',  fe By

where ¢ (w,n) g2 (w,n), - -+, ex(w,n) are real-valued functions of w and
nfor —w < w < « and n ¢ = such that

(7)) ¢m(On) = Oforne ZEandm =1,2, --- | N
(77) there exist real numbers o and 8 with the property that

T We take this opportunity to correct the result of a typographical error: In
the first inequality on page 1606 of Ref. 4 the ‘“<’’ sign should be replaced by
(ES 1 .
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o

‘Mlgﬂ (m=1,2 -, N)
w

IIA

Pt

forallreal w % 0and n ¢ E.

Thearem 2': Let n'k € Rn . Let
o) = F@) + X kG = mlelfm)m),  me B
where g & Loy and f € 3y . Let

K@) = 2 k(n)e ™, o= 0.
n=0
Suppose that
(¢) det [1x + 3 (a + B)k(0)] #= 0, and
det [Iy + (e + B)K(8)] #0fore = 0

@) 3(8 — a) st Sup._ Ally + 3o + B)K ()] 'K (iw)} <
Then f € Lan, there exists a positive constant ¢ which depends only on
k, a, and 8 such that

mazx sup | f;(n)| £ ¢ maz sup | g;(n)l,
i nz0 i n=0

and fi(n) = 0asn— = forj=1,2,---, N whenever g;(n) — 0 as
n—o woforj=12---,N.

In the statement of Theorem 2" we have used the fact that n*k £ o N
FKon for p = 0, 1, 2 provided that n’k ¢ Riw -

The result analogous to Theorem 1 is the following theorem.

Theorem 1': Let k € ®in , and let

I

gn) = fn) + Z k(n — melf(m)m],  ne

m=0

where g € Loy and f & 3y . Let

K(s) = ik(n)e_“, .

v
=]

Suppose that
(1) det 1y + 3 (a + B)k(0)] # 0, and
det [Ly + 3(a + B)K(s)] # 0 for o = 0.
(@) 38 — @) sup Allly + $(a + B)K (i) 7K (iw)} < 1

—TLuwET
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Then f & Loy , and there exists a positive constant p which depends only on
k, a, and B such that

Ifl-=ellgl--

VI. SOME ADDITIONAL RESULTS

Arguments very similar to those of Section III and the proof of the
lemma of Ref. 5 can be used to establish the following result, which is
of direct interest in the study of the properties of solutions of systems
of differential equations.

Theorem 3: Let t™k ¢ B N Koy for p = 0, 1, 2. Let Q(-) denote a real
measurable N X N matriv-valued function af t defined on [0, ), and let
the elements of Q) (t) be uniformly bounded on [0, ). Let

t
o0 =10 + [ k= Demi dr, 1z 0
where g € Lox (0, ) and [ € &y . With
K(iw) = f K()e ™ dt for —o < < w©,
0

let
sup A{Q(e‘)]_sup AlK (i)} < 1.

Then f ¢ L.n (0,2 ), there exists a positive constant ¢ which depends only
on k(-) and Q(-) such that

max sup | f,(1)| = ¢ max sup | g;(t)|,
iotz0 i =0

and f;(t) = 0ast — = forj = 1,2, ---, N whenever g;(t) — 0 as
t— o forj=1,2,---,N.

Theorem 3 remains valid if the sets XKiv, Hoev, Lwn(0,%), and &y
are replaced with their natural complex extensions, and Q(-) is per-
mitted to be complex valued.

A result that ean easily be proved with the aid of Theorem 3 (see the
proofs of the theorem and corollary of Ref. 5) is as follows.

Theorem 4: Let @ (-,-) be as defined in Section I with N = 1 anda > 0,
and let f be any real-valued function of t defined and twice differentiable on
[0,90 ) such that

d’f df B
dt.l'f‘ﬂ-m'i'\b[f,t]—g, t

v
o
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where g(t) is uniformly bounded on [0,% ). Suppose that a s a real con-
stant such that a > /B — ~/a. Then f(t) is uniformly bounded on
[0,0),and f(t) > 0ast— = ifg(t) = 0asi— .

The following theorem, which can be proved with arguments very
similar to those of Section III and the proof of Theorem 5 of Ref. 1,
is of immediate interest in the theory of stability of electrical networks
containing time-varying ca.pacit',ors.‘i

Theorem 5: Let t"k ¢ Kix N Kon for p = 0, 1, 2. Let B denote a constant
real N X N matriz, and let a;(¢),a2(t), -+ -, ax(t) denote real-valued
measurable functions of the real variable t for { = 0 with the property that
there exist real constants a and 3 such that

agaﬂ(t)gﬁ (?1=1,2,"',N)
for t = 0. Let A(t) = diag [a.(t),a2(¢), -+, ax(t)] for t = 0, and let

o) = AWF0) + B + [ K= Dftr)dr, 120

where g € Ly (0, ) and [ € &y . Suppose that
(@) det [3(a + B)1x + B] # 0, det [A(t) + B] = 0 for t = 0,
and sup A{[A(t) + B} < =;
t =0

and that, with
K(s) =f Ee dt for o 20,
0

(i6) det [§ (o + )Lv + B + K(5)] # 0 for o 2 0
@) 48 — a)_sup Alli(a+ By + B+ K@)} < 1.

Then f € Lox (0, ), there exists a positive constant ¢ which depends only
on A(-), B, and k such that

max sup | fi()] = ¢ max sup | g;(t)],
i t20 i t=0

and fi(t) = 0ast — o forj = 1,2, ---, N whenever g;(t) — 0 as
t— oo forj=1,2,---,N.

Theorem 5 remains valid if the sets Kiv, Kov, Lon(0,%0) and &Ex
are replaced with their natural complex extensions and B is permitted
to be complex valued.
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