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Certain radars, sonars, and other sampling instruments periodically
measure a variable but can measure accurately only if prediction equations
provide the instrument with an accurate prediction of the next value of this
variable. For these instruments, it is appropriate to define reliability as the
probability that the error in this prediction does not exceed some limat. In
choosing the form and parameters of the prediction equations, it is reasonable
to attempt to maximaze this reliability.

Assumptions that the prediction equations utilize linear error measure-
ments, are recursive, and provide least-squares smoothing with an exponential
weighting function establish a realistic basis for calculating the reliability.
The first through the third orders of these equations predict the variable as
reliably as possible in the presence of large initial errors in the variable and
its velocity, provided that the smoothing interval of the prediction equations
is sufficiently short. The dynamic error component of the prediction error
of these equations is proportional to a smoothed version of the qth time-
derivative of the variable, where q is the order of the prediction equations.
The assumption that the measurement errors are uncorrelated and stationary
makes it possible to calculate the standard deviation of the random com-
ponent of the prediction error.

On the assumption that the random component of the prediction error has
a normal (or Gaussian) probability distribution, there exists a safety factor
which is monotonically related to the reliability. The choice of the smoothing
interval of the prediction equations which maximizes this safety factor can
be found, which in turn permits the optimum safety factor to be calculated.
The ratio of pairs of these optimum safety factors determines which order

* This paper reflects a study supported by the Army’s Nike-X Project Office,
Redstone Arsenal, Alabama.
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of prediction equations gives the greatest reliability in the “worst case”
situation in which the first unestimated time-derivative of the variable as-
sumes its largest possible value. Graphs containing the foregoing results
make it convenient to examane the tradeoffs between the reliability, the time
between measurements, and other parameters. A numerical evample is
given.
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I. INTRODUCTION

Certain instruments attempt to determine the value of a variable by
measuring the difference between it and a prediction of it at regular
intervals of time. Examples of these instruments include echo-ranging
radars and sonars. These measurements enter a computer which im-
mediately substitutes the measurements into equations which predict
the next value of the variable, thereby closing the loop illustrated in
Tig. 1. This prediction must be supplied to the instrument because it is
assumed that the instrument can measure sufficiently accurately only if
it knows approximately where to look for the next value of the variable.
Conversely, large errors in this prediction are assumed to blind or other-
wise confuse the instrument.

More precisely, it is assumed that positive limits L and L' on the
prediction error E are given, where F is defined as the difference between
the prediction & of the variable and its true value x. It is assumed that
if E stays within the interval —L' < E < L, the instrument almost
never grossly mismeasures the variable. However, even when F stays
within this interval, it is assumed that the instrument slightly mis-
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Fig. 1 — Tracking servomechanism.

measures the valuble by contributing an additive random error e to
the measurements K’ of the prcdlctlon error. The quantities L, L', E,
# x, ¢ and E are illustrated in Fig. 2. Because E' enters the prediction
equations, # contains random error cquaed by e. These random errors
help make it possible for E to exceed L or to become less than —L'. An
example of the situation described in this paragraph is given in Ref. 1.

Reliability is defined herein as the probability that E stays within
the interval —L' < E < L. Designers usually seem to feel that there is a
need to maximize reliability defined in this manner. It must be admitted
that different designers always seem to choose slightly different values
of L and L', but it almost always turns out that the results in this paper
are not affected significantly by slight differences in these values.

After selecting a relatively simple class of prediction equations which

UPPER LIMIT ON THE PREDICTION ERROR =X +L

PREDICTED VALUE OF THE VARIABLE = E

"OBSERVED'VALUE OF THE VARIABLE = & ——'——

TRUE VALUE OF THE VARIABLE =X L

Lo e —m——-

= ————— [ ———— >

LOWER LIMIT ON THE PREDICTION ERROR = :l:*l_'

Fig. 2 — Terminology.
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assume that the variable is represented in a Taylor’s series, this paper
attempts to explain how to choose the order and the smoothing interval
of these prediction equations. The criterion used in choosing these
parameters is that of maximizing reliability at the instant when the
variable x is exhibiting that behavior (termed “worst case”) which tends
to minimize reliability. Using the same class of prediction equations (in
a form less convenient for computation than the equations of this paper)
and some of the assumptions employed herein, R. G. Brown® proposed
the same objective as that of this paper, but the ill-defined character of
Brown’s time-series (e.g., the history of an inventory) prevented him
from explicitly determining an optimum order and smoothing interval,

Reliability can be maximized by maximizing a quantity which is
monotonically related to it. As discussed at the end of this section, it is
assumed that the probability that E < —L' can be neglected in com-
parison with the probability that £ > L. Assuming also that E is nor-
mally distributed [Chapter 7 of Ref. 7], the reliability is a monotonically
increasing function of the safety factor

_L-w (1)

Og

where W is defined as the mean of E, so that W = E. Also, R is defined
as R = E — W (so that B = 0), and o denotes the standard deviation
of K.

It is arbitrarily assumed that the prediction equations are linear dif-
ference equations and that the mean value &, of each of the measurement
errors is zero, In consequence, the following simplifications are evident:
() W, called the dynamic error, is caused solely by the inability of the
prediction equations to predict more complicated time-histories of the
variable than the equations are designed to predict, and (#7) R, called
the random error component of the prediction error, is caused solely by
the measurement error. In consequence of the first simplification and of
the fact that X in (1) decreases as the dynamic error W increases, the
“worst case” behavior of the variable z is that behavior which maxi-
mizes W. This maximum value of W is hereafter referred to as reaching
its “worst case” value W.,.

The “worst case” value W, can be calculated with the aid of a theorem
(given later) which implies that W is essentially proportional to the
gth time-derivative of the variable; ¢ = 1, 2, or 3 is the order of the pre-
diction equations used in this paper. Consequently, it is necessary to
know the “worst case” bounds (i.e., the greatest lower bound or the
least upper bound) on the first, second, or third time-derivatives (here-

A
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atter referred to, respectively, as the velocity », acceleration a, or jerk j)
of the variable x. These “worst case’’ bounds often can be deduced from
constraints imposed by physics or physiology.

Tt is assumed that the random error component K has a normal (or
Gaussian) probability distribution. This assumption is always satisfied
if the measurement errors have normal probability distributions.
[However, if the measurement errors are not normally distributed, the
averaging effect of the prediction equations often makes the random error
component distribution approximately normal (as suggested by the
Central Limit Theorem)].” Each measurement error e, is assumed to
occur in a random manner independently of every other measurement
error, and all e, are assumed to have equal standard deviations. This
standard deviation (or equivalently this rms value) need not be known
prior to selecting the parameters of the prediction equations, but it must
be known prior to calculating the reliability expected from the selected
predlctmn equations.

Just prior to (1), it was assumed that the probability that £ < .
is negligibly small compared to the probability that £ > L. This assump-
tion is equwalent to the statement that, mea.sured in units of size equal
to or, W, is much closer to L than to i Alternatlvely, if W, is
much closer to —I' than to L, the right side of (1) is replaced by
(L' + W.)/or; this replacement does not change the arguments of this
paper significantly. In the seemingly uncommon situation in which,
after applying the results of Sections VI and VII, it turns out that W,
is not much closer to one of the limits than it is to the other, the
methods of this paper do not maximize the reliability even though X is
maximum. The methods used in Section VI also assume that W, has the
same sign as the limit to which it is much closer (i.e., W, positive if L is
much closer, or W, negative if —L' is much closel) this assumption
seems very likely to be satisfied.

II. DETERMINING THE FORM OF THE PREDICTION EQUATIONS (PR[OR TO
MAXIMIZING RELIAB[LITY)

It is pertinent to list some reasonable objectives which the prediction
equations should attain.

To make it possible to achieve a level of reliability which is satisfac-
tory at all times, provided that the reliability is large enough at some
time, it is sufficient if W, and ¢, (and therefore also ) do not vary as
time passes. If the standard deviation of the measurement errors and
the behavior of the parameter do not vary with time, this constancy of
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W, and o can be achieved by using prediction equations whose form
and parameters do not change as time passes. Such prediction equations
effectively smooth over a constant interval of preceding measurements.
(Prediction equations of this sort may exhibit an initial period, whose
duration equals the smoothing interval, during which W and ¢, vary.
In practice, reliability usually is not too small during this initial period,
because the “worst case’” behavior of the variable usually does not occur
at this time.)

The tradeoffs involved in maximizing the reliability of the prediction
equations should be as obvious as possible. One method of achieving this
is to make the prediction equations contain only a single independent
parameter, such as the length of the interval over which preceding
measurements are smoothed.

The prediction equations should be easy to initialize and should readily
provide information by which the track can be handed off to other pre-
diction equations. These objectives suggest that the prediction equations
should explicitly estimate the time-derivatives of the variable.

The prediction equations should occupy as little storage space in the
computer as possible. This objective suggests the use of recursive equa-
tions, which require storing only the most recent values of all quantities
appearing in these equations. The need for keeping computation time to
a minimum implies that the prediction equations should be few and easy
to calculate.

It appears that the foregoing objectives can be attained by arbitrarily
assuming that the variable is represented by a Taylor’s series whose
coefficients satisfy the “exponential smoothing’ criterion. This criterion
makes the expected (or mean) values of the sum of the exponentially
weighted squares of the measured prediction error as small as possible.
(A source of confusion may exist because the definition of the term
“exponential smoothing” in this paper is more specific than another
apparently obsolete definition of this term, which a few people have
used to denote any set of recursive equations having constant coefficients.)
Stating the exponential smoothing assumption algebraically, the quan-
tity

SNE.K

i=0

' = »
[where E° denotes the measurements of prediction error, where

i (N —1Y
K‘(N+1)

is the exponential weighting coefficient (with N = 1 being called the
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smoothing interval), and n denotes the time of the latest pledlcmon]
represents the sum of the exponentially weighted squares of E'. This
sum is to be minimized by differentiating it separately with respect to
each of the coefficients of the Taylor’s series representing the variable,
setting the differentials equal to zero, and solving the resulting set of
equatlons simultaneously to obtain the optimum values of the Taylor’s
series coefficients. These steps are explained by Levine.*

Recursive prediction equations which satisfy this requirement can be
obtained from Levine® by setting his weighting coefficient w; equal to
K™, taking the limit as n approaches infinity, and substituting the re-
sults into his equations (15) through (17) or else (54) and (56). Similar
predlctlon equations satisfying the exponential smoothing criterion
appear in Refs. 3 or 11. Using Levine’s notation, the prediction equations
for first, second, and third-order smoothing (corresponding to a Taylor’s
series containing one, two, or three coefficients) can be rearranged to
minimize the amount of data-storage and computation time required.
The rearranged prediction equations are given in the next three sub-
sections.

2.1 First-Order Prediction Equations

:ﬁn+l = in + alEn' (2)

E/ =&, — & (3)

o) = 1 - I{ (4)
N -1

= - = = 5

K NI T N =1, (5)

where N is a constant, where & is the predicted value of the parameter,
and where # denotes the “‘observed” value of the variable, which can be
calculated by adding # to the measured prediction error E'. (The sub-
seript 1 in a is different from Levine’s subscript in that now the sub-
seript denotes the order of the smoothing equations instead of denoting
the time of the measurement being processed by Levine’s equations.)

2.2 Second-Order Prediction Equations

fng1 = G + BoBn’ (6)
fopr = &n + Gy + By (7)
B = (1 — K)* (8)

a2=1—K2 (9)
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Uy = 0,7, (10)

where K and E’ are defined in (3) and (5), where # is the predicted
velocity, and where 7' is the constant interval of time between the
measurements of E'. Equation (6) is supposed to be computed im-
mediately before (7) is computed. As a result, 4 and 4 can be stored in
a single word of computer memory each. A similar statement can be
made about §, 4, and £ in the next three equations.

2.3 Third-Order Prediction Equations

8ug1 = 8n + vl (11)
Bnyr = G + 28001 + BB (12)
fayr = &0+ Gops — Sy + B (13)
v = 3(1 — K)° (14)
B =401 —K)1 - K) (15)
a;=1—K* (16)
8 = 3d,T°, (17)

where 4, K, and E’ are defined in (10), (5), and (3), and where d is the
predicted aceeleration.

For convenience, a graph of the coefficients calculated in (4), (8), and
(9), and (14) through (16) is presented in Fig. 3. Equations (2), (6),
and (7), or (11) through (13) are assumed to be initialized by using a
priort estimates of the variable and (if required) its velocity and ac-
celeration to calculate the initial value of £, 4, and § with the aid of (10)
and (17). Conversely, (2), (6), and (7), or (11) through (13) together
with (10) and (17) provide estimates of £, #, and & which can be used
to transfer (or hand off) the track to another set of prediction equations
by providing initial predictions for this new set. [Of course, d is available
only from (11) and # from (12) or (6).] These predictions can be ex-
tended to any future time merely by using a Taylor’s series. For example,

) ) AP t\
Lurymy = Tn + (T’) Un + (T) Sn - (18)

Alternatively, if it is desired to predict £, 4, and § at any integral multiple
of T in the future, it suffices merely to calculate (2), (6), and (7), or
(11) through (13) in appropriate number of times but with the coef-
ficients «, 8, v set equal to zero.

The single independent parameter N in (5) is identified as the smooth-
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Fig. 3 — Coefficients of exponential smoothing equations.

ing interval because (2), (6), and (7), and (11) through (13) have nearly
the same amounts of dynamic and random error components as poly-
nomial smoothing equations (Ref. 4) designed to smooth over the last
N samples. Additionally, K is approximated closely by exp (—2/N) for
all N = 1.5, thereby making N be approximately the exponential decay
constant of 4/K (which in Levine’s paper” is set equal to the reciprocal
of the standard deviation).

III. COMPARISON OF THE EXPONENTIAL SMOOTHING CRITERION WITH
OTHER OPTIMIZATION CRITERIA

A different set of prediction equations designed specifically for maxi-
mum reliability in acquiring the track, under the assumptions that the
standard deviations of the errors in the initial values of # and % (supplied
from some external source of information) are much larger than L and
that the standard deviation of the measurement error is much smaller
than L, would predict the second value of & by adding the a priori esti-
mate of 4 to the first value of # This procedure permits the initial
velocity to be in error by as much as L/T without E ever exceeding L.
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A comparison between the effectiveness of (6) and (7) or (11) through
(13) and the above prediction equations is shown in Fig. 4, which shows
the interval of permissable initial velocities of (6) and (7) or (11)
through (13) divided by L/T. (Simulations reveal that the region of
permissable initial positions and velocities approximates a horizontal
rectangle on the prediction error phase plane, whose position error axis
is intersected by the sides of the rectangle at &=L.) Fig. 4 indicates that
if N is small enough, (6) and (7) and (11) through (13) perform as
reliably as the above set of prediction equations because the ratios are
unity.

Evaluating the extent to which (6) and (7) satisfy another optimiza-
tion criterion, Benedict and Bordners state that critically damped equa-
tions equivalent to (6) and (7) give virtually the same accuracy as the
set of recursive second-order smoothing equations which minimize a
weighted sum of the random and the dynamic errors.

IV, DYNAMIC ERROR COMPONENT CALCULATIONS

The following theorem, which is illustrated in Fig. 5, provides a basis
for calculating the dynamic error.
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Theorem: Let ¢ = 1, 2, or 3 denole the order of the prediction equations, and
let the qth difference of the variable x be defined as (z — 1)7 x, where z is
the advance operator (which denotes taking the next sample of the time series
on which it is operating, as in the example (z — 1)x, = Tup1 — ). Then,
the dynamic error component equals the product of —[(N + 1)/2]" and the
Jinal output of q identical first-order prediction equations having the same
smoothing interval as the original prediction equations and forming a series
connection in which the output of one equation is the input to the next
equalion, with the initial input being the qth difference of the variable. A
proof of the theorem is given in Appendix A.

A natural and intuitively satisfying interpretation of this theorem is
obtained from the fact that the ¢th difference of the variable closely ap-
prox'mates the gth derivative of the variable multiplied by 7 The ¢
cascaded first-order filters, acting like simple low-pass resistance-capaci-
tance filters, tend to attenuate all rapid fluctuations in the gth derivative
and to delay the change in the dynamic error caused by a nonzero
¢ + 1th derivative by ¢(N + 1)/2 samples. Thus, to estimate the worst
case dynamic error of the gth order prediction equations, it suffices simply
to multiply the maximum value of the variable’s gth derivative (aver-
aged over a total smoothing interval of ¢N samples) by —T[(N + 1)/
2]?, where ¢ = 1, 2, or 3.

To complete this treatment of dynamic error, the dynamic error com-
ponent of 4 or § can be defined as 4 or § minus the first difference or one
half of the second difference of the variable. [In computing the dynamic
error of u for the third-order prediction equations, it was necessary to
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define the true velocity operator as 3 (z — 1/z), instead of (z — 1).] It is
possible to use the methods of Appendix A to prove theorems about
these dynamic errors; these theorems can be interpreted in nearly the
same way as in the previous paragraph. These results, along with those
of the previous paragraph, are presented in Fig. 6. The dynamic error
coefficients are to be multiplied by —»T in the first-order case, —aT” in
the second-order case, and —;jT° in the third-order case. The delays
through the various connections of first-order filters (each of which
introduces a delay of NT/2) are contained in Table I. The dynamic
error coefficients plotted in Fig. 6 are listed in Table II.

V. RANDOM ERROR COMPONENT CALCULATIONS

Fig. 7 shows the coefficients of the standard deviation (or rms value)
of the random error component of £, 4, and §, and Table III lists the
asymptotic behaviors of these coefficients for large values of N. (Fig. 7
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TasLE I — DELAYS oF Dynamic Error For ¢ra ORDER
PrepicTion EquaTioNs
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Multiply by NT/2

was obtained by numerically calculating the square root of the sums of
squares of the quantities estimated by (2), (6), and (7) and (11)
through (13) in response to & = 1, #; = 0,7 > 0 [as in Ref. 5: (10) and
Appendix I]. The actual standard deviations can be obtained by multi-
plying the coefficients shown in Fig. 7 and Table III by the standard
deviation ¢, of the measurement error.

Fig. 8 gives the correlation coefficients p (defined as the covariance
divided by the product of the standard deviations of the quantities ap-
pearing in the covariance calculations), and Table IV lists their asymp-
totie values as N becomes very large. These correlation coefficients to-
gether with the standard deviation coefficients can be used to calculate
the standard deviation of a prediction extended to any future time, be-
cause taking the expected value of the square of both sides of (18) gives

Cinyceiry = [(-'i'n+(u'r))21;
={ai’ + t—2zmr-p-« + (£ 2 (05" + 2057ips1)
I T 0 aPza T fr § (19)
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TasLe III — Asymproric BEHAVIORS OF THE STANDARD DEVIATION

A

COEFFICIENTS
g=1 2 3
i 8 = 1 s V25 158 " /4125 203
z = —= p = —— = = — =
VN VN VN /N VN
4 . V2 _ 1414 V14 _ 374
N T N N T N
) _ _ V15 _ 1.224
s R
SN i MULTIPLY THE ORDINATE BY
\ THE STANDARD DEVIATION O¢
N OF THE MEASUREMENT ERROR
M
R -
100 "--.\
8 \ ~ “'--..______“_QD)—
N
\\

"-..,_-_
é ¢ i (B)\\- i
3 e~ T
G AN N (A i o B
2 \ \""--. I~
qu N \\\ .‘.“‘"""-1
5y 2 N
: N_EN
2 \ c)
2 \ \\\ \\\
10‘2; \\ \\\
: N AN J
4 \ AN ™
\ N
\¢ N
2 \ N
1073 L | N 1
1 15 2 3 4 5 6 B 10 15 20 30 40 50 60 80 100

SMOOTHING INTERVAL N

Tig. 7 — Standard deviations — first order, (a) %; second order, (b) %, (e) 0
third order, (d) %, (e) q, (f) &



PREDICTION EQUATIONS FOR SERVOMECHANISMS 2351

1.00

()

0.98

0.96

@
QN

0.94

092

paaal
VAV

0.90

0.88 V)
N\

COEFFICIENT

0.84

0.82

T

0.80 ! | | |
1 1.5 2 3 4 5 6 8 1o 15 20 30 40 50 60 80 100

SMOOTHING INTERVAL N

Fig. 8 — Correlation coefficients — second order, (a) X, @; third order, (b)
%0 (e) 0,8 (d) % 8.

TaBLE IV — Asymproric VALUES OF THE CORRELATION
COEFFICIENTS p

g=12 3
. 27
I, 1 \7= = 0.895 /231 = (.889
; - 5 _ o4
I, § v -
i. § — ——9——0983
8 2421




2352 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1965

VI. CHOOSING THE SMOOTHING INTERVAL FOR MAXIMUM RELIABILITY

Substituting the expressions for W and o shown as graphs on Figs.
6 and 7 into (1) to obtain the “worst case’” safety factor produces, with
v, @, and j. denoting the “worst-case” velocity, acceleration, and jerk,

L
N — v, T _DI_IUCTl
' S ve
or
L
ar?| ~ D2 o1 (20)
Az = . )
Sz O¢
or
L
A - D . X
]\a — JfTa S.IJ‘-'TJI
Ss T¢ ’

where D and S, respectively, denote the dynamic and random error coef-
ficients of the predicted value of the variable, and where the subscripts
denote the order g of the prediction equations. To carry out the maximi-
zation by choosing N to maximize ), it suffices to consider only the first
factor in each of the three expressions in (20), because only D and 8§
are functions of N. Although this statement is always true, A does not
completely determine the reliability if the dynamic error remains at its
“worst case’” value W, for more than approximately N samples, because
E would have two or more independent opportunities to exceed L. How-
ever, it is believed that this additional source of unreliability can be
disregarded when choosing N to maximize the reliability, because as N
varies the reliability depends on A much more strongly than it depends
on this additional source.
The first factors in (20) can be written as

Py — Dy

M =P1_g111, OI'R2’=P2%D2: or Ay’ =8 (21)
1 2 3
where
L L L
Py = 0.7 |’ or P» = ?T? ) or Py = jc—Tal- (22)

The values of N which maximize A are shown in Fig. 9 as a function of
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Fig. 9 — Optimum smoothing intervals versus protection parameters — (a)
first order, (b) second order, (c) third order.

P, and the corresponding maximum values of A" are shown in Fig. 10.
Asymptotic formulas for these optimum values of N and A for large
values of P can be obtained with the aid of Tables II and III as

Nlopl. = 2/3 P]_

Na,,, = 0.903 /P, (23)
Na,,, = 1.045 v/P,
Mg, = 0.544(P))™*
Ae,,. = 0.478(P:)™" (24)

M. = 0.432(Py)"°.

opt

These formulas provide very close approximations to Figs. 9 and 10
for Nop > 2.5 approximately.

An important relationship obtained by substituting (22) into (23) is
that, for all values of N greater than approximately 2.5, the effective
smoothing time N, 7' equals a constant (which depends only on I and
the “worst case” value of the gth time derivative of the variable).
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Fig. 10 — Optimum safety factors versus protection parameters — (a) first
order, (b) second order, (¢) third order.

A significant conclusion may be drawn from the fact that the function
A in (21) is independent of the standard deviation of the measurement
error o.. Consequently, a single value of N (i.e., No,¢) simultaneously
maximizes the reliability for all o, .

VII. OPTIMIZING THE ORDER OF THE PREDICTION EQUATIONS

The order of the prediction equations can always be chosen to maxi-
mize the reliability by using the order which gives the largest value of
the safety factor A defined by (20) and shown in Fig. 10. A more general
comparison between A, , Az, and Ay can be obtained for sufficiently large
values of optimum smoothing intervals (i.e., Nopy > 2.5 approximately )
by using the asymptotic formulas (24) to obtain the ratios, on the
assumption that L =1,
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Mo L1 L' a |
)Tg = Ll'u |1’,¢3 ] (25)

where v, and a, are the “worst case” velocity and acceleration, and

Ao LIL[L|"™ (.
As = Ea{ ‘”4 y (26)

where j, is the “worst case” jerk.

If (25) is greater than unity, then the optimum first-order predic-
tion equations [which are optimum in the sense that they use the values
Nopt given asymptotically by (23)] track more reliably than the optimum
second-order prediction equations. Likewise, if (26) is greater than
unity, then the optimum second-order prediction equations track more
reliably than the optimum third-order prediction equations, The con-
verse holds also.

It is significant that, if the time 7' between measurements is not so
large that N is too small for (25) and (26) to hold, these equations
indicate that the optimum order g,,. of the smoothing equations is
optimum for all 7 (and o.).

Examples illustrating these methods are given in Appendix B.

VIII. REDUCTION OF THE SAFETY FACTOR AND THE RELIABILITY DUE TO
USING A NON-OPTIMUM SMOOTHING INTERVAL

Ratios of the actual safety factor obtained by using an arbitrary value
of N to the optimum safety factor obtained by using N, from (23) can
be obtained for large values of P by using the values of Ay from (24)
and using Tables IT and III in conjunction with (21). A graph of these
ratios is given in Fig. 11 as a function of N/N,,. . This graph indicates
that it is worse to use a value of N larger than N, than it is to use a
value proportionately smaller than Nope .

The reduction in reliability caused by accepting a safety factor smaller
than optimum can be calculated from tables of the normal distribution
function [pp. 966-72 of Ref. 8]. I'or example, if A = 3, the unreliability
(i.e., unity minus the reliability) is only 0.135 percent, but the unrelia-
bility rises to 0.35, 0.82, 1.79, or 6.68 percent if A decreases by 10, 20,
30, or 50 percent, respectively.

IX. CHOOSING THE TIME T BETWEEN MEASUREMENTS

The assumptions of this paper are not sufficient to determine an
optimum value of 7', but the methods of this paper do permit deserib-
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Fig. 11 — Relative safety factor versus the ratio of actual decay constant to
the optimum decay constant.

ing the effects of various choices of T, if it is assumed that the optimum
value of N is used and that N, is large enough (i.e., Nope > 2.5 ap-
proximately) so that N,y 7' equals a constant.

One effect is that as T decreases (and N,p: increases), the maximum
initial velocity error (for which E barely keeps from exceeding L) in-
creases because it equals L/7 until the appropriate break point shown
in Fig. 4 is reached, beyond which point the maximum tolerable initial
veloeity error remains constant as 7' decreases.

Another effect is that as T increases, the standard deviations of £,
9, and @ [the latter two quantities being related to % and § by (10) and
(17)] increase proportionately to 4/7. In consequence, an increase of T
causes the safety factor to decrease as 1/4/T, because oz is proportional
to +/T, and because W is independent of T' (due to the assumption that
Nopi is large).

X. CONCLUSION

Except for the previous section, the objective of this paper has been
the combining of limits on the maximum tolerable prediction error L
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and the “worst case’ time-derivatives v., a., or j, with a time T between
measurements, for the purpose of determining the optimal order gop:
and smoothing interval N,p. of the prediction equations. The results of
this paper make it possible to perform parameter-variation studies in
which ¢,,, and N,py are assumed to be used, and in which tradeoffs be-
tween the following quantities are examined: (2) L, (&) T, (dit) the
standard deviation ¢. of the measurement error, (i) the reliability
(defined as the probability that —L' < E =< L at the time of the “worst
case’’ value v., a., or j.), and (v) the “worst case” value ., a., or j,.
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APPENDIX A

Proof of Dynamic Error Theorem

The first-order prediction (2) can be written in the operator notation
as

4 ay .
4 = T x (27)
where z is the advance operator for which z (z,) = a1 . Calculating the
dynamic error component of the prediction error E is accomplished by
subtracting the true value x of the variable from £ and then by setting
the observed value # of the variable equal to its true value z, because
setting the (random) measurement error e = & — 2 equal to zero re-
moves the random error component from £. Thus, the dynamic error
component of K equals

t—a = A i—»g—[ o —l]cr:
’ Y i — 1 ’ z+a — 1

. (28)
- eFa=)re-va
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According to (4) and (5), 1/a; = (N + 1)/2, so that the dynamic error
equals

vl (2 e 1) [—(z — 1)al (29)
Equation (27) shows that (29) denotes passing the negative of the first
difference of x through a first-order prediction equation which is identical
to the first-order prediction equation being considered.

The second-order equations (6) and (7) can be written in operator
notation and simultaneously solved for £ to give

4= Bz + oz — 1))
Bz + as(z — 1) + (2 — 1)*°

Computing the dynamic error by subtracting x from both sides and
setting £ = 2 as before makes (30) become

—(z — D%

(30)

P

(31)

T T gt — 1)+ (- D
Using (8) and (9) and then (4) and (5) gives
PR —(z— D%
' (2 — K)?
=z 1)%:][ o ]
N 0£12 z— 1 + o1 (32)

N+12 (5] z 2
=( 9 )(z—1+a1) [= (e = 1)l

Equation (32) represents two cascaded first-order prediction equations,
whose smoothing interval N is the same as the smoothing interval of the
original second-order prediction equations, operating on the negative of
the second difference of the variable, as stated in the theorem.

The third-order prediction equations (11) through (13) can be writ-
ten in operator notation and solved simultaneously to give

s [ arz — 1)° + Be(z — 1) + vz + 1) ]x (33)
l (2 — 1) + aslz — 1) + Bsz(z — 1) + vae(z + 1) ’

so that the dynamie error equals

[—(z — 1)%]
(z — 1) + aslz — 1)? + Bz(z — 1) + vaz(z + 1’ (34)

Using (14) through (16) gives

& —a =
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[— (2 — 1)%]
(z — K)°

N+13 (43 : 3
- () (o) G-

where the smoothing interval N of the three cascaded first-order pre-
diction equations is the same smoothing interval as that which appears
in the original third-order prediction equations, as stated in the theorem. *

The abridgment of this theorem obtained by omitting the ¢ cascaded
first-order prediction equations |i.e., the dynamic error is approximated
by multiplying the unsmoothed qth difference by —[(N + 1)/2]"} has
approximated the dynamic error very accurately in simulations of the
slowdown of ballistic devices re-entering the earth’s atmosphere.

As an application of the theorem, the maximum dynamic error com-
ponent for the second-order prediction equations (6) and (7) for an
initial error 4, in % can be approximated by performing the steps listed
in the theorem. Thus, the second difference of & = uon forn = 0 and
x = 0 for x < 0is an impulse of height u,. This impulse enters two
cascaded first-order prediction equations, whose combined impulse
response {obtained by convolving two exponentials together and multi-
plying by [(N + 1)/2]"} is approximately equal to ugn exp (—2n/N).
The maximum value of this impulse response oceurs at n = N /2, so that
the maximum value of the dynamic error component of the prediction
error £ equals approximately uy (N/2e).

Similarly, it is possible to calculate the dynamic error due to an initial
error 8o in & in the third-order equations (11) through (13) since the
third difference of + = son’ forn = 0 and x = 0 for n < 0 is two suc-
cessive impulses of height equal so . These two impulses can be regarded
as having the effect of a single impulse of height 2so if the smoothing
interval N is sufficiently large compared to two. The impulse response
of three cascaded first-order prediction equations is

(n’/2) exp [-2(n — 1)/ (N + 1)],

* For pth order exponential smoothing (as opposed to prediction) equations in
which p is any integer, it is possible to prove that the dynamic error defined as
Z — z is equal to [(N — 1)/2]» times the negative of the pth difference {defined as
[1 — (1/2)]*} and passed through p first-order exponential smoothing equations of
the same smoothing interval. (This proof starts with (7) of Ref. 10 and uses the

lemma

- =

(35)

[24

(z — ])S:J:=1

2 e — SI2
o]

where 8 is an operator denoting a first-order exponential smoothing equation.)



2360 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1965

after multiplying by the [(N + 1)/2]° factor. Thus, the dynamic error
component of the prediction error £ can be approximated by 8o exp
[—2(n — 1)/ (N + 1)]. The maximum of this approximation occurs at
n = N + 1, so that the maximum dynamic error equals approximately
so (N + 1)* exp [-2N/(N + 1)]. (This approximation is never more
than 12 percent larger than the true value of the dynamic error for any
N = 7. The expression s, (N 4 1)° exp (—2) provides an approxima-
tion which is always smaller than the true value of the dynamic error.)

To conclude these examples of the use of the theorem, the dynamic
error components of the prediction error E for the third-order prediction
equations (11) through (13) caused by an initial error u or x, in @ or
£ can be approximated respectively by the first or second derivative
with respect to n of 3n’ exp (—2n/N) multiplied by u or xy .

APPENDIX B

Examples

It is necessary to illustrate how the assumptions and results discussed
in the text apply to an actual instrument. Thus, echo-ranging radars
have measurement errors which occur independently of the measurement
error on any other pulse. The reason for this independence is that the
interval T between measurements is always much larger than the re-
ciprocal of the bandwidth of the instrument, because the time for the
echo to return from the target always greatly exceeds the duration of
the echo.

In monopulse radars measuring the range and angles of a target, ther-
mal noise originating in the receiver often results in ¢, being equal to the
product of the following two quantities: (7) a large fraction of the pulse-
width or beamwidth, and (#Z) the reciprocal of the square root of the
ratio of the peak signal power to the average noise power [Chapter 10 of
Ref. 6]. If quantization errors are present because the instrument meas-
ures the prediction error digitally, o, can usually be calculated by taking
the square root of the sum of squares of the standard deviations of the
thermal and quantization errors.

At the end of Section VI of the text, it is stated that a single value of
the smoothing interval N simultaneously maximizes the reliability for
all ¢, . In radar terminology, this value of N (i.e., Nop) is optimum for
any ratio of signal power to noise power. Likewise, Section VII concludes
with a result which can be interpreted as stating that the optimum value
ope Of the order of the prediction equations is optimum for any data
rate and any ratio of signal power to noise power.
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The use of some of the equations and graphs presented previously is
exemplified by the following: A radar emitting a 100 foot-wide pulse
every 0.27 seconds is tracking the range of a descending spaceship whose
maximum velocity is —35,000 ft/sec, whose maximum acceleration is
320 ft/ (sec)’, and whose maximum jerk is simulated to be 8.3 ft/ (sec).’
(These maxima occur at different times during the re-entry of the
spaceship into the atmosphere. ) It is discovered that the radar can meas-
ure the prediction error sufficiently accurately only if the prediction
error | E | is smaller than half the pulsewidth, so that L = 50 feet.” The
standard deviation ¢, of the measurement error e is found to be ap-
proximately equal to L/+/S/N, where S/N denotes the ratio of the
instantaneously maximum signal power to the average noise power in
the output of the radar’s IF strip.

Equation (25) reveals that second-order smoothing is more reliable
than first-order smoothing if L < 2.26 X 10° feet, and (26) reveals that
third-order smoothing is more reliable than second if L < 4.36 X 10°
feet. In consequence of assuming L to be only 50 feet, third-order smooth-
ing should be used.

Using (22) to calculate P; gives P; = 306. Fig. 9 indicates that Nop =
7, and Fig. 10 indicates that A" = 275. Computing A by multiplying Y
by | 7.T"|/o. gives A = 0.9 4/S/N.1f S/N = 16 = 12db, A = 3.6 and
the “worst-case’ reliability is 99.98 percent, according to pp. 966-972
of Ref. 8. Similarly, if S/N = 4 = 6 db, A = 1.8, and the “worst-case”
reliability is 96.4 percent. The values of as , 8;, and v; corresponding to
Nopt = 7 can be calculated with the aid of (14) through (16) or looked
up on Iig. 3 as a; = 0.578, B; = 0.164, and y; = 0.0078, or, in exact
octal fractions, ay = (0.45)s, B: = (0.124)s, vs = (0.004)s.

The “worst case” dynamic error component W, can be ealculated with

* Because of this assumption that L’ = L, it is also assumed that the dynamic
error | W. | is large enough and o is small enough so that

L+1Wc|>>L— |W.|

R OR

ER,

thereby making the reliability be significantly affected only by changes in the
value of A. This assertion can be verified by calculating

L+ |w.| - L— |w.|
oR oR

with the aid of the values of W. and o given in the last paragraph of this appen-
dix and using the tables of the normal distribution function (pp. 966-972 of Ref.
8) to compare the effects of changes in

L—|w.|

L+ |W.| and
ap ’ o '
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the aid of Fig. 6 as 64 times 7.7, or 10.5 feet. The standard deviation og
of the random component can be calculated with the aid of Fig. 7 as
0.88 g, = 44'/4/S/N.1f 8/N = 4 = 6 db, op = 22 feet and if S/N =
16 = 12 db, oz = 11 feet. As a check on the consistency of the results,
(1) gives values of A\ which are identical to those calculated in the
previous paragraph.
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