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A code which is lo be used for error control on a real data system 1is neces-
sartly restricted by the nature of the transmilling equipment. These restric-
tions have no conneclion with the primary function of the code; indeed,
they frequently eliminate most of the codes about which anything is known
at present.

For example, the code to be used for error control by delection and retrans-
misston on the lrunks between data switching centers is required to be a
eyclic (or truncated cyclic) code with 744 information places and 20 parity
check bits. The computalional problem in this case is to locate those cyclic
codes which have exactly 20 parity checks and a block length of 764 or
greater, and pick the one which is best suited for error control over a pariicu-
lar channel.

This paper outlines a procedure for attacking such problems. It describes
how to locate the cyclic codes with a fized block length and a fived number of
parily checks, if any such exist, and gives some methods of finding the
number of code words of each weight in a particular code. If one knows the
statistics of the channel it is then possible lo eslimate the error conirol proper-
ties of the code.

The procedure depends on an analysis of the algebraic structure of cyclic
codes, which is given in Section IT of this paper. Section I conlains step-by-
step instructions with no mathematical justification. It is hoped thal the
theory presented in Section IT may be useful in other applications.

INTRODUCTION

In this paper the word alphabet denotes a systematic code —one in
which each code word contains a certain fixed number, k, of information
places, the contents of which are arbitrary, and a fixed number, n — &,
of parity check places. Each parity check digit is the sum of the contents
of a particular subset of the information places. The number = is called
the block length of the alphabet. The individual members of the alphabet
are called lefters.
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It is well known' that the letters of an alphabet of block length n form
a subspace of the vector space of all possible rows of » binary symbols.
This large space is denoted by V", V being the field 0, 1. The number of
information places, k, is also the dimension of the subspace occupied by
the alphabet." A cyclic alphabet has the additional property that, if it
contains a letter o, it contains as well every vector of V" which is a eyclie
permutation of a.

Cyelic alphabets are popular for error control for several good reasons.
First, it is easy and relatively inexpensive to encode a cyclic alphabet.
Second, the ‘“best” known alphabets are cyclic alphabets.* Third,
the cyelic property introduces a great deal of algebraic structure, which
may be used to predict the error-detecting properties of the alphabet
and to find alphabets with appropriate properties.

An alphabet to be used in a data transmission system must satisfy
certain requirements. There will certainly be restrictions on the size of
n and %, and one naturally requires also that the alphabet should be of
some use for error control. These restrictions cannot be completely ar-
bitrary; for a given pair of integers n, & there is likely to be no cyclic
alphabet at all, let alone one with desirable error control properties.

The Hamming distance between two vectors is the number of coordi-
nate places in which they differ. The distance between v; and v, is thus the
minimum number of changes one would have to make in », in order to
convert, it into v, . The usual strategy for choosing an alphabet is to place
its members as far apart as possible in terms of the Hamming distance.
It would then require a relatively large number of errors to change a let-
ter of the alphabet into another letter of the same alphabet.

The weight of a vector of V" is its distance from the origin, which is
the same as the number of ones it contains. Let «, of weight s, be a letter
of an alphabet @. If B is another letter of @, so also is « + B, since @
is a vector space; a + 3 is at distance s from . Let A (s) denote the
number of letters of @ of weight s. A (s) is then the number of letters of
@ which are at distance s from an arbitrary letter of Q. ‘

The set of numbers A(0), ---, A(n) is called the spectrum of G.
The spectrum of @, combined with the statistics of the channel, may be
used to obtain an approximate estimate of the error control performance
of the alphabet.”

An alphabet used for error detection will fail to detect an error pattern
which is itself a letter of the alphabet. If A(7) = 0, the alphabet will

* The reason for this is very possibly that no other class of alphabets has been
so systematically studied.
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detect all (1:) patterns of 7 errors in a block of length n. If A(7) == 0,
the alphabet will fail to detect A(%) of these (7:) patterns. It is usual

to require that 4 (1) and A (2) should be zero; it can be seen from anal-
ysis of the available data’ that this makes good sense even on the tele-
phone network. For larger values of 7 it would be fortunate if the letters
of weight 7 were not the same as the most common error pattern, which
is usually assumed to be a “burst.”” This assumption leads to the vaguely
formulated requirement that letters of small weight should have their
nonzero digits spread out as much as possible. A e¢yclic alphabet satisfies
this requirement to a certain extent, since the letters of smallest weight
must spread over at least n — & + 1 adjacent places.

Since it may actually become necessary to choose particular alphabets
for error control purposes, and since that the requirements which these
alphabets will have to satisfy are not yet known, it is desirable to be able
to obtain some rather detailed information about available alphabets.
This paper describes a computer-assisted procedure by which one may
locate the cyeclic alphabets which have values of n and k within certain
bounds, and find the spectra of these alphabets. A considerable library
of computer programs which are useful in this procedure has been de-
veloped.

The plan of the paper is as follows:

Section I contains step-by-step instructions for loeating cyclic alpha-
bets and finding their spectra.

Section II contains the mathematical justification for the procedures
of Section I, and is in fact a fairly complete account of the structure of
cyclic alphabets.

It is not necessary to read Section IL in order to follow the recipes
given in Section I. However, in a troublesome case — which means a case
that involves a large expenditure of computer time — the material in
Section IT may suggest a way out of the difficulty.

I. PROPERTIES OF CYCLIC ALPHABETS

In this section we outline a procedure to attack the following problem:
Given that the block length, n, and the number of parity checks, m,
of a binary eyclic alphabet are required to lie in the ranges

N, =n =N, M, =m = M,,

find the alphabet (or alphabets) which have the greatest minimum dis-
tance.
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It is assumed throughout that n is an odd number. Many of the prop-
ositions quoted in this section, and justified in Section II, are not true
for even values of n.

Let ®, be the ring of polynomials mod =" — 1 over the binary field.
®,, consists of all polynomials of degree = n — 1 with coefficients in the
binary field. Addition of polynomials is done as usual; to multiply two
polynomials, we multiply in the normal way and then reduce exponents
of x mod n.

A cyelic alphabet of block length n may be regarded as a set G of
polynomials of ®,, with the property that every polynomial of @ is
divisible (mod 2™ — 1) by a fixed polynomial a(z). a(x) may, and will,
be taken to be a factor of " — 1; then the number of parity checks for
@ is the degree of a(x). a(x) will be called the generating factor of G.
We write @ = ®R,-alz).

Let w stand for one of the numbers 0, 1, --- , n — 1. Denote by Z3(n)
the permutation w — 2w mod n. Zy(n) divides the integers 0, 1,

n — 1 into a number of disjoint cycles; the eycles of Z4(63), for example,
are shown in Table 1.

Let fo(z), fi(z), -+, feei(x) be the irreducible factors of " — 1.
Since n is odd, these factors are all distinet. Let { be a primitive nth root
of unity. The cycles of Z;(n) and the polynomials f,(x} are associated
in the following way: The zeros of f;(x) in a suitable® extension field of
the binary field are {™, ™, - -, {"*, where (ry, 72, -+, 1) is a cycle of
Za(n); and each cycle represents in this way the zeros of one of the fi(z).
The number of irreducible factors of ” — 1 is, of course, the same as
the number of eycles of Z.(n). We say that the polynomial f:(x) with
zeros {7, ™, -+ -, {"* is associated with the cycle (ry, 712, -+, 78).

Let S be a set of cycles of Za(n); let fi,, -- -, fi, be the irreducible
factors of 2" — 1 which are associated with the cycles of S. Let

a(x) = fi () foo(2) -+ fi(2)

be the generating factors of an alphabet @. We say that the cyclic alpha-
bet @ = Gt,-a(z) is associated with the set S.

Tetl <r <7rs < -+ < nbe a list of the factors of n: Attach to
each cycle of Zy(n) an exponent e; = n/r; defined by the property that
each member of the cycle is divisible by r; mod n, and that r; is the
largest factor of » for which this is true.

A great deal of information about the cyclic alphabets of block length
n can be obtained by looking at the cycles of Zg(n).

* For example, the Galois field of order 2¢, consisting of the roots of y* = v,

where { is the engt.h of the eyele of Zy(n) which contains 1. A proof of this ‘el
known” correspondence is given in Section II.
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TaBLE I — CycLEsS OF Z4(63)

Cycles Exponent
1 2 4 8 16 32 63
3 6 12 24 33 48 21
5 10 17 20 34 40 63
7 14 28 35 49 56 9
9 18 36 7
11 22 25 37 44 50 63
13 19 26 38 41 52 63
15 30 39 51 57 60 21
21 42 3
23 29 43 46 53 fﬁ 63
27 45 54 7
31 47 55 59 61 igg 63
0 1

Proposition I: Let no, m1, -+, ni1 be the cycles of Z:(n) and let m;
be the length of n; . The number® of cyclic alphabets of block length n is 2'.
The alphabet associaled with a set S of cycles has m = D ,..s mi parity
checks.

Proposition 11: Lel e be the least common mulliple of the exponents of
the cycles contained in S. If e < n the alphabet associated with S has mini-
mum distance 2. If e = n the minimum distance of the alphabet is at least

_ Proposition 111 (Bose-Chaudhuri Bound): If S contatns the numbers
1,2,3, -+ ,d — 1, d among its cycles, the minimum distance of the alpha-
bet assoctated with S is = d + 1.

It should be noted that the minimum distance may be, and often is,
larger than the lower bounds given in propositions 2 and 3.

At this point one may, of course, be forced to conclude that there are
no satisfactory cyelic alphabets of block length n. The main purpose of
propositions 1 and 2 is to eliminate useless values of n. Suppose, however,
that we have a value of n for which there exist alphabets with the re-
quired number of parity checks and of minimum distance at least 3. It
is then useful to establish a 1-1 correspondence between the cycles of
=,(n) and the irreducible factors of " — 1.

The exponent of a polynomial f(x) is the least value of e for which
f(x) divides * — 1. We find the irreducible factors of =" — 1,1 and of
% — 1, (e; = n/a;) for each factor a; of n. Some of the irreducible fac-

* This number includes three ““trivial’ alphabets: the alphabet consisting of
all of @, , the alphabet containing only zero, and the alphabet containing only
zero and the vector of weight n.

t This has, in fact, been done for all odd values of n = 1023.
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tors of 2" — 1 have exponent e; ; these appear among the irreducible
factors of x — 1, and can be identified by inspection.

Any irreducible factor of " — 1 which has exponent n can be chosen
to correspond to the cycle of Z,(n) which contains 1. Let f1(x) be this
polynomial; fi(x) has { as a zero. If r is a proper factor of n, » is the least
member of a cycle of exponent e = n/r. The polynomial associated with
this cycle also has exponent e. Let g, , g2, - - - , g: be the irreducible fac-
tors of " — 1 with exponent e. By picking fi(x) to correspond to the
cycle containing 1, we have implicitly chosen which of the g;(z) corre-
sponds to the cycle containing r. The choice can be made explicit in the
following way :

Proposition IV: gi(27) is exactly divisible by fi(z) if and only if it
corresponds to the cycle containing r.*

We can now assign to each factor r; of n an irreducible factor f; of
2" — 1, which will have exponent ¢; = n/r; . We have not yet matched
every cycle of Zy(n) with an irreducible factor of ™ — 1; the remaining
work will be done by a different method. Before deseribing this we il-
lustrate the procedure so far.

Suppose that the restrictions on n, mare 52 = n < 64, m = 9. It is
found that

Z1(53) has two cyeles, lengths 1, 52

Z2(55) has five eycles, lengths 1, 4, 10, 20, 20
2,(57) has five cycles, lengths 1, 2, 18, 18, 18
2,(59) has two cycles, lengths 1, 58

Z»(61) has two cycles, lengths 1, 60

Z,(63) has thirteen eycles, lengths 1, 2, 3, and 6.

By Proposition I, 63 is the only possible block length, since the lengths
of the cycles of the other numbers do not add up to nine. The factors of
63 are 3, 7, 9, 21. The cycles of Z,(63) and their exponents are shown in
Table I. The nine parity checks are obtained by taking a cycle of length
6 and a cycle of length 3 or a cycle of length 6 and the cycles of length
2 and 1. By Proposition 11, the least common multiple of the exponents
of the cycles should be 63; hence the cycle of length 6 should have ex-
ponent 63 or 9.1 The Bose-Chaudhuri bound provides no information; a
minimum distance of three is guaranteed by Proposition II, and we can-
not assemble a collection of cycles containing the numbers 1, 2, 3 with
only nine parity checks. Hence we are faced with the possibility of hav-
ing to compute the spectra of 18 different alphabets. (It will be shown
later that this is not necessary.)

* This elegant and time-saving device was suggested by Mr. R. L. Graham.
t This case will be omitted because the author did not notiece it in time.
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Suppose that m is allowed to be 12; we pick the first and second eycles,
beca;lse Proposition ITT then guarantees a minimum distance of at least
five.

Table IT contains a list of irreducible factors of z* — 1 and their ex-
ponents. Associate the first polynomial (714) with the first cycle. One of
the polynomials of exponent 21 then corresponds to the second cycle;
by Proposition IV we find that 534 is the correct choice. For the sake of
completeness we use Proposition 1V again to ascertain that the poly-

TaBLE II — IRrEDUCIBLE FacToRs oF 2% — 1
Factor Exponent Associated Cycle
fi 714 63 1, 2, 4, 8, 16, 32
Ta 414 63
Ja 700 3 21, 42
Ja 554 63
¥ 534 21 3, 6, 12, 24, 33, 48
Ta 634 63
I 444 9 7, 14, 28, 35, 49, 56
Ts 664 63
fa 724 21
Jo 604 63
T 600 1
Jiz 540 7
fis 640 7 9, 18, 36

The polynomials are in octal, which stands for a binary number denoting the
positions of the nonzero coefficients. The least exponent is on the left, e.g.

714 = 111001100 = 1 + = + 2® + 2% + =5

nomial 640 corresponds to the eycle beginning with 9. The unique poly-
nomials of exponent 9 and 3 must, of course, correspond to the cycles
beginning with 7 and 21.

To explain the next steps it is necessary to introduce some more defini-
tions.

Let q be an integer prime to n. The mapping o, : x' — 2" (exponents
mod n) is an automorphism of ®, . The effect of o, on a eyclic alphabet
is to change it into an equivalent' cyelic alphabet; Go, = @, and @, @
have the same spectrum. The number of ¢, which have a different ef-
fect on @ is rather small; if q;, ¢» are in the same cycle of Zy(n), then

o, = oy, .

(In particular if ¢ is in the cyele which contains 1, @s, = @Q.)

* It is not established mathematically that a different choice cannot give a
greater minimum distance. To be completely safe we should ecaleulate the spectra
of all alphabets with 12 parity checks and exp-nent 63.

y
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We select one ¢ out of each eycle of Z3(n) which contains numbers
prime to n. For n = 63 we choose the numbers underlined in Table I;
this choice is computationally advantageous, since 5° = 25 mod 63,
5" = 62 mod 63, 5' = 58 mod 63, 5° = 38 mod 63.

Every cyclic alphabet of @ contains a unique polynomial ¢(x), the
idempotent of @ which has the useful property that Ge, = @’ if and only
if ¢(x)o, = ¢'(x). For computational purposes it is much better to know
the idempotent of @ than the generating factor of @. The idempotent of
the alphabet &, -f:(x), where fi(x) is an irreducible factor of z" — 1, is
denoted by 1 + @:(z). The polynomials 8;(x),7 = 1,0, --- , ¢ — 1 are
called the primitive idempotents of ®, , and have several useful proper-
ties:

() The 8;(x) are easy to compute, and in fact have been computed
for all odd values of n = 1023. (The method by which this is done is
deseribed in the next section.)

(#2) The idempotent of the alphabet with generating factor
Ji(x) fi,(x)- oo fi(x)is

14 6:,(x) + 0:,(x) + -+ + 8: (x).

(7i4) The 68:(k) are permuted among themselves by the automorphisms
aq .

The alphabet with idempotent 8:(x) is a minimal alphatet of ®, ( t
contains no subalphabet except 0). Its generating factor is (2" — 1)/
fi(x). The alphabet with generating factor f:(x) has generating idem-
potent 1 + 8:(x) and is a maximal alphabet of ®,, .

In the future the eyclic alphabet @ will be identified by a sum of primi-
tive idempotents of ®, rather than by a produet of irreducible factors of
" = 1.

Proposition V: If fi(x), fo(x) are irreducible factors of 2" — 1 with the
same exponent, then 6,(x)o, = 6:(z) for some automorphism e, of R, .
Hence the minimal alphabets generated by 6,(x), 82(x) are equivalent, and
the maximal alphabets generated by 1 + 6:(x), 1 4+ 6:(x) are also equiva-
lent. Conversely, if two minimal (maximal) alphabets have the same spec-
trum, they are equivalent under one of the automorphisms o, .

Proposition VI: The alphabet with idempotent (1 + 8; + --- + 6:,)
ts equivalent to the alphabet with idempotent (1 + 0,0, + -+ + 0;,9,).

Proposition VII: Let 1 + 8:;(x) be the idempotent associated with the
cycle of Za(n) which contains 1. Let w, v be integers prime to n such that
w-v = 1 modn. Then 1 + 0;(2)c, istheidempotent associated with the cycle
which contains v.

We illustrate again for the case n = 3. Table III contains a list of
primitive idempotents of G . This list is parallel to the list in Table II.

<
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TaBLE IIT — PriMITIVE IDEMPOTENTS OF (Res

Associated Cycle

From Table IT From Prop. 6
0 321026251170 156307227 1, 2, 4, 8, 16, 32
0y 010305172162 267315277 11, 22, 25, 37, 44, 50
03 333333333333 333333333 21, 42
‘N 044160277124 317353233 5, 10, 17, 20, 34, 40
fs 012231301223 130122313 3, 6, 12, 24, 33, 48
13 375343166036 225150213 31, 47, 55, 56, 61, 62
[ 044044044044 044044044 7, 14, 28, 35, 49, 56
s 331327363052 375016044 22, 29, 43, 46, 53, 58
g 323112032311 203231120 15, 30, 39, 51, 57, 60
010 375263355116 136243020 13, 19, 26, 38, 41, 52
O TITTTITTTT01 (O 0
012 456271345627 134562713 27, 45, 54
fia 723516472351 647235164 9, 18, 36

The ith factor, f:(z) of Table II, is the generating factor of the alphabet
with idempotent 1 + 8;(x) where 6:(x) is the 7th primitive idempotent
of Table III. We associate some of the 8; with a cycle of Z,(63) by copy-
ing from Table II.

The automorphism o5 produces the following permutation of the set of
primitive idempotents of Gl

(6, 010, 05, 05,02, 0.) (05, 05) (612, 615 )(8;) (07) (Bu).

The other automorphisms, as already noted, produce powers of this
permutation; for example og = 053 gives

(6, 06) (610, 02) (05, 04) (05, 6s) (612, 013) (85) (67) (Ou1).

Consider now the alphabet with nine parity checks which is associated
with the eycles (1, 2, 4,8, 16, 32) and (9, 18, 36). By Table II the gener-
ating factor of this alphabet is fi(2)-fu(x); its idempotent is (1 +
0, + 013). The idempotents which can be obtained from this by the per-
mutations o5 and its powers are

1+610+012,1+GB+013,1+96+Bl2y1+02+613,1+04+812.

The generating factors of the corresponding alphabets are (including the
original alphabet),

fl'fl:i ’ flﬂ'flﬂ ) fS'flS ) fﬁ'fm ) fﬂ'fl:l ) f4'f12 -

By Proposition VI these six alphabets are all equivalent. Similarly, the
alphabet associated with cycles (1, 2, 4, 8, 16, 32) and (27, 45, 54) has
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idempotent 1 + 6, + 6,2, and is equivalent to the alphabets with idem-
potents

1+60+0u, 1404612, 14+6+06, 1+04+ 6, 1 4 644 6i3.

The third possibility for nine parity checks consists of the eycles (1, 2, 4,
16, 32), (21, 42), (0). The associated idempotent is 1 4 6; + 65 + 6y ;
equivalent alphabets are given by the idempotents

1+ 60+ 0;+ 0,1+ 04604 0, 1+ 0+ 6; 4 61,
1+ 6046+ 6u, 1+ 84 03+ 611,

Henece, among the 18 alphabets with nine parity checks and minimum
distance = 3, there are actually at most three different spectra.

We observed before that the alphabet with twelve parity checks as-
sociated with cycles (1, 2, 4, 8, 16, 32) and (3, 6, 12, 24, 33, 34) has
minimum distance at least 5. The idempotent of this alphabetis1 + 6, +
65 . There are at least™ five equivalent alphabets with idempotents

14+6u+6, 1 +0s+0;, 1+60+06, 1L+0:+0, 1+6:+ 6.

It may very well happen that one of these alphabets is easier to instru-
ment than our original choice.

The 1-1 correspondence between cycles of Z2(63) and primitive idem-
potents of Re, is completed by Proposition VII, and entered in Table IV,
For example, 5:38 = 190 = 1 mod 63 (38 = 5° mod 63); hence

bos = o

corresponds to the cycle (13, 19, 26, 38, 41, 52).

It is now necessary to face the problem of actually computing the spec-
trum of a cyelic alphabet.

For a small alphabet this can be done by counting, without too large
an expenditure of computer time. An alphabet of block length 765 with
2% letters can be examined, a letter at a time, in 0.32 hours on a 7094.
This alphabet has 745 parity checks. Typically, however, one wishes to
know the spectrum of the alphabet with 2™ letters and 20 parity checks;
to compute this by counting would take over a million computer years.
Fortunately there is a way out of this dilemma.

Let a(x), of degree m, be a factor of 2" — 1, and let

b(z) = (2" — 1)/a(x).
* It is entirely possible that alphabets not contained in this list also have the

same sEectrum, and are perhaps equivalent to the first alphabet under a permuta-
tion which is not an automorphism of R, .
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TABLE IV — SPECTRA OF SMALL ALPHABETS OF Kg;

6+ 612 20 letters

B(0) = 1
B(28) = 189
B(32) = 252
B(36) = 7
B(10) = 63

0 + 613 2° letters

B©) =1
B(28) = 252
B(32) = 63
B(36) = 196

0y + 03+ 61 29 letters

B(©) =1
B(25) = 3
B(26) = 63
B(29) = 126
B(31) = 63
B(32) = 63
B(34) = 126
B(37) = 63
B(42) = 3
B(63) = 1

6+ 68 212 letters

BO) =1

B(24) = 210
B(28) = 1512
B(32) = 1071
B(36) = 1176
B{40) = 126

The alphabets @ = ®,-a(x) and B = ®,-b(x) are called dual or or-
thogonal alphabets.* Let A (s), B(s) be the number of letters of weight
s in @, B. We suppose that @ with m parity checks is a large alphabet,
whose spectrum we wish to find; ® contains 2" letters, and its spectrum
can be found by counting or by more sophisticated procedures. The
A(s) can be found from the B(s) by the following proposition.®

Proposition VIII: The quantities A(s), B(s) are related by the expres-
sion

2™ :Z_;,A(s)z” = ;B(s) (1 4+2)""(1 —2)".

* This is not quite the usual definition; the usual dual alphabet of @ is equiva-
lent to (3, 8o has the same spectrum. The difference is explained fully in Section II.
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We now describe methods which are sometimes useful for finding the
spectra of small eyclic alphabets.

Let a be a letter of a cyelic alphabet &, and let aT' be the letter ob-
tained from « by one cyclic permutation to the right. For example, for
n = 7 one might have

a=(0110111), aT
aT’

(101101 1),
(110110 1) ete.

The letters 7" all belong to @. The set of distinct letters a7” for fixed a
is called a cycle of ®@; « is a representative of this cycle; the number of
distinet letters is m(a), the period of « or the length of the cycle. Know-
ing the length of each cycle of @ and the weight of a letter from each
cycle, we can at once compute the spectrum of @.

If @, ® are dual alphabets, and the idempotent of @ is 1 + ¢(x), then
¢(z) is the idempotent of ®. The alphabet 91; with idempotent 8;(z) is
the dual of the maximal alphabet with irreducible generating factor
Si(z). M; is called a minimal alphabet. The alphabet with generating
factor fi(x)f;(z) has idempotent 1 + 6;(z) + 8,(x); its dual alphabet
is the union of M; and 9M; and has idempotent 8;(x) + 6;(x). The pro-
cedure is to find cyele representatives for the 9; and then put them to-
gether to get cycle representatives for 1t; U o, . This is done by the fol-
lowing propositions.

Proposition IX: Every cycle (except that containing the zero letter) of
M; has length w(0;); further w(8;) is the exponent, e;, of the irreducible
polynomial fi(x).

For example, for n = 63, 91, has one eycle of length 63. This cycle
contains the letter corresponding to 6;(x), which has weight 32; the
spectrum of M, is B(0) = 1, B(32) = 63. The spectrum of the maxi-
mal alphabet ®Rg-fi(x) is given by

63
2° DA = (1 +2)% + 6301 + 2)"1Q — 2)™.
8=0

Similarly 91;, has one cyecle of length 7 which contains the letter cor-
responding to 6;:(x), of weight 36. The spectrum of 913, is B(0) = 1,
B(36) = 7, and the dual alphabet ®Re;-fi2(x) has the spectrum A (s)
given by

2* Z%A(s)z" = (14+2%4+701 + 271 — 2)™.

We note that



BINARY CYCLIC ALPHABETS 315

84(2) = (623) +7 [(2)7 ) — 27.36 + (326)] — 2016,

agreeing with the statement of Proposition II that this particular alpha-
bet will contain letters of weight 2.

The alphabet 917; contains three cycles of length 21. It is possible to
check by hand that 65, 6; + 67 and 65 + 67" are in different cycles;
their weights are 24, 36 and 36, respectively; the spectrum of 9 is
B(0) = 1, B(24) = 21, B(36) = 42.

The technique is useful only if 91; contains a rather small number of
different cycles; otherwise the process of finding cycle representatives
becomes extremely laborious.

Once the cycle representatives for 911; and 917; are known, one con-
structs cycle representatives for the alphabet 917; U 9n; (with idem-
potent 6; 4+ 8;) by the following proposition.

Proposition X: Let MM have cycle representatives my, Mg, + -+ , Ma, Of
period e;, and 9N; have cycle representatives ny, ng, -+, ng, of period
ej. Let H, h be the least common multiple and highest common factor of
e;, e;. Then 9; U 9N, has cycle representatives my, -+, Ma , My, **+ ,

ng , and in addition, for each pair i, j, cycle representatives m; 4+ n;T",

=0,1,---,h — 1 of period H.

For example, for n = 63 the alphabet 917, U 9173, has one eycle represent.-
ative 6; (period 63), one cycle representative 6, (period 7), and 7 cycle
representatives 6, + 0.7, » = 0, 1, - -, 6 of period 63. The alphabet
an, U 9y, is constructed similarly. The spectrum of the alphabet

El'IIl U I3 U mu

is obtained by constructing that of 91, U 91; (cycle representatives 6, ,
0y, 01 + 05, 6, + 6;7) and adding the letter of weight 63 represented by
6, . The spectra of these three alphabets and their duals are given in
Tables IV and V. The dual alphabets are the three nonequivalent alpha-
bets of bloek length 63 and with nine parity checks which we set out to
find.

The alphabet 9, U 91 has cycle representatives 6;, period 63, 65 .
05 + 6T, 65 + 6,7, period 21, and 8 + 67", 6, + (6 + 67T)T",
b, + (65 + 6:T°)T", » = 0, 1, - -+, 20. The spectra of this alphabet and
its dual are given in Tables IV and V; the dual alphabet has minimum
distance 5 as predicted.

We now give a summary of the procedure:

(1) Obtain a list of the cyeles of Zs(n) for each allowable value of n,
and check to see whether an allowable number of parity checks can be
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TABLE V — SPECTRAL PROBABILITIES* OF LARGE ALPHABETS OF Rg;

1 4 61 + 612 (9 parity checks)

a(0) = 1 = a(63)

a(l) = a2) = a(3) = 0;
a(4) = 0.21153 X 1072,
a(b) = 0.20973 X 1072,

a(6) = 0.19243 X 1072,

a(7) = 0.19571 X 10“2

a(8) = 0.19526 X 1072,

a(s) = a(n — 8)

a(s) = 27°for other values of s.

1 + 61 + 613 (9 parity checks)

a(0) =1 = a(63)

a(l) =a@) =0

a(3) = a(4) = 0.15865 X 107?,
a(5) = a(6) = 0.20077 X 10732,
a(7) = a(8) = 0.19451 X 1072,
a(9) = a(10) = 0.19544 X 1072,
a(11) = a(12) = 0.19528 X 1072,
a(s) = a(n — s)

a(s) = 27% for other values of s.

a(0) =1

a(l) = a@) = a3) =0
a(4) = 0.19634 X 1072
a(6) = 0.19626 X 1072

a(8) = 0.19502 X 10-2
a(z) = 0 all odd values of 7
a(2i) = 27° other values of 1.

L + 61 + 65 (12 parity checks)

a(0) =1 a@®3) =1

a(l) = a@2) = a@3) = a4) =0,
a(b) = a(6) = 0.26889 X 1073,
a(7) = a(8) = 0.24119 X 1073,
a(9) = a(10) = 0.24461 X 1073,
a(ll) = a(12) = 0.24404 X 10-3,
a(13) = a(14) = 0.24416 X 103
a(s) = a(n — 8)

a(s) = 27 other values of s.

* The spectral probability a(s) is A(s)/(:"); the number A(s) is frequently

too large for the computer.

obtained as the sum of lengths of distinet cycles. Discard the values of

n for which this is not possible.

(2) Attach an exponent to each cycle of Z.(n).

Let S be a set of cycles of suitable lengths. Find the least eommon
multiple of the exponents of the cycles in S. Discard the sets S for which

this number is less than n.
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(3) It is now necessary to set up a correspondence between the cyecles
of S and the primitive idempotents of ®, . This is done in two steps, as fol-
lows. Obtain a list of the irreducible factors of " — 1, and of 2 — 1,
e; = n/r; for each proper factor r; of n. Let fo(x), fi(z), --- , fea(2)
be the irreducible factors of " — 1. The irreducible factors of z* — 1
will be among the f;(x). Starting with the smallest value of e; , attach an
exponent to each of the f;(x) by comparing lists. Pick any fi(z) of ex-
ponent 7 to correspond to the eycle beginning with 1, and using Proposi-
tion IV, find the polynomial of exponent e;, which then corresponds to
the eycle beginning with r; .

(4) Obtain a parallel list of primitive idempotents of &, , and trans-
fer to this the eycles whose position in the correspondence has been
found. Pick an integer ¢ from each cycle of Z,(n) which contains num-
bers prime to 7, and find the effect of the permutation o, on the set of
primitive idempotents. Use Proposition VII to complete the correspond-
ence between cycles and primitive idempotents.

(5) Let 81, 82, -+, 8 be the cycles of an allowable set S, fi(z), -+ -,
f,(z) the corresponding irreducible factors of z" — 1, and 6,(x), ---,
8,(x), the corresponding primitive idempotents. The desired alphabet
has the generating factor f(z) = fi(z)f:(x) -+ f.(z). The orthogonal
alphabet has the generating idempotent

8(z) = 0(x) + 02(x) + --- + 6.(x).

Divide the allowable alphabets into automorphism classes by looking at
the effect of the automorphisms o, on the idempotent 6(z). Alphabets in
the same automorphism class have the same spectrum.

(6) The orthogonal alphabet ®,-6(x) is frequently much smaller
than the desired alphabet ®,.-f(x). In this case it is advantageous to
compute the spectrum of ®,-8(x) and to obtain the spectrum of ®,-f(x)
from this by Proposition VIII. If 8(x) is the sum of two or three primi-
tive idempotents, its spectrum may be built up in the way described in
Proposition X. Otherwise the alphabet may be generated by the vectors
corresponding to polynomials 6(x), 28(x), ---, 2"8(z) [m = degree of
f(x)], and the spectrum obtained by counting.

II. PROOFS

In this section we give the proofs of the propositions of the first sec-
tion.

TLet V be the binary field, and V" the set of all possible rows of n
binary symbols. V" is a vector space of dimension n over V. Let ®. be,
as before, the set of polynomials mod 2™ — 1 over V. ®, is a commuta-
tive ring.
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We may relate V" and ®, by (1-1) mapping
a+ i+ ot Sar, e, .

This mapping clearly preserves addition in both ®, and V".
A subset @ of polynomials of ®, is an ideal if
(2) 1,2 e@=gq + g2¢Q,
(71) ge@=rg ¢ @ for any r ¢ G, .

An ideal in ®, corresponds by property (z) to a linear subspace of V".
By property (¢), with r = z, this subspace in invariant under a cyclic
permutation of coordinates, hence is a eyeclic alphabet in V". Conversely
a cyclic alphabet in V" is an ideal in ®, . We represent both ideal and
alphabet by the same symbol, G.

Lemma 2.0: An ideal @ of R, consists of all multiples (in ®,) of a
polynomial a(z) which divides =" — 1.* a(x) is the unique polynomial of
least degree in Q.

The proof of this lemma can be found in Peterson,* section 6.4.

a(z) will be called the generating factor of @. The polynomial b(x) =
(2" — 1)/a(z) will be called the reciprocal factor of @. This notation is
used throughout; the ideal named @ always has a generating factor
named a(z) and a reciprocal factor named b(z). The degree of a(z) will
be denoted by m, and that of b(z) by k; of course m + k = n.

Lemma 2.1: The dimension of @ as a vector space of V" is k; the number
of parity checks for the alphabet @ is m. For proof, see Peterson,’ theorem
6.11. ‘

The number of different alphabets of ®, is the number of different,
factors of z" — 1; the dimension of alphabet @ is the degree of its recipro-
cal factor. However, if n is odd, (which we always assume) one can find
which dimensions are available in block length n without going to the
considerable trouble of finding all the factors of z" — 1.

Let w stand for one of the numbers 0, 1, - - - , n — 1. Let Z2(n) denote
the mapping w — 2w mod n. Since n is odd, this mapping is a permutation
of the numbers 0, 1, --- ,n — 1.

The permutation Z:(n) on 0, 1, --- , n — 1 factors into a number of
cycles; the eycles of Z,(63) are shown in Table I, Section I. It is a fairly
trivial matter to find these cycles.

The relation between the cycles of Z,(n) and the factors of 2™ — 1
over V is a well-known part of Galois theory. It is described in detail
here only because of the difficulty of finding a concise reference.

* a(z) divides z* — 1 in the ring V[z] of all polynomials over V. It is meaning-
less to say that something divides z" — 1in R -
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Lemma 2.2: Let S be a subset of the integers 0,1, ---, n — 1. S is
invariant under Zy(n) if and only if it is the union of a number of cycles
of Zy(n).

Proof: If S is such a union it is invariant under Z,(n), since each separ-
ate cycle is invariant.

Suppose S to be invariant under Z.(n) and let r belong to S. Then
2% also belongs to S for any value of ». S contains with r the whole cycle
containing ». Thus S is a union of cycles of Zo(n).

Lemma 2.3: Let S be tnvariant under Z.(n), and let S, be the set of all
SUMS To, + Tog + + ¢ 75,y 7a; € 8, 76, # 15; . Then S, is tnvariant under
Eg(‘n).

Proof: We need show only that =,(n) maps S into itself; the mapping
must then be 1-1. Let r,, + 7, + -+ + 7., € S, ; applying Z:(n) we
obtain 2r,, + 2r,, + -+ 4+ 2r,, , which is again in S;. Hence the lemma
is proved.

Let (1,2,2°, ---, 2™7") be the cycle of Zi(n) which contains 1.
2™ = 1 mod n, or n divides 2™ — 1. Set N = 2™ — 1. Every nth root
of unity is also an N'th root of unity. Let V(2™ ) be the Galois field of
the Nth roots of unity over the prime field V. " — 1 factors into linear
factors over V(2™') and these factors are of the form z — ¢, where { is
a primitive nth root of unity. (¢ is not a primitive Nth root of unity
unlessn = N.)

The automorphisms of V(2™) over V are given by a — o and its
powers, where a € V(2™); further, « = o' if and only if & ¢ v

The explicit connection between the eycles of Z(n) and the factors
of 2" — 1 is as follows:

Lemma 2.4 Let 8 = vy, 12, -+, rm be a sel of inlegers invariant un-
der Zo(n), with r; # r; . The palynomial f(z) = w(x — ™) has coefficients
in V, and is a factor of " — 1 over V.

Let f(z) = (z — ™) -+ (x — ™) be the factorization over V(2™')

of @ polynomial f(x) which divides 2" — 1 over V. The set v, 712, <+ + , Tm
15 then tnvariant under Za(n).
Proof: Let S = r1, 12, -+, T be a set of distinct integers which is

invariant under Z;(n). f(z) = (@ — ™) -+ (x — ™) divides 2" — 1
over V(2™) since each linear factor divides z" — 1, and r; # ;. Let
@, be the coefficient of 2" in f(2). a,_, is the rth symmetric function
of ¢, -+, ™, or

+...+
An—y = E g."l . *

s;€8
878

* Note again that we are working in V[z], not in ®a -
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(a"_f)z - Z"E,a]+.--+2r" = @p_, by 2-3.
88

878

Thus the coefficients of f(x) are in V, and f(z) divides " — 1 over V.
Suppose that f(z) divides 2" — 1 over V. The zeros of f(z) in ¥V (2™)
are ", ", -+-, ™ where { is a primitive nth root of unity, and r,
-, Tm are integers mod n. Since by Lemma 2.3 all the symmetric func-
tions of ¢™, ¢™, -+, {™ arein V, the transformation { — {? preserves
f(z), and must be simply a permutation of the zeros of f{x). Thus the
set r1, 72, -+ + , 'm is invariant under Z.(n).

The smallest sets which are invariant under Z;(n) are the individual
cycles of Z;(n). Each such cycle determines, in the way deseribed above,
the zeros of an irreducible factor of " — 1; each irreducible factor of
z" — 1 corresponds in this way to a cycle of 2;(n).

Proof of Proposition 1

The number of cycles of Z:(n) is ¢, and, by the above, ¢ is also the
number of irreducible factors of z™ — 1. These irreducible factors areall
different [(z” — 1) has no multiple roots over V if n is odd], and can be
combined by multiplication to give 2* different factors of " — 1. Further,
these are all the factors of " — 1. Hence there are 2‘ eyclic alphabets of
block length n. Let a(z) = fi(z) - - f,(x) be the generating factor of the
eyclic alphabet ®@. Let m; be the degree of f;(x). m; is the length of the
cycle of Z,(n) corresponding to f;(x). By Lemma 2.1 the number of parity
checks for @ism = 2.'_, mi.

The exponent of a polynomial a(zx) is the least integer e such that
a(zx) divides ° — 1. Let

a@) = (=) o @— "),

where { is a primitive nth root of unity, and r1, « - - , 7 is a set of cycles
of Zo(n). The exponent of a(z) is then the least value of e such that

(i'r.-)s=1, or er,-zlmodn, i=1,,m.

¢ = n/a where « is the greatest common factor of 1, -+ , r» and n.

If a(z) is an irreducible factor of " — 1 [r1, -+, ra is a single cycle
of Zy(r)], the quantity o is the largest factor of n, which divides each
member of the cyele ry, -+, rm. e = n/a is said to be the exponent of
the cyele as well as of the polynomial a(z).

The exponent of a union of cycles or of a product of irreducible poly-
nomials is the least common multiple of their individual exponents.
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Proof of Proposition I1

The ideal @ with generating factor a(r) contains the polynomial
2° — 1 (= 2° + 1), where e is the exponent of a(z). If e = =, this poly-
nomial is the zero of @; if e < n, it corresponds to a letter of weight 2
in the alphabet G.

If @& contains a letter of weight 2, the ideal @ contains, by suitable
eyelic permutation, a polynomial 2° — 1, e < =n, which is divisible by
a(z); the exponent of a(x) is then less than n.

Thus @ contains letters of weight 2 if and only if its generating factor
has exponent less than n.

Proposition IIT is a restatement of the Bose-Chaudhuri theorem; a
proof can be found in Peterson,' Theorem 9.1.

There is considerable freedom of choice in setting up an exact cor-
respondence between cycles of Z;(n) and irreducible factors of =" — 1.
This occurs because there are several primitive nth roots of unity; if ¢
is one such, then so also is {*, where » is any integer prime to n.

We pick any irreducible polynomial of exponent n to correspond to
the eyele (1,2, -+ , 2™ "), If this is to make sense, the alphabets gener-
ated by irreducible polynomials with the same exponent should be in-
distinguishable for our purposes. In fact they are equivalent;' this will
be proved later.

The choice of a polynomial to correspond to the eycle (1, 2, -+,
2™y implicitly fixes the exact correspondence between cycles of Z:(n)
and irreducible factors of " — 1. It remains to make this correspondence
explicit, preferably by calculations involving only numbers in the prime
field V. This is done in two stages, the first of which is given by Proposi-
tion IV,

Proof of Proposition IV

Let fi(x) be the polynomial chosen to correspond to the eycle (1, 2,
<o+, 2™, Over the field V(2™) fi(x) factors into (z — ¢)(z — ¢*) ---
(x — ™). Let r be a factor of n and {g:(x)} the set of irreducible
factors of " — 1 of exponent e = n/r. One of the g;(x) has {" as a zero
over V(2™), and eorresponds to the cycle containing r. This g;(x) can be
identified by the following lemma.

Lemma 2.6: gi(2") is divisible by f1(x) over V if and only if g:(z) has
¢ as a zero over V(2™).

Proof: Let g(x) be any polynomial of exponent e. Since g(z) divides
2 — 1 over V, g(2") divides 2™ — 1 = 2" — 1. g(z") is a product of
irreducible factors of =™ — 1.
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Let ag, a1, -+, a1 be the cycle associated with g(z), so that a
typical factor of g(z") is (2"—¢®). The cycle By, 81, *++, Bma is
associated with g(z") if and only if 78; = a: [({)" = ¢*] for a suitable
choice of 7,j.

Suppose now that g;(z") is divisible for fi(x) over V. The cycle 1, 2,

., 2™ is then associated with g:(2"), and {" = {** for some ; thus
¢ is a zero of gi(x).

Suppose that {" is a zero of g:(z). The cycle associated with g;(x) is
thenr, 2r, - -+, 2" 'r. Clearly, 1, 2, -- -, 2™ is a cycle associated with
gi(z"), and fi(z) divides g:(z").

It may be noted that the proof of this theorem provides a way of find-
ing the factors of g(z") which is useful in other applications.

Automorphisms and Idempotents of R

Let ¢ be an integer prime to n, and let ¢, be the mapping of ®, onto
itself defined by h(xz) — h(a"), exponents reduced mod n where neces-
sary. o, clearly preserves addition and multiplication in ®, , and is 1-1,
since with ¢ prime to n, ' = 2’ implies ig = jg mod n, implies ¢ = j
mod 7. ¢, is an automorphism of ®, , and ®o, is again an ideal.

In V", o, is a permutation of coordinate places, described by w — qw
mod 7 [Z:(n) is the special case a2]. Thus o, changes alphabets of V" into
equivalent alphabets, and in particular changes cyclic alphabets into
equivalent cyclic alphabets.

The automorphisms ¢, are useful because it is easy to compute their
effect on the ideals of &, .

Lemma 2.6:* Every ideal @ of ®, contains a unique polynomial c¢(x)
with the following properties:

(1) c(z) = e(x)’; e(x) is idempotent
(i1) @ = Ra.-c(x); c(z) generates @

(i27) c(x) s a unit for Q.

(1) c(x)o, is the idempotent of Ga, .

Proof: Let a(z), b(x) be the generating factor and reciprocal factor of
@. Since n is odd, they are relatively prime. There exist polynomials
hi(x), he(z) such that k(x)a(z) + he(z)b(z) = 1, and M(x), hao(z) are
relatively prime to b(z), a(z), respectively. We show that c(z) =
hi(z)a(x) is the idempotent of Q.

(1) e(z)® + e(x)ha(2)b(x) = ¢(x). The second term on the left is
zero since it contains the factor " — 1. Hence ¢(z) is idempotent.

* In other words, R, is a commutative, semisimple ring. It is, of course, the

group algebra over ¥ of the cyclic group of order n; n odd implies that it is semi-
simple.®
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(#) The generating factor of the ideal ®,-c(z) is the highest common
factor of ¢(x) and 2" — 1. This is a(z) by the construction of c¢(z).
Hence &, c(z) = Q.

(i55) If a(z) € @, a(z) = o (z)e(z) by (ii). Then a(z)e(z) =
o (z)e(x) = o (x)e(x) [by (i)] = a(z). Hence ¢(z) is a unit for G.
¢(z) is then necessarily unique, since the commutative ring @ cannot
have two unities.

(i) ¢(x)a, is idempotent because o, is an automorphism of ®, , and
is the unique idempotent of the ideal R.c(z)o, = Qoy.

We now associate with each ideal @ a third polynomial ¢(z), the
generating idempotent of Q.

Corollary 2.7: Go, = @ if and only if c(z)oq = c(x).

Corollary 2.8: Goy = @ for every ideal @ of R ; equivalently, the
permutation Zq(n) preserves every cyclic alphabet of V™.

Two vectors (e, a1, ~+*  ctn1), (Bo, Br, *++, Bua) are said to be
orthogonal if

n—1

> a@;i-Bi = 0 (multiplication and addition in V).
=0

The orthogonal complement (dual alphabet) @* of @ consists of the
vectors of V" which are orthogonal to every veetor of @. For our pur-
poses it is convenient to say that cyelic alphabets @, & are orthogonal if
® is generated by b(z) = (2" — 1)/a(z). This is justified by the follow-
ing lemma.

Lemma 2.9: G@* is equivalent to the ideal generated by b(x) and is ob-
tained from it by the transformation x — « !

The proof of this lemma can be found in Peterson’ (6.12).

Lemma 2.10: If @ has idempotent c(x), the ideal ® = ®,-b(x) has
idempotent 1 + c(z).

Proof: By 2.6 the idempotent of ® is

he(@)b(2) = 1 + h(@)a(x) =1+ e(z).

Sinee we have agreed to say that @, ® are orthogonal ideals, we may
also say that ¢(z), 1 + ¢(x) are orthogonal idempotents. This is fortu-
nate, since it is a well-established convention in the theory of algebras to
say that two idempotents are 01th0gonal if their product is zero.’
[c(z) (1 + e(x)) = ¢(x) + ¢(x) = 0.] We shall adopt this convention.
It is to be noted that orthogonality for ideals is still not the same as
orthogonality for idempotents. The idempotents ¢; (x), ¢:(z) are orthog-
onal if e;(x)-cx(x) = 0. The ideals they generate are not orthogonal
unless also ¢;(x) + c(x) =
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Lemma 2.11: (i) The ideal @, @, has idempotent eic. . (¥2) The ideal
@, U @; has idempotent ¢, + c2 + cies.

Proof:

(¢) @i @:is generated by the least common multiple of a, (), as (z),
say @(z). @(x) is the highest common factor of ¢; (z)e: (z) and 2™ — 1;
hence ¢; (z)c (z) is the idempotent of the ideal ®,-a (x).

(#2) Set d(x) = c1(x) + cax) + c1(x)ea(z). The ¢i(z)d(z) = e (x),
¢ (z)d(x) = c2(x). Thus d(x) is idempotent, and the ideal ®.d (x) con-
tains @; and @, .

Let @ be any ideal which contains @; and @, and let @(z) be the
idempotent of @. Since é(zx) is a unit for &, ¢:(z)é(x) = c;(x), 7 = 1, 2.
Then d(z)é(z) = d(z), and ®R.d(x) is contained in every ideal @.
Henee ®R.-d(x) = @& U @,.

An ideal of ®, is said to be a minimal ideal if it contains no subideal
other than (0). A minimal ideal of ®, will be denoted by 91, , its gener-
ating factor by m;(x), its reciproecal factor by f;(x), and its generating
idempotent by 8;(x). The idempotent of a minimal ideal is called a
primative idempotent.

Lemma 2.12:

(£) M; is @ minimal vdeal if and only if f:(x) is an irreducible factor
of " — 1.

(@) m; Naw; = 04f ¢ = j; the dimension of M; U M; s the sum of
the dimensions of M; and N; .

(i72) Any ideal @ is the union of the minimal ideals continued in Q.
I'n particular, R, is the union of all its minimal ideals.

Proof:

(i) follows from 2.1, since the dimension of a minimal ideal is as small
as possible.

(#1) The generating factor of the ideal orthogonal to 9; N 9M; is the
highest common factor of f;(x) and f,(x), which is 1. Hence 91; N o1,
is equivalent to ®," and is zero. The second statement follows im-
mediately.

(i77) Let b(z) be the reciprocal polynomial of @, and let b(x) =
fil@)falz) - - - f.(x) where (since n is odd) the f:(x) are distinet irreducible
factors of 2" — 1. @ contains the polynomials (z" — 1)/f:(x), hence
contains the minimal ideals 9;, ¢ = 1, ---, », hence contains their
union M; U, U --- Uan,. By (44) the dimension of this union is the
sum of the degrees of fi(x), - - -, f.(x) which by 2.1 is the dimension of
@ Thus@ = o, Uom, U --- Uam, .

We note that this theorem is not true for even n.

Let 6o, 61, +--, 8,1 be the set of primitive idempotents of &, .
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Corollary 2.13:
(1) 0.0, =0 ©5].
(i7) Every idempotent of R, 1s of the form

Proaf:
() Follows from 2.12 (¢z) and 2.11 (7).
(77) Since any ideal in ®, is the union of minimal ideals, any idem-
potent can be obtained from the #; by repeated applications of 2.11 (¢z).
The product terms disappear by part (7) of this lemma. In particular

t—1
Rl = Ry (Z 91).
=0

Lemma 2.14:* If p1, o belong to the minimal ideal M, and ups = 0,
then either yy = 0 or upy = 0.

Proof: Suppose that g # 0. Consider the set A of elements m in 9N
such that my, = 0. If my , me € A, 50 does my + ma ;if me Aand p e R, ,
then um ¢ A. Hence A is a subideal of 91, so is either all of 91 or the zero
ideal. Let @ be the idempotent of 91; then #-py = ps # 0; hence 6 € A,
and A ¥ M. We must then have A = 0; consequently u; = 0.

It is clear that it will be advantageous to find the explicit forms of the
primitive idempotents 6,(z). Indeed if this were not easy the above
theoretical results would have little practical value; however it is easy,
and has in fact been done for all odd values of n through 1023. The
method used is due to Prange,” and is deseribed below.

Tetr = r,rs, ---, rm be a eycle of Z.(n) and let n, denote the
polynomial 2" + 2™ + --- + 2™ %, is an idempotent, since squaring
it simply rearranges the numbers which oceur as exponents of z.

Lemma 2.14: The polynomial

n—1
> aat ajeV,
i=0
is an idempotent if and only if it can be writlen as a sum of the 5, .

* Alternatively we might quote the well known theorem*® that the minimal
ideal 917 is isomorphic to the Galois field Vyl/f(y).
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Proof: Clearly any sum of the 7, is idempotent. The “if” part of the
lemma follows immediately from 2.2,

Lemma 2.15: The number of primitive idempotents of R, is the same as
the number of cycles of Z;(n).

Proof: Let s be the number of primitive idempotents. By 2.12 (%)
the number of ideals in ®, is 2°. Hence s is the number of eycles Z;(n).

Any idempotent may be expressed as a linear combination of the #.
(which we can find easily) or as a linear combination of the primitive
idempotents §;. The #; have the additional property that they are
mutually orthogonal. In particular, each 7, is the sum of a subset of the
@; ; the problem is to split it into its components.
We observe that if S, T are nonempty subsets of the indices 0,
-++,t— 1,8 # T, then

(%) (%) = "

JeT

1

7

The produet of two idempotents will contain fewer primitive idempo-
tents than either factor.
Let ¢ be the number of primitive idempotents. Then
t—1 —1

1= ZBJ‘, andif 1 = EE:
=0 7=0
where the £; are orthogonal idempotents, then the £; are, except possibly
in order, the same as the 8; . We use this fact to set up an algorithm as
follows:
Suppose that we have at some stage a decomposition of 1 into » < ¢
mutually orthogonal idempotents;

—1

l= b8 =LEk=0 @]

Let £ be an idempotent; set
=t + 50+ E) =6+ Epi=01,---,7— L

£, £z are idempotent, and the new idempotents are mutually orthog-
onal. If the splitting is genuine (it may happen that ¢ = £ or &; =
1 + £, in which case no splitting takes places) the result is a decomposi-
tion of 1 into more than 7 mutually orthogonal idempotents.

To start the algorithm we set 1 = 5 + (1 4 #1); the other »; provide
suceessive candidates for £, The computation is finished when there are
¢t components in the decomposition of 1. Since the 7, are also a base for
the idempotents of &, , this stage must be reached by the time the set
of u, is exhausted.
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The primitive idempotent 6;(z) is the generating idempotent of a
minimal ideal 91; ; the orthogonal idempotent 1 4 8;(x) is the generating
idempotent of a maximal ideal 3C; : the generating factor f;(z) of 3¢; is
an irreducible factor of z" — 1, and is the greatest common factor of
1 + 6;(x) and z" — 1. In this way we can produce the parallel lists of
primitive idempotents and irreducible factors of 2" — 1 referred to in
Section I.

We return now to the automorphisms ¢, of ®, .

The set of automorphisms ¢, is an Abelian group, with 4,0, = 04,4,
defined in the usual way. It is isomorphic to the (multiplicative) group
of integers mod n which are prime to n. Since ¢. and its powers leave
the idempotents of ®, unchanged, we may, for our purposes, factor
out, this subgroup. In practice we choose one g from each cycle of Z;(n)
which contains integers prime to n. These ¢ (and the associated o)
form a rather small Abelian group, whose structure may be found by
hand, as illustrated for n = 63. It is worthwhile to find a set of generators
for the group. One need only compute the effect of these generators on
the set of primitive idempotents of ®, ; it is then simple to calculate the
effect of any automorphism on any ideal. Proposition VI is now estab-
lished,

Proof of Proposition VII: Let fi(x) be the irreducible factor of 2" — 1
associated with the eyele (1, 2, ---, 2"7"). » is an integer prime to =,
and we wish to identify the polynomial f,(x) associated with the cycle
(v, 20, -+, 2" ). Since v is prime to n the two cycles will be the same
length. f;(z) is the highest common factor of 1 + 6,(z) and 2" — 1.
1 4 6,(x) is thus divisible by the polynomial (xz — {)(z — ¢*) -

(x — ¢*™). Let w, prime to n, be such that uv = 1 mod n. Then (1
0:(x))e, = 1 + 8,(2") is divisible by

(J;ll _ g_)(xu _ ;_2) . (xu _ §_21u)
= @ =R =) e @ = ),
which is divisible by (z — ¢") (x — ) --+ (@ — ")
Thus f,(x) divides (1 + 6,(z))os, over I 2m), and since both poly-

nomials have coefficients in V, f,(x) divides (1 4+ 6:(z))o. over V.
Hence f, (x) is the highest common factor of (1 + 6,(x))e, and 2" + 1.

Spectra of Cyclic Alphabets

Let a(x), b(x) be the generating factor and reciprocal factor of an
ideal @ in ®, . Let b(z) belong to exponent e, where n = ea, a > 1.
Let @ be the ideal in ®.* with reciprocal polynomial b (z).

* R, is the ring of polynomials mod z°¢ — 1.
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Lemma 2.16: Every letter of @ consists of « repetitions of a letter of @'.
Proof: Let a’ (z) = (z* — 1)/b(z) be the generating polynomial of
@'. Then

alz) 1 ).

(" — 1)/b(z) =

= (g z"_"") a'(z).

Let r(z)a’ (z) = ZLG ez’ (multiplication in ®,) be a letter of Q.
With multiplication in ®, , G contains

r(z)a(z) = (Eﬂ x”_“) (;. “‘x")'

Hence each letter of @ glves rise to a letter of @, which consists of a
repetlthIlS of the letter of @'. It is evident that different letters of @
give rise to different letters of @. Since the dimensions of @ and @' are
both equal to the degree of b(x), all of & is obta,med in this way.

Corollary 2.17: Let the spectrum of @ be A'G)i=0, -, e The
spectrum of @ is given by the equations A (ai) = A (i), 1= 0,

Tor example, let n = 15,and b(z) = 1 + = + z". b(?,) has exponent 3
d@) = @+ 1)/b@E)=1+za(@) = 1+2"+a" +2"+ :cu)
(1 + z). The ideals @', @ are tabulated below.

0 1 2 0 1 2 3 4 35 6 7 8 9 10 11 12 13 14
000 000 000 000 000 000
110 110 1 10 110 110 110
011 011 011 011 011 011
1 01 1 01 1 01 1 01 1 01 1 01
Let 7" denote the cycle permutation w — w + 1 (mod n) of the num-
bers 0,1, -+, n — 1. T shall also denote the mapping h(x) — zh(z)
(exponents mod n) of ®, onto itself. Clearly 7" is the identity mapping.
If « € @, the polynomials (or vectors) a7, aT? -, aT" " also belong

to @. The letters of @ are divided into a number of nonoverlapping cycles;
to construct @ we need to know only one element from each cycle.

In fact it would seldom be useful to construct a picture of @ in this
way. We restrict ourselves to finding the spectrum of G.

The set a, a7, --- , aT""" does not always contain n different letters.
We denote by x(a) the number of different letters in this set; = (a) is

called the period of «. The set
a,al, -, aT !

is then a complete cycle of @, and the length of the eycle is 7 (a).
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Let r(x) € ®, ; let a(z) be the highest common factor of r(x) and
2" — 1, and let b(x) = (" — 1)/a(x).

Lemma 2.18: The period of r(x) 1s the exponent of b(x).

Proof: Suppose b(x) belongs to exponent e; set a’ (z) = [(z° — 1)/
b(x)], r(x) = h(x)a(x), where h(z) is relatively prime to z" — 1.
r@)@ — 1) = h(@)-a@) b (&) = k@) @)@* — 1) = 0.
Hence z°r(z) = r(z), and the period of r(z) is = e.

Suppose that ¢ is the period of » (). Then ¢’ < n, and r (z) (" —1) =
0; in V[z], h(@)a(@) (" — 1) = i(x)(@" — 1) = i(x)a(x)b(x) where
i(z) is a polynomial in V[x]. b(x) and h(x) are relatively prime since
b(x) is a factor of " — 1. Thus b(x) divides (* — 1), and €2 e.

Proof of Proposition IX: «(8;) is the period of 8;, and =(m) the
period of m e ®,- 6; . Then ma™®” = mf,2""" = m6; = m; hence = (m) <
7(0:). Also 0 = m- (™™ + 1) = mb;- @™ ™ + 1) = mby-0; ("™ + 1).
By 2.13, since mf; = 0, we must have 8;(z"™ + 1) = 0. Thus = (8;) <
x(m), so that w(6;) = w(m). By 2.18, = (6,) is the exponent of the
irreducible polynomial f;(x).

If n = 2™ — 1, an irreducible polynomial f(x) of exponent n has de-
gree m, and a minimal ideal of period »n contains just one cycle besides
the zero cyele. The maximal ideal with generating factor f(x) is a
Hamming code (a close-packed code of minimum distance 3)." If n is
not of this form, the minimal ideals of period » contain more than one
cycle; it is then necessary to find several eycle representatives. No short-
cut for doing this has been developed; the particular cases which have
been studied have been solved by brute force.

If we have found a cycle representative for each cycle of ®8; and ®8;,
we can construct cycle representatives for ® (8; + 6;) with the help of
the following lemmas.

Let m e ®8;, n e RY; . '

Lemma 2.19: mT* + nT" = nT" + nT" if and only if mT* = mT*
and nT" = nT" .

Proof: The equation above may be written

mT* — mT* = T — aT" .

The left-hand side belongs to ®8; and the right-hand side to ®8; . The
intersection of these ideals is zero.

Let = (m), =(n) be the periods of m, n. Let H, h be respectively the
least common multiple and highest common factor of these numbers.

Lemma 2.20: (Proof of Proposition X): The w(m)-m(n) elemenis
mT* + nT" are partitioned into h cycles of period H. The vectors mT" + n,
w=201---, h — 1 are in different cycles, and may be taken as cycle
representatives.
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Proof: Let A be the period of the vector mT" + nT”. Then
(mT* + 2T") T = mT* 4 n71",

and by 2.19 » + A = vymod w(m) and g + A = p mod «(n). Thus X is
divisible by both 7r(nlz) and 7 (n) and A = ¢H, g an integer = 1.
mT* + n and mT* <+ n are in the same cycle if and only if

(mT" + n)T° = mT + n,

oru+ p = 4 mod w(m) and p = 0 mod =(n). p and = (m) are both
divisible by &; hence p — u’ = pmod = (m) implies that p — y is divisible
by h. The h vectors mT" 4+ n, u = 0,1, - -+, h — 1 must be in different
cycles.

Thus there are at least A different cycles, and the period of each is
> H. Sinee there are only = (m)r(n) = hH elements altogether, the
only possibility is that there are h eycles of period H.

We now return to Proposition V, which was omitted earlier. We restate
the proposition as follows:

Theorem 2.21: Let 9, , 9Ny be minimal ideals of Ry . The following three
statements are equivalent:

(£) My, N2 have the same spectrum.
(42) 9Ny, Mo have the same dimension and period.

(445) There exists an automorphism o, of &, such that M, = N, .

Proof: We show that (7) = (i1) = (i) = (7).

Let A(s) be the number of letters of weight s in 917; . We prove that
the period of 9m; is the highest common factor of A(s), s > 0.

Suppose first that the period of 91; is n; let 2* be the total number
of letters in 9;. The orthogonal complement of 9; can contain no
letters of weight 1 since it is a nontrivial eyclic alphabet. By Proposition
VIII we obtain

S A()=2" -1
a=1

> sAd(s) = 2.
s=1

By the first equation, % = ks, so the dimensions of 97, and M, are
equal. Since every cycle of 91;, except that containing the zero letter,
is of length n, n divides each A (s) for s > 0. By the second equation,
any other common factor of A (s) is a power of 2. By the first equation,
there can be no such factor.

Suppose now that the period of 91; is e;, and n/e; = a; > 1. By 2.16
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and 2.17 there is a minimal ideal 91, in ®., with period e; and spectrum
A’ (s) such that the spectrum of 91; is given by A (a;s) = A’ (s). By the
first part of the proof, e; is the highest common factor of A'(s), s > 0;
hence ¢; is the highest common factor of A (a:s), ais > 0.

(1) = (447). Suppose first that the period of 9, and M, is n. Let 9,
correspond to the eycle (1,2, - -+, 2" ") of Za(n), and 9N, correspond to
the eycle (v, 2v, -+, 2" '»). v must be prime to n, since the irreducible
polynomial associated with 9. has exponent n. Choose u, prime to n so
that wv = 1 mod n. As in the proof of Proposition VII, Mg, = M2 .

Suppose now that 91; has exponent ¢, 7 = 1, 2, where n/e = r > 1.
Let o, M, be associated with cycles (r, 2r, ---, 2™ ') and
(s, 28, --+, 2™ 's). The lengths of these cycles are the same because
o, and 9N, have the same dimension.

As in the proof of Lemma 2.5, s = gr, where ¢ is prime to n. Applying
again the proof of Proposition VII, we see that Mo, = Mz .

(i) = (). If 91, and 9N are equivalent they clearly have the same
spectrum.

We have thus shown that minimal and maximal cyclic alphabets of
®, which have the same spectrum are equivalent. It is not known
whether this is true for other eyclic alphabets. However many cases
have been found of eyclic alphabets which have the same spectrum but
which are definitely not related by one of the automorphism e, .

CONCLUSION

Up to this time much of the theoretical work on binary cyclic alpha-
bets has been concentrated on alphabets with block lengths of the form
n = 2 — 1. Such numbers become rather sparse as n increases. On the
other hand, alphabets of long block length are important for actual use
on the telephone network, and for such applications the block length,
though large, is likely to be restricted to a narrow range. It is therefore
expedient to develop economical procedures which will pick out the alpha-
bets with preassigned properties if any such exist. The amount of in-
formation presented in this paper about the structure of the polynomial
ring ®, is no doubt formidable; it has, however, very practical applica-
tions.
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