Design of Bandlimited Signals for
Binary Communication Using Simple
Correlation Detection®

By B. R. SALTZBERG and L. KURZ
(Manuseript received July 8, 1964)

This paper considers the design of binary bandlimited signals for trans-
mission over a channel with additive white Gaussian noise, the signals to be
received by a memoryless correlation delector. A signal waveform is found
which allows communication at the Nyquist rate without inlersymbol
interference and with 1.3 db degradation compared to an opltimum com-
munication system. Other waveforms, consisting of the sum of a few pro-
late spheroidal functions, are also investigated.

1. INTRODUCTION

In the reception of serial binary data transmitted over a noisy band-
limited channel, errors result from the combined effects of intersymbol
interference and noise. Minimization of the error rate involves ap-
propriate design of both the transmitted signal and the method of
detection, taking into account the effects of both causes of degradation.

Nyquist has shown how bandlimited signals may be designed so as
to eliminate intersymbol interference when detection is accomplished
by periodic instantaneous sampling.! Sunde has shown that optimum
performance over a channel with white Gaussian noise is achieved when
the shaping is divided equally between the transmitter and receiver.?
Tufts has developed a technique of long memory detection which elimi-
nates intersymbol interference and optimizes noise performance subject
to that constraint, for an arbitrary transmitted signal.? Kurz and Trabka
have studied the design of signals for transmission in the presence of
nonwhite noise without the problem of intersymbol interference.”*

* This paper is based on parts of a thesis accepted by the faculty of the Grad-
uate Division of the School of Engineering and Science of New York University

in partial fulfillment of the requirements for the degree of Doctor of Engineering
Science.
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This paper discusses the design of bandlimited signals for communica-
tion in the presence of white Gaussian noise, when the detector is a
memoryless correlator. Memoryless correlation is a widely used sub-
optimum means of detection. It will be shown in Section III that we can
communicate without intersymbol interference at the Nyquist rate
using memoryless correlation. In Section IV we investigate another
form of signaling for communication with memoryless correlation.
Here signals are chosen which do not eliminate intersymbol interference,
but lead to low error probability for the most adverse message sequence.

II. PRELIMINARIES

In serial binary transmission, the nth binary digit of the message is
transmitted by sending either so(t — nT) or s;(t — nT). We will as-
sume that the a priori probabilities of s, and s; are 1/2 and that all dig-
its are independent. The transmitted information rate is therefore
1/T bits per second.

If the signal is perturbed by additive white Gaussian noise, the
optimum detector is well known to be a simple correlator if so(f) and
8 (t) are time limited to an interval of length 7' Such a detector
chooses sy if and only if

fﬂ(t)su(t — nT)dt — % so (¢t — nT)dt

> fv(t)s1(£ — nT)dt — %fslz(t — nT)dt

where v(t) is the received signal and the integration is taken over the
interval of length 7.
A polar signal leads to minimum error probability 7

so(t) = —s1(t) = f().
The correlation detector then chooses s, if and only if

[v(t)f(t — aT)dt > 0.

If £(t) is not time limited to an interval of length T, as is inevitable
if it is bandlimited, then the memoryless correlator is a suboptimum
detector because it does not make use of the signal energy outside the
interval. An infinite memory correlator or, equivalently, a matched
filter and sampler, is the optimum detector, provided that intersymbol
interference can be eliminated. The memoryless correlator, however,



BANDLIMITED SIGNALS 237

has found extensive practical application. With proper choice of f(¢),
the degradation as compared with optimum detection need not be too
large.

Aein and Hancock have shown that some improvement of the memory-
less correlator can be obtained in the presence of intersymbol inter-
ference by modifying the correlating function.® However, this pro-
cedure is sensitive to amplitude variations of both the signal and the
noise, whereas the simple correlation detector is not. We will therefore
use the simple correlator and seek to minimize error probability through
the choice of f(t).

We will shift the time axis so that the origin is in the center of the
bit to be detected, and assume that an infinite number of bits has been
transmitted both before and after the bit currently being detected.

o0
v(t) = X aif (¢ + T) +n(0)
—®
where a; = =1 and n(¢) is a member function of a stationary Gaussian
random process with autocorrelation N[5 (¢)]/2. The one-sided spectral
density of the noise is therefore N.
Since we are using a simple correlation detector, a; will be chosen as

T/2

(@) = sgnf_m o(0f ()t

where

&

sgnx = -

5]

The choice of @y when

T/2
f_ v()f(H)dt = 0

T/2

is not important, since this event occurs with zero probability.
T/2
Q= worwa
T/2

is a linear functional of a Gaussian process and is therefore itself nor-
mally distributed for a given sequence [a:]. Its expected value is

) T/2
BQ = % a [ f+ kDAL,
k=—m —T/2

which may be written as
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2 2
E@) = ad’ + 2 apid
. k#F0
where

T/2

dt = FA(¢)dt (1)

and

1 T/2

n= _[mf(t + KT)f(t)dt. (2)

The variance of @ is

Var (Q) = 3 d
The probability density of @ is therefore

P(Q) \/ N d exp [ Na (Q aod ; akpkdg) :I

We may now calculate the probability of error as

1 0 1 2 22
p(efao= +1) = —m[mexp[—w((@—d _:;;akpkd)i,dg

1 b 2 232 ]
p(eJan = —1) = ‘\/m_\rd’/l; exP[ Ndz (Q + d ’;Gk.ﬂkd)]d’Q

These expressions reduce to

ple|a = +1) =

fc[% (1 + Z akpk)]
[\/— (- Z am‘):l

(ST

—1) =

ple | a

l\.~1 =

where

2 -]
erfe (z) = 7?_[ e dt.

The maximum probability of error occurs when

ay = —agsgn pe forall k=0 (3)
1 d
Poax = 5 erfc[—\/ﬁ (1 - k;ﬂ | px [)] (4)

It may be noted that if p. = 0 for all k # 0, then the probability of
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error is independent of the message sequence and is equal to
1 erfe (d/+/N).

This is the case of no intersymbol interference, and the error probability
is a monotone decreasing function of d. If intersymbol interference does
exist, the error probability is greatest for the sequence (3) and is given
by (4). The average error probability is tedious to calculate, but may
be readily approximated.®

Equation (4) may be compared with the error probability for opti-
mum detection™

p. = % erfe (4/4/N)
where

A* = f_:f’(z)dt) .

It is extremely desirable that the system perform error-free in the
absence of noise, N = 0. Since

Hm Pmax = 0, it > pe] <1
N—0 k=0
, i 2 el =1
k70

=1, if 2 lel>1,
k70

W=

we will reject any system for which > | pr| = 1, since in this case
k=0

there will be some sequence of binary digits that cannot be received
without error.

III. SIGNALS WITHOUT INTERSYMBOL INTERFERENCE

In order to avoid intersymbol interference with memoryless correla-
tion detection, it is necessary that

T/2

o ;f FOF 4 KT)dt = d%os. (5)
-T2

We will seek bandlimited functions f(¢) which satisfy (5) by using
an unpublished method of H. O. Pollak.

Let F(w) be the Fourier transform of f(t). If f(£) is bandlimited to
|| < w., then

0 = o= [ @)oo

2



240 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

and
1 sin (w — ) g '
= f f F()F*(x) — = & qu dx.
—w, V—w, ( - .’L')
Let
sin (w — z) %
¢ = [ FHe) —— 2 do (6)
—We (w - x)
Then
P f F(w)@(w)e'™ dw.
We now divide the interval (—w,, w.) into subintervals of length
2x/T
1 N @n+)x]T .
= 2 [ F(0)6(w) ™ des
2r ne—w J@n—1yriT
where

1 {wT
N=_(=-1
=5(% )

f ZN: F _1_‘_’” +?ﬁl" ) (7)
pe = —7r|T n=—N @ T ¢ @

Equation (7) indicates that the py’s are the Fourier coefficients of the

function
Ho) = ¥ F( 2’“’) (+2”—") (8)

n=—N

Since p, = 0 for all & = 0, H (w) must be a constant independent of
w. Using (5) and (7), we find that

Z F( 2”") ( +2ﬂr)= Td. (9)

n=—N
If w.T' = m, then we may choose N = 0, and (9) reduces to

™

<T.
=5
Equation (10) cannot be satisfied if F(w) = 0 for any o in the in-

F(w)G(w) = Td",

Il/\

—7 (10)
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terval (—=/T,x/T"). Therefore intersymbol interference cannot be
avoided if w, < =/T.

Let us now investigate the case w, = «/7. Substituting (6) into (10)

e sin (w — x)g
Flo) [ ) ————2 iz = 1", (11)
T m(w — )

In an unpublished work, Pedro Nowosad has proved that the quad-
ratic integral equation (11) has a continuous, real, positive solution
Fw).

Equation (11) has been solved numerically by assuming an arbi-
trary Io(w) and iteratively finding
. T

| T sin (0 — ) 5
—_— = Fo(z) ———— = dx.

Fulw) [ ) —

The resultant amplitude spectrum F(w) is plotted in Fig. 1. The
corresponding time function f(¢) is plotted in Fig. 2. Since both F (w)
and f(f) are even functions, only the positive abscissas are shown. The
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Fig. 1 — Spectrum of the signal which permits transmission without intersym-
bol interference.
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Fig. 2 — Bandlimited signal which permits transmission without intersymbol
interference.

signal has been normalized for unit total energy. This time function
does indeed satisfy (5) with @ = 0.744.

Digital communication using bandlimited signals and memoryless
correlation detection can therefore be achieved without intersymbol
interference at the Nyquist rate, 1/7 = w./7. The resultant degradation
in the presence of white Gaussian noise, when compared with optimum
detection of the signal sin w.t/t, is —10 logy, 0.744 = 1.3 db.

A disadvantage which f(f) as shown in Iig. 2 shares with sin w.t/!
is that Zf(t + nT') does not converge absolutely. Very large amplitudes
may therefore be caused by certain sequences. If w.T'" > =, then signals
which converge more rapidly can easily be designed for detection by
sampling. It is expected that solutions of (9) exist which also make such
use of the additional available bandwidth. However, no such signals
have as yet been found.

IV. OTHER SIGNALS

It is not at all necessary that intersymbol interference be eliminated
in order to achieve reliable digital communication. For use with memory-
less correlation, a signal with some intersymbol interference may very
likely lead to a lower error probability than a signal with no intersymbol
interference but with less of its energy in the prineipal time interval.
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In this section we will drop the constraint of no intersymbol interfer-
ence. The probability of error is therefore dependent on the message
sequence. We will use a minimax type of criterion for designing the
bandlimited signal. That is, we will attempt to minimize the proba-
bility of error for the worst sequence. It is believed that the minimax
criterion may be more realistic than an average error rate criterion,
since the latter approach does not prevent the possibility of having
some extremely sensitive message sequences. It is possible that such
sensitive messages cannot be transmitted without error even over a
noiseless channel. A further advantage of the minimax eriterion is that
it leads to a solution which does not require knowledge of the noise
level.

An additional constraint that will be imposed is that the signal am-
plitude remain bounded for any message sequence.

We will attempt to minimize pumex as given by (4). From (4), Pmax
is a monotone decreasing function of

D=d(l — ;’ml). (12)

We can therefore satisfy the minimax criterion by maximizing the
separation function, D. It is convenient to scale the amplitude of f(t)
so that ¢ = 1. Such scaling, of course, affects the total energy of the
signal. However, the quantity D/+/FE remains invariant under such
scaling, and we may accordingly maximize the quantity

1
D=—1-

and the resultant f(¢) may later be multiplied by the factor /A2/E
in order to satisfy the fixed energy requirement. Here, A* is the required
energy, while E is the energy of the scaled signal.

It is also convenient to scale the time axis so that 7 = 2 and w, = ¢,
where the normalized bandwidth, ¢ = % w.T. Note that ¢ = x/2 cor-
responds to transmission at the Nyquist rate.

We will make use of the properties of the prolate spheroidal functions,
(1), which are extensively discussed and plotted by Slepian, Landau
and Pollak.""* Some of these properties are

T2

Jrce + A-T)dt] (13)

-T2

[ v = s

f Yl t)yg;(t)dt = Nidoj,
—1
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where A; is the (7 + 1)th largest eigenvalue of

wi = [ v etz g,

¥:(t) is the eigenfunction corresponding to A;. Both ¢; and A\; depend
on the parameter c.

Sinee f(t) is a bandlimited funetion, it may be expressed as a series
of prolate spheroidal functions"

() = )z‘,u Yada(t) . (14)
If we set
_ B
TN
then
flt) = RZ=0 B. "”'“—). (15)

The funetions ¥, (£)/4/\, are orthonormal over the interval (—1,1).
f(t) can be expressed as a vector F = [, B1, *--], with orthonormal

basis

The energy in the interval (—1,1) is equal to

f_:fg(t)dt =FF' =8"+8"+ - =1,
where F'' is the transpose of F7. The total energy is equal to

E= [ £t _A+B‘ 4 oo = FAF'
where A is a diagonal matrix with elements A;; = 68;;/A; .

Since f(¢) is bandlimited, f(¢) in the interval (—1,1) determines f(t)
for all time.

=yl + 2%
$(t + 2k) = ”Zﬂﬁn%.

¥u(t + 2k)/+/N, can itself be expanded as
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all + 2k) & Y (1)
e A

where

1 #1
tonk = s | (D01 + 20 (16)

so that

L Yl

or, in matrix form,
F.=FT a7)

where the elements of T are ¢;; as given by (16).
We can now express the intersymbol interference terms as

1
f FOF(L + 20)dt = FF = FT.F". (18)
—1
Then
1 — D bFTF"
D o= k= (19)
/AT
where

by = sgn (FTWF").

We seek suboptimum solutions by confining F to M dimensions.
That is, we will seek an optimum f (#) of the form

M—1 wWn t

Such an approach is justified if

lim fu(t) = 1(2),

the true optimum solution, and this convergence is sufficiently rapid.
All vectors in the previous development are now M-dimensional and all
square matrices are M/ X M. Note that (17) is no longer strictly cor-
rect, but instead gives the projection of F in the A/-dimensional space.
Equations (18) and (19), however, remain valid.

At this point we will introduce the constraint which requires that the



246 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

total signal amplitude remain bounded for any message sequence.
This is highly desirable physically, because of the effects of inexact tim-
ing and the technical impossibility of handling unbounded signals.

For the worst sequence,

smax() = 3|t + 20|

and we wish to constrain f(¢) so that Smax(f) remain bounded. We first
express ¥, (1) as a multiple of the radial prolate spheroidal function:"

walt) = EelD)
where
2= [ R0
Since"

Ap = % R,f(l)
m
we can also express K,° as

1
T fl Rﬂz(t)dt
K= ——

T 2eR2(1)
Then
M—1 B’l
0 M—1 I‘Sn
smax(t) = L ﬂ;ﬂ Kn'\/h_‘n R,l(t +2k) .

For large | ¢ |, R.(¢) can be expressed asymptotically by

2 sin ¢t

=4 o™, n even
ct

R.(1) = (—=1)™
R.(1) = (—1)™0e "_"j’t-ff + 0%, nodd

Let us examine
] M—1 ﬁ
n

sn(t) = IZ > mR,.(t + 2k)

k=N | n=0
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= M—1

E e \/h o(k™™)

SN(

w2 Bn sine(t + 2k)
> (cpm ]

|k|=N | n even ﬁ C(t + 2’6)
ninyz__ Bn_cos e(t + 2k)
* Ik;_:N nodd -1 Kn\/X: c(t + 2k)

The last two series diverge, except for isolated values of ¢ and t.
Sufficient conditions for smax(f) to be bounded are therefore

nf2 .B?l
Z R v v (21)

and
Bn
-1 (n+1)/2 29
n%d ( ) Kn‘\/i ( )
These equations confine F to an (M — 2)-dimensional subspace

orthogonal to the two vectors

1 1 1
Vo [Ka\/)\n 0 v e ]

1 1
= [0’ vt T K ]
vy = FvV," = 0.

We can form an orthogonal matrix 7 in which the first two rows are
'V, and KV,, and the remaining M/ — 2 rows are any vectors such
that the M rows form an orthonormal set. The last M — 2 rows may,
for example, be chosen by the Gram-Schmidt orthogonalization process.
We may then form

G=FV'=FV"

since V' = V' for an orthogonal matrix. Due to the above constraints,
the first two components of @, g, and g. = 0. Since V is an orthogonal
transformation, GG' = FF' =

We may also form matrices Uy from T’ . Since T is used only in the
quadratic form (18), we need only consider its symmetric component,
T, in which t;5 =t st = 3tijr + tjiw). Then

FT.F' = FT/F' = GVT,V'G".

! . . . . . .
Let Uy = VTV'. Uy is a symmetric matrix since it is congruent to
Tk’, a symmetric matrix.
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FT.F' = GU.G".
If we also let ® = VAV
1 — 2> bGUG
=0

+ GOGH

We find the optimum M-dimensional signal f(¢) by varying the unit-
length, (M — 2)-dimensional vector G so as to maximize D' given by
(23), and then perform the inverse transformation and scaling. Note
that if f(¢) is constrained to be either an even or an odd function, only
terms of even or odd n appear in (14), and only one of the constraints
(21) or (22) is needed.

The resultant f(z) is of the form (20). Landgrebe and Cooper have
shown that the Fourier transform of . (¢) is™

SWa(0)] = 7 1/% v (g’) (o] <c

=0, |w]| > e

D = (23)

Il

Therefore the optimum f(¢) may be generated by passing an impulse
through a filter whose frequency response is

M—1
H(w) =K Z=(j) 7 Bubn (‘i), lw| <e¢

c
=0, |w| > ec.

If M is reasonably small, H (w) is well behaved, except at w = ¢,
and may be readily approximated by a physically realizable filter.

The optimum signals and their separation functions have been com-
puted for several low-dimensional cases, each for several values of e.
The total energy of the signals was set to unity in all cases.

The simplest signal is a two-dimensional even or odd function. It is
completely determined by its energy and constraint (21) or (22).
Three such signals have been examined. The components of these three
signals are ¥, and ¢=, ¥; and 3, and ¥» and 4, respectively. For all
values of ¢, it was found that the first signal led to the highest value of
the separation function D, while the third signal gave the lowest value
of D. This result would be anticipated by energy considerations alone.

The v, and . components of the optimum two-dimensional signals
are plotted in Fig. 3 as a function of the normalized bandwidth, c.
The values of the separation function for these signals are shown in
Fig. 5.
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Fig. 3 — Components of optimum two-dimensional bandlimited signals.

A three-dimensional signal may be formed with ¢y, ¥» and ¢ com-
ponents. One degree of freedom is available for adjusting the coefficients
of these components so as to maximize D. The optimum coefficients for
signals of this form are shown in Fig. 4. The resultant values of D are
plotted in Fig. 5. It is seen that substantial improvement over the two-
dimensional signal is obtained over a large range of ¢.

A four-dimensional signal consisting of yo, ¥1, ¥» and 3 components
was also investigated. Constraints (21) and (22) and the energy re-
quirement permit one degree of freedom in the signal design. It was
found that no significant improvement over the two-dimensional signal
could be obtained by using this form of signal.

For an ideal signal which has all of its unit energy in the interval
(—1,1), D = 1. Fig. 5 may be considered to be a comparison of the
worst error probabilities of bandlimited signals to the error probability
of an ideal signal. If D > 0, then the power of the bandlimited signal
must be increased by —20 log,c D db in order for its error probability
for the worst sequence to be equal to the error probability of an ideal
signal.

It should be noted that for these signals, D < 0 when ¢ < /2.
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Tig. 4 — Components of optimum three-dimensional bandlimited signals.

We must therefore transmit slower than the Nyquist rate in order to
achieve error-free performance in the absence of noise.

V. CONCLUSIONS

Memoryless correlation is a suboptimum but useful method of de-
tecting binary signals. With proper choice of the transmitted signal,
the performance of a communication system using memoryless correla-
tion can be made to be almost as good as that of an optimum system.

Communieation at the Nyquist rate without intersymbol interference
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Fig. 5 — Separation funections for optimum two- and three-dimensional band-
limited signals.

using memoryless correlation detection is possible when the function
shown in Iig. 2 is used as the transmitted signal. The resultant per-
formance in the presence of noise is 1.3 db worse than that of an opti-
mum system.

Bandlimited signals may also be designed so as to lead to low error
probabilities in spite of intersymbol interference. Signals consisting
of linear combinations of a finite number of prolate spheroidal functions
accomplish this purpose. These signals may be designed so as to remain
bounded for all message sequences.
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