Transient Motion of Circular Elastic
Plates Subjected to Impulsive
and Moving Loads
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(Manuscript received July 30, 1965)

Forced transient motions of peripherally supported, circular, elastic
plates are analyzed according to the classical plale theory. The Green’s
Junction for the plate is developed and used to construct solutions for con-
centrated impulsive loadings, suddenly applied loadings, and moving
pressure-wave loadings. The boundary of the plate is considered lo be elas-
tically built-in in a manner that prevents transverse edge motion and pro-
vides a restoring edge moment linearly related to edge rotation. Thus, limiting
cases include a clamped plate and a simply supported plate. Numerical
results are included to illustrate the influence of structural and loading
parameters on the dynamic response of the plate.

I. INTRODUCTION

During the past decade considerable effort has been channeled toward
increasing the capability of equipment to sustain severe nuclear weapon
environments. These efforts, commmonly called ‘“hardening,” employ
various combinations of analytical and experimental approaches, each
approach having certain difficulties and shortcomings.

Problems that are analytically tractable are usually restricted to
simple and regular geometries and usually incorporate simplifying ap-
proximations as to material properties, weapon phenomenon, and sepa-
ration of the combined weapon effects into independent and separate
effects. One of the areas of hardening which lends itself to both analytical
and experimental treatment and for which some full-scale nuclear test
data are available is the response of structures to an air-blast wave; the
analysis of structures subjected to air-blast pressure waves is the subject
of the present article. In particular, the transient displacements of
circular elastic plates subjected to impulsive and moving loads will be
analyzed according to the classical plate theory. The classical, or small
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deflection, plate theory does not account for internal structural damping,
effects of transverse shear, or rotatory inertia. Consequently, this
analysis is strictly applicable when the plate is “thin” (small thickness
to radius ratio) and when the higher modes of vibration are of secondary
importance;* neglecting internal structural damping results in predicted
deflections that are conservative in the sense that they will be larger
than corresponding deflections with damping present.

Equations are derived and numerical results are presented for several
elemental loadings and for pressure loading waves of constant and de-
caying magnitude that sweep across the plate with uniform speed. Sweep-
ing pressure-wave loadings occur when the blast wave approaches the
plate in other than a face-on direction.

The method of analysis is to construct the Green’s function for the
plate and then to use principles of superposition in synthesizing solutions
for the various loadings of interest.

Previous analyses of circular elastic plate vibrations can be traced
to the free vibration analyses of Poisson,! and of Kirchhoff,> who con-
sidered axisymmetric and nonaxisymmetric vibrations respectively.
More recent studies of forced vibrations of circular elastic plates include
the work of Flynn,® Sneddon,® Riesman,® and the present writer.®
Mindlin? discussed the effects of rotatory inertia and transverse shear
deflections on the dynamic plate equation. Elastically restrained plates
were investigated by Kantham® and by Reid.?

1I. FORMULATION

2.1 Equation of Motion

Torced transverse motions of a homogeneous, isotropic, elastic plate
of constant thickness (thickness is restricted to be small in comparison
with radius) are governed by the partial differential equation

Fw(rit)

Bt" = P(T»e,t) (1)

DV'w(rgt) + m
under the restriction that the deflections are small in comparison with
the plate thickness, and that the shear deflections, rotatory inertia, and
damping can be neglected. Fig. 1 defines the coordinate system and
configuration that correspond to (1)

* For a complete discussion of the limitations of the classical plate equation,
the reader is referred to Ref. 7.
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Fig. 1 — Circular plate configuration.

2.2 Boundary and Initial Conditions

A plate that is continuous at the origin (non-annular) and elastically
built-in* along its periphery has the four boundary (or regularity)
conditions:

(a) w(0,8,t) must be finite
(b) 6?11(;)7?,9,15) must be finite
(2)
(c) wlaft) = 0
o [wlat) | v 6'w(a,9,t):| dw(a Bit)
() D l: or? a ar B ar

Initial conditions that characterize an initially undeflected and sta-
tionary plate are

w(r,d,0) =0
and
dw(rp,0)
— = 0. (3)

These initial conditions are sufficiently general for the applications to

* Flastically built-in edge, as used in this article, refers to a boundary support
that prevents transverse eclge motion and provides a restoring edge-moment pro-
portional to edge rotation. By properly selecting the constant of proportionality,
special cases corresponding to a_clamped edge and a simply-supported edge are ob-
tained. A more detailed discussion of this boundary condition appears in Ref. 6.
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be considered here; other initial conditions can be treated in a similar
manner and will introduce minor changes in the equations developed
herein.

III. BASIC SOLUTION

3.1 Dimensionless System of Fqualions

Introducing the dimensionless quantities p = r/a, 7 = w/a, r = t/T,
a = ma'/DT*, and v = v + (Ba/D), (1) and (2)d become, respec-
tively,

Inlppr) _a'

V4n(p,0,'r) + « T = D P(P,B,T) (4)
and
2
aﬂ(lsfsf) + v aﬂ(lsﬂﬂ') = 0. (5)
dp dp

3.2 Homogeneous Fquation

As a prelude to the solution of (4), the set of eigenfunctions for the
plate will be determined. These eigenfunctions are obtained by starting
with the homogeneous equation

2
6
Valptr) + a T _ g, (6)
ar?

Separable product solutions of such form that the angular functions
and time functions possess the necessary periodicity suggest the follow-
ing functions:

cos nf|
7(p,0,7) = Rnj(p) { or e, (7)
sin né

where 1 = 4/—1, and n and j are integers.

Substituting (7) into (6) produces an ordinary differential equation
inp

d 1d 2)(42 1d o 2)
(d—pz+;d—p‘"};ﬂ+xm *pg‘l‘;dfp—;z—xm Rn;(.ﬂ)—o, (8)
where

2 3
Knj = O Wnj.
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Equation (8) and the boundary conditions (2) define radial eigenfunc-
tions for the plate.
These radial eigenfunctions are readily found to be

an(P) = I, (Knj)']n (Knjp) - Ja (Knj)In ("‘n.ip): (9)
where k,; is determined from the transcendental equation
2unj
1 iJT In('fuj)']n("nj) = Irl(KJJj)Jn+l(Knj) + Jn(KnJ')In+1(Kni)- (10)

Two identifying subscripts are associated with «.; because there is a
doubly-infinite set of eigenvalues and eigenfunctions. The first subseript,
n, indicates the number of nodal diameters occurring in that mode of
vibration and can be any positive integer (representing nonaxisym-
metric modes) or zero (representing axisymmetric modes); the second
subseript, 7, indicates the number of nodal circles (including the bound-
ary circle) and can be any positive integer. Eigenvalues for representa-
tive parameters are presented in Table I.

The radial eigenfunction R,;(p) as defined by (9) and (10) will be
used in the next section as a building block for the development of the
Green’s function.

3.3 Green’s Function

Next, the Green’s function associated with (4) will be developed.
Toward this end, consider the loading function

p(pfr) = % 5(p — pa)8(8)8(r — 7a). (11)

The solution of (4) with the particular loading function (11) is de-
fined as the Green’s function and is denoted by G (p,0,7; po , 0, 70). With-
out loss of generality, @ may be represented by the double series

G (p,8,7; po, 0, 7o) = Z zm,(p) cos k8 g:;(7), (12)

=0 ;=1
where g¢;(7) is an unknown function of time that must now be deter-
mined.
Introducing (12) into (4), and interchanging the order of differentia-
tion and summation, the result is

' 1d _k
? Z (2 p) Rii(p) cos kB gyi(7)

d, d
P P (13)

a' 6(p po)8(8)8(r — To)_

+ aZZRk;(p) cos kb §ii(r) = p
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Capitalizing on the fact that R.;(p) satisfies (8), the first differential
operator in (13) can be replaced by & #and (13) becomes
; 2 lki'gei(r) + afii(1)1Rei(p) cos kO
v 7
_ @' 8(p — po)3(8)8(r — 10)
D Po '
Next, both sides of (14) are multiplied by
p Rim(p) cos 16 dbdp,

(14)

and integration is performed, first with respect to 6 from 0 — 27 and
then with respect to p from 0 — 1; by virtue of the orthogonalities (see
Appendix), this reduces to

3
l‘l'lrrlll@)l!]\rwrlw:lrgim('l"') + a@)HNmmlg:lm(T) = %RIM(PD)G(T - To), (15)

where

T (I =0),
Ou = {2« (1=0),

and

Nmmi = %{IIE(KI‘.M)JI+12(K1»1) - le(xlm)1l+12(xlm)}

1 21
_ [i] 1 () T k).
L=

For the prescribed initial conditions, the solution of (15) is

3 .

a' 1 Rii(po) sin wii(r — 7,)

" = - = — To)- 1

91i(7) D a OuN i} Wkj L(r = 7o) (16)

Equation (16), when used in conjunction with (12) is the Green’s
funetion for the circular elastic plate. Physically, it is the response due
to a transverse point impulse applied to the plate.

3.4 Generalized Green’s Function

The Green’s function given by (12) was developed for the case of an
impulsive loading singularity located on the line § = 0. Later, need will
arise for the response due to a loading singularity located at the point
(po, —ao) (see Fig. 2). Employing the trigonometric identity,

cos (A + B) = cos A cos B — sin A sin B,
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Qg

Po

Fig. 2 — Plate coordinate system.

a trivial change of variables produces the corresponding generalized
Green’s function G'(p,0,7; po , o , 7o)

G(p,0,7; pos o, 7o) = 2, 2 Rij(p) cos ka, cos k6 gi;(7) (17)
24 4

k=0 j=1

-3 E Rij(p) sin kay sin k@ gi; (7).

k=1 ;=1

1V. APPLICATION OF GREEN’S FUNCTION

The Green’s function as given by (17) will now be utilized to construct
solutions for several loadings of technical interest and of practical con-
cern.

4.1 Ring Loading
The first example is that of an impulsive concentrated ring pressure
distribution given by

(p — po)dlT — 70)
Po

p(ofir) = plpo) 2 (18)
(see Fig. 3). Physically, this loading corresponds to a concentrated ring
impulsive loading applied at radius p, and at time 7,. A differential
clement on the ring has a force per unit length p(p,)/po . The resultant
displacement of the plate is obtained by superposing contributions due
to all of the elements on the ring. This superposition is expressed mathe-
matically by the integral

2T

n(p!B;T) = 0 G(.p;B:T} Pu 1 [ y To)?(Po)dao b (19)

where a, is defined by Fig. 3.
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/'

Fig. 3 — Ring loading.

The evaluation of (19) may be simplified considerably by observing
that for I ¢ 0 the integrals are all zero, leaving only the I = 0 terms.
Accordingly, (19) simplifies to

a’p(po) i Ro;(p) Ro;(po)

n(phr) = Da & N e sin wo;(r — 70)1(r — 70). (20)

Equation (20) may be recognized as the axisymmetrie solution that
was obtained previously,” provided of course that proper account is
taken for the change in nomenclature.

4.2 Concentrated Line Loading

As a second example, consider a concentrated line impulse loading
specified by

pry,7) = 6(x — 2)8(r — 7a), (21)

where z and y are cartesian coordinates appropriate for this problem and
defined by Fig. 4. Physically, this loading corresponds to an impulsive
concentrated line loading applied at position = z, and at time » = 7.

The force per unit length acting on each element of the line loading
given by (21) is

(7 — 7a).

Likewise, the force acting on the plate due to the Green’s function
singularity located at (x,, ) is

8(r — 7o)

It follows that the resultant deflection due to all differential elements
of the line loading is expressed by the superposition integral
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Fig. 4 — Concentrated line loading.

(1—z,2)}

ﬂ(P,G,T;ﬂJo,Ta) = f

Substituting (17) into (22) gives the following expression for the
dynamic response of the plate:

("’ 73 [z’ + o1, tan™' 2 ,fo) dy. (22)

y=—(1—z42)} 0

71(.0;9:7'; To, TO)

3 (1—xo2) 4
=122[M Rim(zs + y*)*

DO! =0 m=1 @llem Wim —(1—z,2)}

. (1—z ¥
oS I:l tan™" y] dy — Rinlp) sin 1§ Rim(zo* + 1)}

@)uNmme!m —(1—z,2)}

(23)

-sin [I tan™" y:l dy:l X 8in wir — 70)1(7 — 70).

The integrals in (23) are not expressible in closed form; however,
they can be integrated numerically. Fortunately, there is one point on
the plate where the evaluation does simplify considerably, and that is at
the center of the plate, i.e., p = 0. Restricting our attention to the center
of the plate, only the [ = 0 terms are nonzero, and consequently the
center deflection is given by

(13 = an(O)

ral m=1 NmmﬂWUm

(1—zo 1)}
”(017; xo:’ro) = fo RM(JE: + y2)l dy

(24)
X sin wom(7 — 70)1(r — 70).

The integrals in (24) are perfectly well behaved and finite, although
they cannot be expressed in closed form. Certain special cases (e.g., for
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Fig. 5— Dynamic response due to impulsive line loading (y = 1.0).

x, = 0) have been tabulated.! Several other cases have been evaluated
by the writer, and the results have been incorporated into the numerical
examples.

4.3 Pressure Acting on a Portion of the Plate

A third example is a plate that is impulsively loaded by a uniform
pressure acting on a segment of its surface and unloaded elsewhere.
This loading is depicted by Fig. 7.

The center deflection may be thought of as the resultant deflection
due to loadings on each line segment from

r
1=z =x.

A pressure of magnitude P, 8(r — 7,) loads each element of width dx,
with a line loading of magnitude P, 6 (r — 7o) d%. . The resultant center
deflection is obtained directly from the superposition integral
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Fig. 6 — Dynamic response due to impulsive line loading (v = 0.33).

Fig. 7 — Partially loaded plate.
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7(0,7; 2'ym0) =[ Pan(0,7; 0, 70) do, (25)
-1

where 7(0,7; 2, , 7o) is defined in (24).

The integrals in (25) may be integrated numerically. One case that
is readily integrable in closed form is when 2’ = 1; that case corresponds
to a plate that is suddenly loaded by a uniform pressure over its entire
surface. It is readily shown in that instance that (25) reduces to the
previously obtained solutions presented in Ref. 6.

If a sector of the plate is loaded with a uniform pressure impulse load-
ing, as indicated by Fig. 8, the superposition methods employed above
confirm the intuitive suspicion that the center deflection is the deflection
for a uniformly loaded plate multiplied by the quantity 6,/2r, where
f, is the included angle of the sector (expressed in radians).

4.4 Sweeping Pressure Wave

Next, consider the case of a circular plate loaded by a step blast wave
that sweeps across its surface with constant velocity ¢ (expressed in
plate diameters per dedimensionalized time) as indicated in Fig. 9. The
sector of the plate behind the wave front is loaded by pressure P, ,
whereas that portion ahead of the wave front is as yet unloaded.

It is convenient to consider the plate to be divided into strips of equal
width Az, , with the strips numbered successively from the left hand
edge (v, = —1). This is depicted in Fig. 10.

The first strip is then loaded by a step pressure wave (unloaded until
7o = 0) and then loaded with pressure P, for 7, > 0). After an increment

Fig. 8 — Plate loaded on sector.
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Fig. 9 — Sweeping pressure wave with velocity c.

of time Ar, has elapsed, the second strip is loaded by the same step
pressure wave (unloaded until 7, = Ar, and then loaded with pressure
P, for r, > At,). After time interval 2A7, , the next strip is loaded by
the same step pressure loading, and so on, until eventually all strips are
loaded by pressure P, . As the width of the strip is reduced to an in-
finitesimal, and correspondingly the number of strips increases to in-
finity, the continuously sweeping pressure wave results.

The solution for a suddenly applied step line loading is obtained by
integrating (23) with respect to 7, (Duhamel integral). The suddenly
applied step line loading, denoted by 7 (p,8,7; %o , 7o), is given by

7
ﬁ(P,BsT; Lo, Tu) = f W(Pﬂ,‘n"; To, 70) drs.

o

S
] ™~
.
d N
Axo
— e
x
)/
~ i
\\“"-—-—-FL"”/

Tig. 10 — Sweeping pressure wave.
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The result of this integration is

7i(p,8,7320 , o)

m 1o [0 2
a E Z [Rl (P) COS I'_l’-ljw':(-rt:()2 + y-)i

Da 120 m=1 OHNmm wlm —(1—z,)}

Az} (26)
-COS [l tan™" J:| ly — J%Z(NL)S%\:[# - Rin(zs + y2)§

-sin [l tan I'J:I d_;:| X [1 — €0s wim(t — 70)]1(7 — 70).

In terms of the solution for the suddenly applied step line loading, the
sweeping step wave solution, as obtained by superposition is

nA:r:o) Az,
¢

for 0

N
n*(pdyr;c) = lim D Po (pﬂ,f; — 1 4 nAw,,

Azy—>0 n=0

(27)

1A

Bl

[IA
albo

where 4 is given by (26), and 5" is the deflection due to the sweeping
wave, In the limit, (27) is expressed by the integral

= 14+ 4
n*(pfyr;c) = Pof . n (P:B’T; Yo, —'; Y ) dyo 0=r=
Vo=

Although (28) cannot be evaluated in closed form, (27) is perfectly
well suited for numerical evaluation (see Figs. 11, 12, 13), and the ac-

=1.0
STEP | z—msg 1073
BLAST | C =0.199x
PULSE |
PLATE—7

350 ___§_=- 500
A
\\

O I
N

-

. (28)

ol

w
o

n
o

N

STATIC CENTER DEFLECTION
UNDER PEAK LOAD
n
[=]

P P
. w 2 LN
AN

o ol
| LTS
e

o] 0.25 0.50 075 1.00 1.25 1.50 175 2.00 2.25 2.50 275
PLATE DIAMETERS TRAVELED BY BLAST WAVE FRONT

/

CENTER
DEFLECTION

Fig. 11 — Dynamic response due to sweeping step wave (y = 1.0).
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Fig. 12— Dynamic response due to sweeping step wave (y = 0.33).

curacy obtainable is limited only by the computer time expenses associ-
ated with the numerical integrations. In the numerieal evaluations
included in this article, certain symmetry properties were exploited to
minimize computer time requirements.

1.5 Sweeping Pressure Wave with Decay

As a final example, the case of a sweeping pressure pulse will be con-
sidered where the magnitude of the pressure at any point behind the
wavefront decays exponentially as a function of the distance behind the

8
2 30
- [
h} a STEP Y=00
W BLAST — -3
i 9 PULSE ®=0.199%10
23{: 20 : C T R C=500
w il 1 I
e i i 200 < \
g PLATE-- ,\
Ua \
0Z 10 2 . N
5 5 / \ / \ \\
\z 0
x O
i
[=33)
Z 1
35—1.0
a 0 025 050 075 1.00 1.25 1.50 175 2.00 2.25 2.50

PLATE DIAMETERS TRAVELED BY BLAST WAVE FRONT

Fig. 13 —Dynamic response due to sweeping step wave (y = =).
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wavefront. As in the previous example, the speed of the pressure wave is
considered to be constant.

Referring to Fig. 14, a point at @ = w, is unloaded until time
7 = (1 4 2,)/c, at which time the pulse arrives, loading it with pres-
sure P, . Because of the decay of the loading pulse, the point at x, is
loanded with pressure

P(x,,7) = P, exp {% In 5[1— _1 t x“:l} 1 (r e _'; x"). (29)

The expressions for the deflection due to the loading given by (29) are
identical to (27) and (28) with the exception that 7 must be modified.
The necessary modification is to replace the factor [1 — cos wim (T — 7a)]
that appears in (26) by the corresponding factor

@im Ing .
STt (In ) {(,xp [Iné(r — 7o)] o sin wim(t — 7o)
(30)

— 08 w1t — TD)}.

It can be seen that for the case of zero decay (In 8 = 0) (30) reduces
to the step loading solution (Figs. 15, 16, 17).

V. RESULTS

Dynamic response curves are presented in this article for line impulse
loadings and for sweeping waves of both constant and time-diminishing
pressure pulses. Figs. 5 and 6 illustrate that a line impulsive loading ap-
plied near the diameter excites primarily the first mode of vibration; line
loadings applied away from the diameter excite a larger percentage of
the higher modes, although as one should expect, the magnitude of the
deflection diminishes as the line loading is applied nearer to the edge.

Po

Fig. 14 — Sweeping pressure wave with decay.
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functions were computed. In this appendix, corresponding orthogonality
properties and normalizing factors will be explored for the non-axisym-
metric modes of vibration.

The eigenfunctions,

cos nd cos nd
an(p) or = {In ("nj)Jn (Knjp) - Ju (Krl]')Iﬂ (Kﬁj'p)} or ’
sin né sin nf
where n = 0,1,2, -+ and «,; satisfies the transcendental equation
i

1 — y In(xuj)']n("nj) = IJI(Knj)Ju-i—l(Knj) =+ Jn("nj)ln+l('fnj),

are solutions to the partial differential equation (6) and satisfy the
boundary conditions.

A.1 Orthogonality

To begin, recall the well known' results
2
f cos nd sin mido = 0 m,n any integers;
0

0 (n #= m),
m # 0),

2
f cos nf cos midf = (n
0
2 (n=m = 0);

0 (n # m),

2
f sin nf sin mAde =
0 T (n =m).

These orthogonality relationships imply, in our case, that there is no
coupling between modes of vibration having n nodal diameters and those
modes having m nodal diameters, where n # m. Thus, one need only
concern oneself with relationships such as

1
fo R (knjp) Ruk(xnrp) dp.

Therefore, consider the ordinary differential equations (8) that R,;
and R, must satisfy

d 1d Y :
(d—P2+J_Jd_P_ F'_E) Ru; = knj Raj

and
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d2 1 d nz 2 4
) +—-5 — - Rox = Kok Rui.
dp* * pdp p

Multiplying the first equation by pR,udp, and the second by pR, ;dp,
subtracting, and integrating with respect to p from 0 — 1 gives

1 1 & 2\ 2
(Knj4 - Kuka) f PRILJ'Rude = f PRnk (4— + }-—d- — 2) andp
0 0 dp*  pdp p*

1 dE 1 d nﬂ)?
~ [ oRu (5 +1 2 L) Ruds

The right side of (32) is expanded, and integrated by parts. The
lengthy, but routine details of this operation are suppressed in the inter-
est of brevity; the result is

(32)

1
f PRujlande
0

po | ERe PRy AR R, | PRu 1 dRu 1
P e At p dp | P g d*  p dp (33)
dR,.,- LPR,.J; tuﬁ,,k (PR,.,' 271,2 dR,.k dR,u'
P T, TP T . - Ruj - T3 Ruk
dp d',o2 dp d,u2 dp dp

(s — i) 0

p

Tor the case of n = 0,(33) was shown to vanish in Ref. 6 for j # k. For
n = 1,2, - -+ similar reasoning demonstrates that each of the terms in
(33) either vanishes or the terms mutually annihilate each other, so that
the eigenfunctions are orthogonal under the rather general boundary
conditions given in (2).

A.2 Normalizing Factor

Forn = 0,1,2, - -+, but where j = k, both numerator and denominator
of (33) are zero. Thus, a limiting process must be employed to find the
value of

1
N;" = j; pR.i (p)dp

from (33). Differentiating numerator and denominator of (33) with
respect to x,; and then setting k.. = &aj, the result is

NJ'J'" = %[InE(K)lj)Jn-H.E(KNj) - JRQ(KﬂJl)Iﬂ+12(KnJ.)}
(34)

- H'—l')"_j;ﬁi' Inz(Knj)an(KnJ') .
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This normalizing factor is identical to the axisymmetric normalizing
factor derived in Ref. 6 for the axisymmetric case (n = 0). An alterna-
tive way to derive (34), which was used to check this equation, is to
perform the indicated integration directly.

NOMENCLATURE
a radius of boundary of plate
c speed at which pressure wave sweeps across plate (ex-

D

E

G

gri(7)

h
Ju(2),00(2)

m

Nifn
p(p:G:T)
P,
Rru’(ﬂ)
r

¢

T

w
Y

pressed in plate diameters per dimensionless time unit)

flexural rigidity of plate (E __“__E'h:’ )
12(1 — »?)

Young’s modulus

Green’s function

function of time defined by (10)

plate thickness

nth order Bessel function and modified Bessel function of
argument z

mass per unit projected area of plate

normalizing factor for radial functions, defined by (34)

pressure loading on plate

pressure of loading pulse (constant)

radial eigenfunction defined by (7)

radial coordinate

time

time duration used to de-dimensionalize the time variables
(chosen for convenience)

plate deflection

cartesian coordinates

dimensionless parameter (= ma'/DT")

modulus of spring on edge of plate

edge-fixity parameter (E v + %1)

decay rate of sweeping pressure pulse

Dirac delta function of argument z

dimensionless plate deflection (= w/a)

angular coordinate

normalizing factor for angular normal functions

eigenvalue corresponding to mode with n nodal diameters
and j nodal circles
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Poisson’s ratio
dimensionless radial coordinate (= r/a)

p
T dimensionless time variable (= t/T')
Wn j dimensionless angular frequency associated with the n—j
mode of vibration

> . a2 :

\va Laplacian operator | = — + - —‘9— + :ﬁlv 8_
pdp | pog

1(z) unit step function of argument z

Differentiation with respect to time is denoted by dots.
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