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The purpose of this paper is fo discuss an epoch detection procedure
which is very useful for the resolution and detection of signals overlapping in
time. An epoch is the beginning instant of a signal. The epoch detection
procedure is based on the following hypotheses: On the null hypothesis H,
that a certain instant t is not an epoch, analytical continuation exists at t,
and one may predict the signal in the future based on past experience
or vice versa. On the hypothesis H, that t is an epoch, the analytic continua-
tion is disrupted at t.

Based on this idea and the assumption of a Gaussian noise, a test statis-
tic s derived from the maximuwm likelihood principle. The test statistic
may be obtained at the output terminal of a Linear filter. The performance of
suech a system s considered. Also discussed briefly are the cases of over-
lapping stochastic signals and overlapping radar signals. Some experi-
mental results obtained from a digital computer are shown.

I. INTRODUCTION

Consider a signal composed of a train of overlapping wavelets.* The
wavelets may, for one reason or another, arrive at the receiver (or
measuring apparatus) delayed by different amounts of time. The time
delays of the individual wavelets are unknown, but their differences may
be relatively small so that the wavelets overlap. The beginning instant
of each wavelet is called an epoch. These signals are corrupted with
Gaussian noise. Our problem is to detect the overlapping in time. In
other words, we wish to design a practical system which enables us to
resolve the received signal train into overlapping wavelets and to de-
seribe them individually.

The theory of statistical detection of signals buried in noise has been
well established.!** In the field of resolving overlapping wavelets, Hel-

* We use the word “‘wavelets’’ for the individual overlapping wavelets, and
reserve the word “‘signal” for the over-all signal train.
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strom® discussed the optimum detection of two overlapping wavelets.
With his assumption that one wavelet is separated from the other by
known amount of time, the problem is considerably simplified and
relatively easy to handle. Nilsson® discussed the problem of resolving N
overlapping wavelets by deriving an equation to be maximized in an
N-dimensional parameter space. Iiven in the case N = 2, the maxi-
mization of this equation is very complex and practically unsolved.
Root? considered the general resolvability of radar signals, but gave no
decision rule. Other studies related to signal resolution place most
emphasis on the study of ambiguity functions®® and on the design of a
radar waveform which is inherently suitable for signal resolution.?

Generally speaking, for N overlapping wavelets, an optimum detec-
tion procedure would always involve searching for the maximum value
of a likelihood funetion in an N-dimensional parameter space.® For N
large this is hardly practical, and furthermore, if the number ¥ is un-
known, the problem becomes even more complicated. In a recent memo-
randum,!! the author suggested an epoch detection procedure based
on the properties of the signal at the epochs. The basic idea was
to use a portion of the received signal in the past to predict the signal
in the future, and to announce the arrival of a new wavelet if the pre-
diction failed sufficiently badly. The present paper originated from that
work. We intend to formalize and to develop the principle of epoch
detection.

Consider a signal f(f) consisting of two overlapping wavelets as shown
in Fig. 1. The function f(f) is analytic everywhere except at the two
epochs t; and ¢, . For any instant ¢ which is not an epoch, it is possible
to use the signal immediately prior to ¢ to predict the signal immediately
after. This is indeed the property of analytic continuation. However,
at the two epochs, the statement is no longer true. Indeed we may de-
fine an epoch as an instant at which enalytic continuation is disrupled.

t ta

{ —

Fig. 1 — Overlapping signals.
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It is precisely this disruption of analytic continuation that enables us
to detect the epochs. In practice, we shall use the signal representation
technique to deseribe such disruptions.

We make the assumption that any wavelets, though close enough to
cause overlapping, are separated by at least T seconds, i.e.,

[ti—t| =T, (1)

where ¢; , ; are any arbitrary epochs and 7' is a predetermined quantity.
This assumption is necessary for our formulation, since for any instant
¢ we shall utilize the information in the time interval (¢t — 7',¢ + T')
to determine whether ¢ is likely to be an epoch. We further assume
that any 2T-second segment of the individual wavelets is representable
by a set of known component functions. Then the disruption of analyti-
cal continuation simply means that if an epoch exists in a certain 27T
interval the signal in that interval is no longer representable by the set
of component functions. Likelihood functions may be formulated in
accordance with these criteria. The instant { which corresponds to a
maximum value of a likelihood ratio is then the estimate of the epoch.
This is of course the well-known maximum likelihood method of signal
extraction, which has some theoretical advantages.”'® Other parame-
ters of the wavelet may be estimated simultaneously.

Using the epoch detection scheme, we have in fact reduced an N-di-
mensional problem to N one-dimensional problems. Undoubtedly, in a
process such as this, some information is lost, and one cannot expect
optimum signal resolution except for some extreme cases. However,
the simplicity and the practicality of the process justify our investiga-
tion. The process should be especially useful in the case of strong signals
for which the advantage of a simple system outweighs that of optimality.
In addition, the concept of epoch detection deserves to be studied and
developed on its own right.

11. STATISTICAL EPOCH DETECTION

Let us denote the deterministic signal by f, (¢}, the random Gaussian
noise by £, (t), and the noisy signal by f,1.(¢). In this section, we shall
consider the case that the deterministic signal consists of N overlapping
wavelets with each wavelet being of the same waveform. Then we may
write

Jorn(8) = [ () + [ (0)

Jel
¥ 2
:Z f.fu. f_ tr’») +fﬂ() ( )



404 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

where A4, and #; are the amplitude and the true epoch of the kth wave-
let respectively. The funetion f.(r) represents the waveform of the
individual wavelets.

To begin with, let us assume that each wavelet is representable by a
set of known eomponent functions. This assumption presents no theo-
retical difficulty since, by using a set of component functions that
constitute a complete set, one may represent any continuous signals to
any degree of accuracy. However, practical considerations limit us
to use a set of a finite number of component functions. We are particu-
larly interested in the classes of component functions known as gener-
alized exponentials, which inelude real and complex exponentials, sinu-
soids, polynomials and possible sums of products of such functions.
The generalized exponentials have the following important property.
A finite and properly-chosen set of generalized exponentials, as a set,
goes into itself under the translation of time.® As a result, if a wavelet
fu(7) is exactly representable by a properly chosen set of m generalized

exponentials ¢’ (7),7 = 1,2 - - - m, ie,,
0} —® é T < 0,
fu' (T) = m . (3)
|50, 0srs =
i=1

then the tail of f,(r) is also exactly representable by the same set of
generalized exponentials,

m

fw(t‘l""') = Zci(t)qam('r), 0st=w», 0=r= =, (4)

i=1

where ¢;(t) is the 7th coefficient for a time translation of ¢ seconds.
Obviously, under this condition our earlier assumption that every 27
segment of the individual wavelets is representable by the set of com-
ponent functions is fulfilled. The full significance of this property will
be appreciated later, when we derive the test statistic for epoch detec-
tion.

The assumption of generalized exponentials is not as restrictive as
it first appears. For one thing, most physical wavelets may be represented
by a few terms of these functions. Furthermore, almost all commonly
used functions for signal representation or curve fitting belong to the
classes of generalized exponentials, and if we are willing to tolerate
some inaccuracies by an approximate representation, practically all
waveshapes may be represented by them. It is interesting to note that
for the generalized exponentials ¢ () analytic continuation exists
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everywhere except at + = 0. Consequently, the epoch of a wavelet
fo(7) described by (3) satisfies our earlier definition of disruption of
analytic continuation.

Next, consider the Gaussian noise f, (¢) having a covariance function
R(7)."® The covariance function may be taken as the kernel of an
integral equation,

27T

R(t — r)y (r)dr = AP (7). (5)
0
For our problem, R(r) is real and symmetric, the eigenvalues, }A;,
are positive, and the eigenfunctions, v (), are orthonormal real
functions. Both deterministic and random signals may be expressed in
terms of these eigenfunctic»]us.lﬁ'17 Thus, we may write

Joan(t + ) = z ui(‘)‘pm (1),

]

i+ 1) = D@ ),
falt +7) = gln,-(t)w""(r), ©)
0<r<2T,
and
o (r) = }: wiy'” (r), 0=r=2T, (7)
with
w(t) = [ et 19 (),
50 = [ 1+ o9 (8)
ni(t) = f:rf,.(t + )y (1)dr,
and
wg= [ OO (i (9)

It is essential to note that by this expansion, the random variables
n; (and also v;) are independent variables with variances A; . Since we
are not interested in the singular case,'® we assume that
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(10)

il < e,
= A
We are now in a position to derive the test statistic for epoch detec-
tion. Let us start with the simplest case.

2.1 Known Wavelet at Known Epoch

In this case, we assume that there are reasons to believe that a wave-
let in the form of A.f, (¢ — {) may arrive. Both 4, and #; are assumed
known. In assuming known ;. , it is also implied that no epoch other
than ¢, may appear in the time interval (& — T, & + T'). Let us define
a function

w(r — T T=<7r=27T
() = fu( ) ) a)

0, elsewhere.

We wish to test the hypothesis [, that the wavelet arrives against the
null hypothesis H; that it does not. Thus, we write

Ho:fote — T4 7) = 22 b (r), 0721 @12)
and
Hiifilto = T+ 1) = fu(1) + Daw” (), 0=r=2T, (13)

with f,(+) defined as
Jo(r) = Aeh(z) — A > (1), 0=r=2T. (14)

The constants 7; will be defined later. Let us explain these two hypothe-
ses. In the first place, we notice that in using generalized exponentials
as component functions, it is implied that ¢“’(r) and consequently
fuw(7) extends from 7 = 0 to r = =, as clearly indicated in (3). (The
case of overlapping pulses will be treated later.) Therefore, on the
null hypothesis H,, although the new wavelet does not arrive, there
will be tails of previously arrived wavelets appearing in the time inter-
val (ty — T, &t + T). Since every 27T-second segment of these previ-
ously arrived wavelets is representable by the component functions
@ (7) with 0 £ 7 £ 2T, we obtain (12) with the coefficients b; to be
estimated.

On the hypothesis H, , the wavelet arrives at ¢ = {. . The term A,f; ()
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in (14) simply reflects this fact, since f,(v) = 0 for r < T, as shown
in (11). It is also this term that causes the disruption of analytic con-
tinuation at #.. In addition to the kth wavelet, there are also tails
of previously arrived wavelets, and we might have written for the
hypothesis Hy , fo = Aufi + 2 qi'”. For reasons that will be pointed
out later, we simply split ¢; into two terms, ¢; = a; — Aur;, and ob-
tain (13).

The random variables are independent when expressed in terms of
eigenfunctions, and consequently we expand, similar to (6), fi(r) and
fo(7) into

fu(r) = 2 by (1), 0= 1 =27,
’ , (15)
Jolr) = Z g (r), 0= r=2T,
with
hj = f- f}.(T)l]/'”(T)dT,
’ (16)

qg; = Akhj — A ZT,"M.‘,‘.

The joint probability density for the null hypothesis may then be
written as

| (v; — 22 bauy)®
—— exp| — S S (17
II (em\p)! . ZJ: 2\, )

1

Pn(U,'bi) =

according to (6), (7), and (12). Similarly, we write for hypothesis H,
the joint probability density

1 (vj — Z aiui; — g,')2
Pi(vjai) = ;v————exp| — Z - . (18)
H (2mA;) J 2N

In the absence of a priori information on the tails of previously arrived
wavelets, a reasonable test is the maximum likelihood test which is
given by

max Py(v;a)

= m = exp () (19)

with the threshold » to be determined either by the Bayes criterion or
by the Neyman-Pearson criterion. Equation (19) is equivalent to
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(v; — E aui)’ — 2(0; — 2 ami)g; + gi°
_ ; 1 i

log L = max

a 2\
(U,- - Z b,"l&,'j)g (20)
|-
= .

In order to simplify (20) somewhat, let us write

Uqj
1“"1'5* = 'ﬁ:
(21)
eV *(r) = 20 u* (7).
1
We assume that it is possible to write
Z Uitiy _ 81 (22)

7 )\j

where &;; is the Kronecker delta. Remembering the orthonormality of
eigenfunctions, (22) may be written as

] .. 2?‘ . »
> M S g v (r) dr
i 7\3' 7 0

- Zf w® ()™ (r) dr (23)

27 )
_ j‘; ‘P(”(T)Gﬂt”*(?') dr

= 01i.

Thus (22) is simply a consequence of the fact that ¢'” (+) and ¢”* (+)
form a biorthonormal system." Furthermore,

qaw (M) = E}: ui;“f/m (ﬂ)
Zr': Mus Y ()

= Z ui;* | Ry — 'r)ybm(*r) dr (24)

2T

= R(u — )" *(r) dr.

0

Consequently, ¢"’*(7) is indeed the solution of an integral equation
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and may be obtained for given ¢ (u) and R(uz — 7).” Thus it is al-
ways possible to achieve the biorthonormalization of a set of known
component functions by means of a process similar to the Gram-Schmidt
process of orthonormalization. It is appropriate to point out here that
the assumption of a biorthonormal system is solely for the purpose of
mathematical simplicity.

Now let us define the constant r; as

Ti = Z%h,. (25)
7 7

Then, according to (16), we obtain

S gy, — 2,
)

7 ol A

= Ayr.- - Ak Z T;ﬁu (26)
i

= 0.

In other words, f,(r) is orthogonal to ¢“*(r). Returning to (20),
we notice that because of (26), log L may be simplified into the form of

w—zmﬁ]

2
— S Ul _ 50 _ I
log I = Z:: Aj 21'32?\;'_!_ mfxl: :Z 2X;

(27)
’: (’DJ- — Z bgu;j)2:|
- m?x - ’z T .
However, the last two terms are indeed identical. Thus,
vig; 952
s = - - . 2
log I :Z A :E 2X; (28)

The last term in (28) is only a constant, and we may use the statistic

G=Y =z (29)
FY
for testing the arrival of the wavelet at the instant ¢ = # . Here £ is
the threshold for testing G.

The results may also be expressed in the form of integral equations.
Using a procedure similar to that used in (23) and (24), the statistic
shown in (29) may be expressed as

2T

G= [ forulte = T+ 7)fe*(r)dr 2 & (30)

0



410 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

with f,% () being the solution of the integral equation

2T

fﬂ(.“) = A R(P - T)fo*("') dr. (31)

The function f,(z) has been defined in (14) and is rewritten here.
Folw) = Aufu(u) — A 22 rig™ (u). (14)

The constants 7; , written in integral form, become

i = fo 1”ﬁ'a(r)qa“'}"‘(r) dr (32)

according to (25). For a white noise with a covariance function &(7z),
the results are considerably simpler since in this case,

eV (1) = 7 (1),
fﬂ*(f) = fﬂ(7)~

The test statistic ¢ shown in (30) may be obtained by a linear filter.
If we use a linear filter whose weighting function is characterized by
f,5(r) —or, in other words, if the impulse response of the filter is
f," (=) — then with f,,.(¢) as input, the output of the filter gives us
the desired statistic G with a time delay of T seconds.* As examples,
we show in Fig. 2 some wavelets and the weighting functions of their
corresponding “‘matched’ filters for epoch detection in white noise.
(See Appendix.)

The weighting functions shown in the figure are calculated accord-
ing to (14). It is essential to note the difference between our “matched”
filter and the standard matched filter for the detection of non-overlap-
ping signals. Without interfering signals, the matched filter would be
fu(7), while in our case, a term in the form of Y re'(r) is to be
subtracted from the original waveform, as clearly shown in (14). It
is indeed the subtraction of this term that enables us to suppress the
effect of previously arrived wavelets. It is also this subtraction that
represents the price we pay.

We wish to compute the false alarm and detection probabilities for
the epoch detection system which is based on the statistic G. Since G
is obtained from a linear operation on a Gaussian-distributed variable,
@ is also Gaussian-distributed.” Under the hypothesis H,, its mean
value is

(33)

EG|H = [ f,*(r) 2 b (r) dr =0 (34)
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~ he
L2

0\‘/ 2T T—

SIGNALS WEIGHTING FUNCTIONS

Fig. 2 — “Matched”’ filters for epoch detection in white noise.

since 7,*(r) and ¢ () are orthogonal. Under the hypothesis H;,
the mean value becomes

G (HY = [ 10U + Taw® ()] dr
or ‘ (35)
fﬂ'*(T)fﬁ(T) dr.

The variance of & under cither hypothesis is

Var G = ./;_ -/;- S ) (7)o (p)dpdr
o7 por
= fﬂ , FX ) (@ R(r — p)dudr (36)

=J, Jo*(r)fy(r)dr,

where we have used (31). Thus,
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& = f 14 (7 dr, (37)

a dimensionless constant, plays the role of signal-to-noise ratio (SNR).**
The probability density functions of G are

po(@) = 2nd") ™ exp (—G/2d), (38)
p(G) = (2xd") ™ exp [— (@ — d&*)*/2d).
and the false alarm and detection probabilities are, respectively®

Q) = erfe (&/d),
Q. = erfc (g - d) , (39)

where erfe (x) is the error-function integral.

2.2 Unknown Amplitude and Unknown Epoch
In this case, the two hypotheses become

Hoy:f,(t = T+ 1) = 2 b (v), 0

1A
4
1A

2T, (40)

Hi:fot— T+ 1) = AW, ()
+ X ae®(), 0

lIA
a
A

= 2T, (41)

where

fo(r) = fulr) — ; rie'” (1), 0= r=2T. (42)

Notice the slight difference between the definition of f,(v) shown in
(42) and that of (14). The joint probability densities are, similar to
the previous case,

1 - Z biu'ij)z
S | (v Ikl (e S VA

! 43
E aai; — Ag;) :| )

Pi(va;, A) = H (21r )gexp |:— ; o

Using the principle of maximum likelihood estimation, we first make
for each instant ¢ an estimate of the amplitude, A (¢), and then make
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an estimate of the epoch, #, which corresponds to the maximum value
of the likelihood ratio of the hypothesis H, against the hypothesis H, .

Thus
max Py(v;a;, A)
T3 T _ a, A
L(Af) = max L(Ag) = max ——m&x By | (44)

By the same argument leading to (28), we obtain
log L(A}) = max log L(At) = max [max log LA
t t A

9. EVETRAYE (45)
= max I:Z 2;4(tg; — A1)y, ] .
4 7 2X;
Taking the partial derivative with respect to 4,
dlog L(At) .
a0 (46)

we get A (t), the maximum likelihood estimate of A (¢),

Ay = [Z )\-"]/[Z 9’] (47)

It should be noted that the random variable »; is also a function of ¢,
as shown in (8). Substituting (47) into (45) gives us

log L(A}J) = ma,x|: A1) Eg’] (48)
If we normalize function f,(7) such that
2 27
YU = | g
7 )\j 0
(49)

fu‘“" fw R(r — p)fy(p)folr)dpdr

=1

b

then

A0 =2 [T - T g G0)

b

and

log L(A,i) = maxlog L(4,t) = max% | A(t) °. (51)
t t
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Thus the instant { that corresponds to the maximum value of log L (4,t)
will be our estimate of the epoch. Indeed we may base our estimate on
the maximum value of | A () |. Equation (50) may of course be gen-
erated by means of a linear filter. If fi(+) and consequently f,(r)
are properly “normalized” in the sense of (49) and (42), the signal-
to-noise ratio (SNR) for the kth wavelet is A,”. TFollowing the
procedure used by Woodward and Davis,” it can be shown that, for
the strong-signal case, the variance of the epoch estimate 7 is in-
versely proportional to SNR and to the square of the filter bandwidth.

We notice that the performance of an epoch detection system is
related to the eomponent functions only indirectly. It is the signal
waveform itself that is important. As a rule of thumb, the smaller
the absolute values of the constants r; are, the more effective the system
will be. In fact, we may define a useful figure of merit,

SNIR for epoch detection
SNR for the detection of f.(7)

-]
i

s (52)

2T
Ta* (o) fulr)dr
0

as the efficiency of the epoch detection system, where fi* (+) is defined
in the same way as we did for f,* (). Using (42) and (49) and the fact
that f," () is orthogonal to ¢ (), we have

1
ST o

As a result, p < 1. In the limit as every r; approaches zero, p — 1 and
the epoch detection system approaches the optimum detection system
for non-overlapping pulses of duration T seconds.

2.3 Overlapping Pulses

A pulse of duration T, seconds may be regarded as two overlapping
wavelets with epochs separated by 7 seconds. For instance, an expo-
nential pulse, exp (—7) for 0 = r = Ty, may be regarded as the sum
of two exponential functions, exp (—7) with 0 £ 7+ = o« and
—exp (—7) with Ty £ 7 < ». We assume that several pulses may
overlap. Thus, arrival of a pulse is characterized by the simultaneous
existence of a wavelet 7.’ (r) at the beginning epoch # and a wavelet
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fu'(7) at the ending epoch £’ where t,° = ;" + T,. For mathemat-
ical simplicity, we assume that the Gaussian noise in the time interval
(&' — T, > + T) and the noise in the interval (4" — T, &' + T)
are uncorrelated. In other words, we assume

R(r) =0 for = T, — 2T, (54)
thus enabling us to treat independently the random variables in the

two time intervals.
Again we formulate two hypotheses.

Hy:f(t =T+ 1) = 2 bl (n),
o (55)
Jolt+ To = T+ 7) = 22 b (1), 0<r <27,
and
Hi:f(t—T+ 1) =AW (r) + 2 ale? (7),
St +To— T+ 1) = AW (r) + 2 afe™ (1), (56)
0= rx 2T,
where

) =) — I_Zr,-’zo“’ (1),
15(r) = ff(r) — ; riée'” (1), (57)
0=r=2T,

with fi"(r) and f,°(r) defined in the same way as fi(r), and the con-
stants »;” and r;° defined in the same way as r; . Let us define

fo(r) =1 () + 1 (r = To). (58)

Notice that f,(r — Ty) = 0 for 7 < Ty. The function f,(7) is norma-
lized in the sense that

To+2T
fu Jo*(2) fo(2)dr = 1, (59)

with
fo5 (@) = £5(x) + £, (= — To) (60)

and
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1w = [ R = 2,

2T

fo(w) = i R(p — 7)1, *(7)dr.

(61)

Equations (58) through (61) can be justified only on the assumption
of (54).
Using the maximum likelihood principle, we write

b
max Pi(v ai,a, A)

LA} = max|: a4 :| (62)

¢ max Po(v; b, b°)
b

With a derivation parallel to that of 2.2, we obtain the final results
. vig5 Tob2T
i) = DU - f fonlt — T 4 ) (r)dr,  (63)
H j
and
log L(A,1) = max } | A(t) [". (64)

Thus, based on the value of | A (¢) |, we may obtain the estimate of the
epoch i. Again a simple linear filter with a weighting function f,*(r)
defined in (60) will suffice to generate A (t).

I1I. OVERLAPPING STOCHASTIC SIGNALS

Again we consider a train of overlapping wavelets corrupted with a
Gaussian noise. Fach wavelet is assumed to be representable by a set
of m known generalized exponential functions. However, the wavelets
are stochastic in the sense that their exact waveforms are unknown and
that each wavelet may differ from the other. As a result, the two hy-
potheses become

H, :fg(t -7+ '1') = E b{‘P(‘.) (7)7 0

A
a

= 2T, (65)

H:fi(t — T+ 1) = Z Ci(f)x(i) (r)

' _ 66
+ Z_am(')('r), 0 (66)

A
A

where

XV (r) = ; Bae (r = T) — ;‘YW”)(T) (67)
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with
e —=T)=0 for r<T. (68)

The constants 8a and v are constrained by the biorthonormality re-
lationships. Let ¢ (r) be the eigenfunctions of the covariance funetion
R (7). Tor the sake of the independence of random variables, we expand
the component functions, the noise, ete., in terms of ¥ (r). For x” (7),
we then write

x'(r) = 2 ag?(r), 0=r=2T (69)

!

The constraints of biorthonormality are

ZL;\E& = du, (70)
1 J
THE =0, (71)
7 ]
and
z.l-!.j.l'zj — 5 (72)
i J)\j R

A direct result of (70) and (71) is, similar to (25) and (32),

2y
Yi= 2, i .'x-'ﬁ P (r = T (1)dr

ik A

2r (73)
=X [ o = TV (r)dr.
k 0

To illustrate the procedure for formulating x(r), let us consider
the simple case of white noise for which the biorthonormality reduces
to orthonormality. The first step is of course to orthonormalize with
respect to the time interval (0,27") the m component functions by means
of the Gram-Schmidt procedure. Next we may choose any value of 8
for (67) as long as the m functions S Bue'(r = T)i=1,2---m
are linearly independent. Using (73) for the calculation of y.; guaran-
tees that x(r) is orthogonal to ¢ (). Finally, by means of the
Gram-Schmidt process, we may combine the functions x (r) linearly
to make them orthonormal. In this way, all three conditions, (70),
(71) and (72), are satisfied. For colored noise, the procedure is similar.

Under these assumptions of biorthonormality, an application of
maximum likelihood prineiple then gives us
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Gt = R = f Jorn(t = T 4 0)x*(2)dr,  (74)
where x*(7) is the solution of the equation

2T

x ) = Ry — r)xm*(‘r)dr, (75)

0

and
log L(é:, {) = max log (&, t) = max[ Z | é:(¢) j] (76)

The estimated epoch { is the instant that corresponds to the maximum
value of log L(é;,t). The epoch detection system which generates
log L(é:, t) will then consist of a summing amplifier, m squarers and
m linear filters characterized by the m weighting functions x ¥ (7).

Tor stochastic signals, a proper definition of SNR for the kth wavelet
is

2T
(h-ﬂ — Ec; (t.(-)f xm*(r)xm(f)df
(1]

m =1

H]

(77)

m

= — Z: c 2(&-
m i=1
where we have used (72). The coefficient, ¢;(fx), is defined by (66) with
t; , the kth epoch, substituted for ¢.

Let us now show some experimental results obtained from a digital
computer, Fig. 3 illustrates the detection of overlapping wavelets, each
consisting of two exponentials, ¢ " and ¢~*". Although in our experiment
the three overlapping wavelets have the same waveshape, they are
regarded as stochastic since we do not assume the a priori knowledge of
the proportion of the two exponentials that constitute the wavelets.
The signals are additively corrupted with white noise as shown in the
second row. With the definition of (77), the signal-to-noise ratios for
our examples are, in decibels, <, 15 and 8, respectively. Since we know
the component functions, ¢ * and ¢ ", what we need to do would be
simply to estimate the coeflicients é;(¢) by means of linear filters pre-
scribed by (67) and then calculate log L(é;, ) according to (76).
What we actually did is based on a more primitive model;" nevertheless,
the basic philosophy is the same. Using this primitive model, the loga-
rithms of the likelihood ratios, log L;(t), are caleulated over the noisy
signals, and shown in the third row. It is clear from the figure that the
estimated epochs { which correspond to the maximum value of log
L;(t), almost coincide with the true epochs. However, for the 8-db
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£ (t) f\ fo(t)

. N

f5+n(t) f5+ﬂ(t)

| |
j\ Loc L¢(t) J\AA Loc Le(t) LoG Le(t)

f\(‘\ falt) / fa(t) / fa(t)

Fig. 3 — Deteetion of overlapping wavelets.

case, the detection probability is low, and the peak corresponding to the
second epoch is almost not distinguishable from the peaks which are
due to the random noise alone. With the epochs estimated, one may
estimate in a piecewise manner the signal hetween the epochs, and the
signals f;(t) thus detected are shown in the last row.

IV, OVERLAPPING RADAR SIGNALS

The most important application of statistical detection theory is in
radar signal detection. We shall consider typical radar pulses which are
sinusoidal signals modulated by square waves. Each pulse, as discussed
in Section 11, can be characterized by a beginning epoch and an ending
epoch. For simplicity, we treat them separately as two epochs.

For overlapping radar signals, we may write

N
.fﬂ(l} cos (Wct’ + B) = ZAA'.fu'(r - tﬁ) cos (wct + 0};), (78)
k=1
where we have regarded f,(¢t) and f,(r) as envelopes of the sinusoidal

signals and 6, are phase angles. The pulse envelope f,(r) is a square
wave. Similarly we consider f,,. (f) as the envelope of the noisy signal.
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The epoch detection system developed previously is difficult to imple-
ment in this case because it is sensitive to radio-frequency phase. For
this reason, we assume the use of a perfect envelope detector to take the
signal envelope first.'” The noise under this condition becomes narrow-
band noise. Let us designate, for a certain instant ¢, the envelope of the
sinusoidal signal by a and the envelope of the noisy signal by v. With
a variance A, the probability density for the envelope at time ¢ on the
hypothesis that the sampled waveform is sine-wave plus noise is, ac-
cording to the classic work of Rice,”

v Tl at
plua) = !i P (‘ 2\ ) h (Y) vz 0, (79)

[ 0 otherwise,

where Ip(z) is the modified Bessel function of the first kind and order
zero. It is known as the modified Rayleigh distribution or the Rice
distribution. On the hypothesis that the sampled waveform is noise
alone, « = 0 and /,(0) = 1, and (79) is reduced to the Rayleigh dis-

t.['iblltlon.
- }\ ( "’2 )
pﬂ(r,) r)}\ ’ (80)

0, otherwise,

IV

0

We again formulate a null hypothesis Hy and a hypothesis H, that
an epoch has arrived. Thus,

Huifu(t—T'l‘T): ap , 0=r=2T. (81)
) _ o, 0=s+=T,
Hy:f,(t T+T)_{a2, T <1< 2T (82)

We may look for a coordinate system such that the random variables
on these coordinates are statistically independent. However, unlike the
Gaussian distribution, it is very difficult to find such a coordinate sys-
tem. The usual procedure, which we shall follow here, is to use for
coordinates samples of the envelope waveform taken at regular inter-
vals and far enough apart so that it is a reasonable approximation to
suppose them statistically independent. We take in the time interval
(t = T, t+ T)2M measurements at 2M uniformly spaced instants
separated by Ar seconds apart. Let us write for the instant ¢

'i'-’;'(t) = fa-Ha (t - T+ JAT) (83)
Then on the null hypothesis Hy , the joint probability density is
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.l v; v,-z + a agly
Py(vyep) = erxp — N I, EWE (84)

=1

while on the hypothesis H,, we have
M 2 2
Pivin, a) = [T Y exp <_ MQE‘L) I (“1_”'3)
=1 A 2\ A
oM » v + 0[22 as; (85
it S B ) it
+;‘=IA:I+1?\OXP( 2\ )I“(?\)'

The maximum likelihood principle then requires
max Py(v;0 , ay)
(86)

L(&,1) = max| —=
“ ¢ | max Po(v;a)

By considering the logarithm of the likelihood functions and taking

partial derivatives, we can easily show that
I, %)
G, v " ( A
—xr/Z1_

M
P Y (aw,»
ol =—
(87)

i=1

2M A
o2 1
i

i=M+1

and
o | I (ﬂ)-
Y (88)

=1

~,

where &;, &, & are the maximum likelihood estimates of a;, a2, ao
respectively, and I, is the derivative of I,. The estimated epoch then

corresponds to
M a2 A
A Ty _ @ a1V
log L(&, 1) max {; |: Y + log I, (T ):I
- &22 Qv
~ o + log Iy T’ (89)

j=M+1

5

+

-
Il

N .
apl'y

[~ 5+ (5]}

21

|

I
-
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It should be noted that & and v; are funetions of {. Our problem would
have been solved if we had been able to solve (87) and (88) for &,
substitute them into (89) and then search for { that corresponds to
the maximum value of log L(&,t). An explicit solution in this case is,
to say the least, very difficult. Certain approximations are needed.
‘We shall diseuss the case of strong signals and the case of weak signals

separately.
In the first placo we notice that if the signal-to-noise ratio is suffi-

ciently high —ie., a,’/2x 3> 1 and @ 2/28 3> 1 [(ad’ — a2')/2\ may be
small] — the R]CO distribution approaches the Gaussian distribution
and the discussion in Section II is directly applicable. A linear filter
may thus be used. On the other hand, if a’/20 > 1 and a,’/2\ small
or vice versa, we encounter the epoch of a large pulse. Therefore a sub-
optimal epoch detection scheme may be used, and again a linear filter

may be chosen for its simplicity.
Finally, consider the case that a’/2n < 1 and an’/2\ K 1. It is well-
known that for small  (see Ref. 22),

IS IEATAY
““(ix) +1“7(§"’) o
2 4

log To(xr) = (;T) - %(;1) +oee

If we substitute (90) into (87land (88) and retain only those terms
that involve &/+/X and (&/4/X)%, we obtain as approximations

&12 M vl 7 Moo
J 1

— -— =1 /
2A JZ:; [za i ;;Zl 8z’
P Mo, 2 N M4

2 £ i
— 2 —1 / 2
2X ;‘=§+1 |:2?\ | j=zM:+1 8A2’

&02 2M U‘Z n
— L -1 2. 2
2\ ; [m\ i ; 8 (92)

Similarly, substituting (90) into (89) gives us

A2 M v_ﬁ 1&20_4—
log L(&f) = max{ I:J— — 1 —z&

Io(#l')
(90)

(91)

and

20 = L2a 2 2\ 8%
a2 M 2 A2 4
d bo_q_lay
+ 2N a4 ':2?\ 1 2 2\ 8M% (93)

A2 2IM 2 2 47
_ o V; _ ] _ 1 &n UJ‘
P} ) '
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An epoch detection system based on (91), (92), and (93) is very
difficult to implement. It needs further simplification. We notice that,
for M sufficiently large, the random variables take on nearly all possible
values of the probability functions. The summations then represent
an ensemble average. For example, with a,"/2\ < 1,

M 2 2
iy — &+ ay
NS M( ) Mf plaan)de ~ nr(1+m),

o' _ wa N o’
j:le M (8)\2) M| pamde & M (1 + A),

where p (x,a;) is the Rice distribution shown in (79). We may of course
do the same for a.’/2\ and ao’/2\. It is indeed from this consideration
that we include the term

(94)

14 U,"’
5 2% 8%
in (93), since it is of the same order as the difference of the remaining
two terms.
From the consideration of order of magnitude, it should be obvious
that for (91) and (92) the denominators may be replaced by M and
2M respectively. As a result, we may write

&' 1 (&' | &'
—_— = — — —_— .r'
N2 (2>\ T 2)\)' (95)
Using (91), (92), (94), and (95) for (93) and simplifying, we finally
obtain
s M (& M (& . agz)j
log L(&t) = maxI:Z (2)\) + 3 (%) - M (2}\
= max M &—22 — &—12 : (96)
¢ 2\ 2\
M 2 M 2 2
_ v (t) S5~ (d)
=maxorl 2T T X o

A test may naturally be based on the quantity inside the absolute sign.
A large positive value for the quantity indicates the arrival of a be-
ginning epoch, and a large negative value corresponds to an ending
epoch. A pulse is of course marked by the arrival of both epochs. The
result is consistent with the conventional square-law detector for small,
nonoverlapping signals.
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V. CONCLUSION

We have investigated the problem of epoch detection. A test statistic,
which may be obtained from a simple, linear filter, has been derived for
Gaussian noise. In the derivation, we have assumed that each wavelet
is representable by a set of known generalized exponentials. This is not
as restrictive as it appears, considering the fact that any continuous
signal may be represented with a least-square error as small as we wish
by using a sufficient number of component functions.

The epoch detection scheme is particularly useful for the resolution
and detection of overlapping signals. For N overlapping wavelets, the
procedure reduces the resolution problem from an N-dimensional
problem to N one-dimensional problems. Some information is lost in
this reduction, and consequently it is not a scheme for optimal resolu-
tion. However, it has the essential advantage of simplicity and prac-
ticality.

The performance of the epoch detection system has been considered
briefly. The discussions of overlapping stochastic signals and over-
lapping radar signals show that the method is applicable to these cases,
and the experimental results enhance our confidence in the detection
procedure.
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APPENDIX

The weighting functions of the “matched” filters are calculated
according to the equation

1u() = () = 2 1ip®(2),

where r;'s are chosen in such a way that for white noise f,(r) is orthog-
onal to every ¢ (7). This orthogonality (or biorthogonality for
Gaussian noise) is the central idea of epoch detection, and has been
discussed in the paper.
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As an example, for the last signal in Fig. 2, the signal (or wavelet)
is of the form

fu(r) =€ — €™,
and therefore from (11)
{e_(hm — g2, T <+ = 2T,

Il

fu(r)

0, elsewhere.

Thus we have

I —27 <
£,(r) = { rie re |, Os___ r < T,

(e" —m)e™ — (& + r2)e T=r=2T,

with r; and 7, to be determined by the orthogonality relationships

27

Jo(r)e Tdr =0,

fuwfu(r)e—”df =0,

In our example, T = 0.7, and then the solution of the above two equa-
tions is

1= 062 and r = —0.76.
A substitution of these values into the equation of f,(r) results in

() = —0.62¢ " + 0.76¢ ™, 0=<r<07,
AT T 1.89¢TT — 33067, 07 = r < 14,

which, except for a scale factor, is the weighting function shown in Fig. 2.
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