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The error slatistics from dala-transmission field tests on the telephone
network may be compactly represented by about one dozen parameters.
These relate to a model of the telephone network in which there are three
distinet channels. The errors in binary data on each channel are produced
by a renewal process in which a bit-error is a renewal event. The mizture
of three such channels allows a close fit to the error statistics for a large
range of block lengths. It is not implied that the errors on the telephone
network are actually produced by such processes, but merely that they may
be conveniently and compactly represented by them.

Use of this model simplifies the analysis of error-control systems and
the determination of error rates for error-conirol codes. In this paper (lhe
model 1s applied lo study the effect that interleaving (téme division mulli-
plexing) has on the effectiveness of error-correcting codes.

I. INTRODUCTION

In the study of errors on data communication channels, several
mathematical models of the error prooess have been proposed. Gilbert!
proposed a two-state Markov process, and Berger and Mandelbrot? have
employed a Pareto distribution to fit data collected from the German
telephone network. Sussman?® has applied a Pareto fitting to part of the
Alexander-Gryb-Nast data.* Common to the models of Gilbert and
Berger-Mandelbrot is the assumption that the error process is of the
renewal type wherein the state of a bit-error is the renewal event whose
occurrence frees the process from dependence upon past history and
starts it anew. In such models the distributions of lengths of error-free
intervals (gaps) determine the processes, because the lengths of the gaps
before and after an error are independently distributed. One may calcu-
late from this distribution the probabilities P(m,n) that m bit-errors
oceur in a block of n consecutive bits. These probabilities are useful
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in the analysis of error-control methods for data communications
systems.®

On the telephone network, as exemplified by the Alexander-Gryb-
Nast (AGN) data, the P(m,n) for individual calls are, as noted in Ref. 5,
quite diverse in nature. This suggests that there are several error proc-
esses involved. In fact, the combined AGN data cannot be described by
just one error process of the renewal type but require the mixture of
several such processes for a satisfactory description. The mixture of a
collection of processes is determined by a corresponding set of channels
on which the separate error processes act and specification of the proba-
bilities of being assigned the various channels when placing a call (the
assignment, and hence the error process acting, is fixed for the duration
of the call).

The purpose of the present paper is to show that in this way the use
of three distributions for gap lengths can yield satisfactory approxima-
tions to the probabilities P(m,n) for the telephone network. This cannot
be accomplished with just one or two distributions, and conceivably
four or more might be required in some cases. The P(m,n) for renewal
processes depend heavily on the first few values of the gap-length dis-
tribution. Because of this there is some choice of distributions for
satisfactory models of the telephone network. Noting how various
gap-length distributions affect the P(m,n) distributions, we select
three gap-length distributions with appropriate weightings to represent
the combined switched telephone network. This selection gives excellent
agreement to P(m,n) over a wide range of block lengths n. To exemplify
further this means of representing the telephone network we apply it
also to the Townsend-Watts (TW) data given in Ref. 6.

In the present paper we do not attempt to optimize the degree to
which the models represent the telephone network. Rather, we attempt
to demonstrate the feasibility of such representations and note that a
better accuracy of fit would hardly affect the applications suggested.
Also, no attempt is made to associate the parameters with particular
causes, such as type of exchange or calling distance, etc. These goals
would be the object for future work. We do suggest, however, that drop-
outs (momentary open-line conditions) and the test words used in field
tests are at least partially the cause for the hump in the P(m,n) curves
at m near n/2.

II. RENEWAL-TYPE ERROR PROCESSES

For a renewal error process, the lengths of successive gaps are inde-
pendent and distributed according to a common distribution. Let p(k)



SWITCHED TELEPHONE NETWORK MODEL 91

be the probability that a gap lengthisk — 1, i.e., p(k) = Pr (0'1]1)
where 1 denotes an error-bit, 0 a correct bit and 0° denotes 7 consecutive
0’s.

Let

P(k) = m§ p(m)

so that P(k) is the probability that at least & — 1 0’s follow a given
error [i.e., P(k) = Pr (0°7' | 1)]. Now, if p, is the unconditional proba-
bility of a bit-error, then p,P(k) = Pr (1) Pr (07" | 1) is the probability
of 10*”". But, because of the independence among gap-lengths of a
renewal process, order is irrelevant and it is clear that the events 10
and 0°7'1 are equiprobable. Hence, p,P(k) = Pr (0"'1). To obtain the
value of p; , note that p; = 1/k where £, the average distance to the
next error, is equal to

; kp(k).

The probabilities of individual error patterns of a renewal process
are easily calculated (but we do not make use of these here). For ex-
ample, consider a block ¢ of n consecutive bits which contains m bit-
errors and, as in Ref. 5, p. 1985, let @ be the number of 0’s before the
first 1 in §, ¢ the number of 0’s following the last 1 in { and b; (¢ = 1,

-, m — 1) be the number of 0’s between consecutive 1’s in {. Then,
the probability of {’s occurrence is given by

Pr (¢) = pPla+ 1) {ﬁl p(b; + 1)}P(c + 1).

Calculations of the above sort may be of use in evaluating both error-

correcting and error-detecting codes on renewal-type channels. For more

general, but approximate, applications, the probabilities P(m,n) that

m bit-errors occur in a block of length n are of use. To calculate these

we may use recurrence relations or generating funections as follows.
First, let B(m,n) be the probability that m — 1 errors occur in the

next n — 1 bits following an error. Thus, B(1,n) = P(n) forn = 1, and

n—m+1

R(mm) = Zl p(k)R(m — 1,n — k)

for2 = m = n.
Now,
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n—m+1

P(mn) = 3 pP(k)R(mn — k+1)

whenever 1 £ m = n.

Computer programs for computing P(m,n) from the above recurrence
relations have been written and used in obtaining the data presented
later in this paper.

An alternate approach to the above relation is through generating
functions. If we let g(z) and G(z) be the generating functions associated
with p(k) and P(k + 1) respectively

(i.e., g(z) = ; p(k)2" and G(z) = kE:DP(k + 1)25

then, from Ref. 7, p. 249, we have
G(») = L =02

Tl —¢2

Letting

H,.(z) = ZP(m,n)z"

n=m

we obtain that

Hu(z) = prG(2)g(2)"'G(2)

considering that m errors involve m — 1 gaps in a total number of bits
adding up to n and that the generating function for a convolution of
variables is the product of their associated generating functions. [pG(2)
is the generating function for the probabilities of the events 0°7'1, g(2)
is that of 0°7'1 | 1 and G(z) is that of 0" | 1.]

Thus, we obtain

H,(z) = pz {1—1#} g(z)" .

Caleulation of P(m,n) from this generating function is rather incon-
venient. The recurrence equations are generally preferred in practice.

III. A REPRESENTATION OF THE TELEPHONE NETWORK

In both of the data-transmission field-test programs on the telephone
network, data calls were placed on a variety of circuits and bit-errors
were recorded. In Refs. 5 and 6 the composite effects of these are repre-
sented by the P(m,n) probabilities. Fig. 1 shows P(m,31) for these two
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Fig. 1 — P(m,31) for field test data.

field tests and is typical of P(m,n) for other intermediate block lengths
n. These curves appear to have three separate segments: an initial
segment with a steep slope, an intermediate segment with a smaller
slope, and a terminal hump and tail. Using the recurrence equations of
the previous section, the P(m,31) curves for the three gap-length dis-
tributions (determined by trial and error) given in Table I were calcu-
lated and are displayed in Fig. 2. The unconditional bit-error rate for
each curve is taken to be that of the AGN data. In so doing we essen-
tially assume that the tails of the gap-length distributions are appro-
priately tailored. The tails of these distributions, of course, do not
influence P(m,n) when n is not too large. Each of these three curves is
more-or-less parallel to the respective first, second or third segment of
the P(m,31) curve for the AGN data. They are to be added together,
after multiplication by suitable weighting factors, to produee our
approximation to the AGN curve. By trial and error, we find that weight-
ing factors of 50, 25, and 25 per cent respectively give the close fit which
is shown in Fig. 3 for block length 31 and again in Figs. 4-7 for some
other block lengths. This trial and error procedure of finding curves of
the right shape and then appropriate weighting factors represents a
simple attempt to approximate the P(m,n) curves of the AGN data
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TaBLe I — Gap-LEnagTH DistriBuTiONs p(k) ForR AGN MobpEL

k= 1 2 ‘ 3 4 | 35 >5
Initial segment 0.12 0.06 0.0 0.0 0.0 ~(
Intermediate segment 0.40 0.20 0.10 0.05 0.0 =0
Hump 0.56 0.24 0.06 0.0 0.12 =~0

over a wide range of block lengths n. It would be desirable to use analytic
methods instead of trial and error in obtaining such approximations, but
the number of parameters involved is large and the analytic expressions
for P(m,n) are cumbersome. Undoubtedly, appropriate programming
techniques can be developed to improve upon our trial and error method.

The gap-length distributions and weighting factors given in Table II
furnish an approximate model for the TW data. Figs. 8-10 compare
the original and the model at block lengths 10, 31, and 63.

IV. CHOICE AND INTERPRETATION OF COMPONENT DISTRIBUTIONS

Suppose the field test data we wish to represent by a mixture of
different renewal processes have an unconditional bit-error rate p; and
suppose that gap-length distributions pi(k) (the superseript is not an
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Fig. 2 — P(m,31) for components of model.
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exponent) and weighting factors \; (i = 1, -+, J) have been decided

upon. (Determination of pi(k) and X\; will be discussed subsequently.)
Then, let ’i(m,n) be calculated for each distribution pi(k) using the
prescribed error rate p, . For the model we then take

J
P(mmn) = 2, MPi(mm) .
i=1

Use of the common value p, in computing Pi(m,n) does not imply that
each distribution pi(k) has this bit-error rate, but is just a device to
assure that the model has the same unconditional bit-error rate as the
field-test data. In fact, since p(k) is generally specified for only a few
small values of %, we assume that pi(k) for larger values of £ is distrib-
uted so that its real bit-error rate p,,; may be different from p;, and it
is not used explicitly in our model. Incidentally, \:p; represents the por-
tion of the total error rate attributable to the channels with gap-length
distribution pi(k) and we could say that the percentage of channels of
this type is A’; where Mip,i = Nipr .

To choose candidate distributions pi(k) we must first observe some
principles, pertaining separately to the segments 7 = 1,2,3, which are
noted in the next few paragraphs. We begin by examining the simplest
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Fig. 5 — P(m,15) for model of AGN data.
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TaBLE IT — Gar-LENGTH DisTRIBUTIONS p(k) AND WEIGHTING
Facrors For TW MobDEL

k
Weighting Factor A
1 2 3 4 5 | >5
Initial segment 57% | 0.20 | 0.10 | 0.0 0.0 0.0 =0
Intermediate segment 189, | 0.35 | 0.25 | 0.156 | 0.05 | 0.0 =()
Hump 259%, 0.45 0.25 0.15 0.10 0.03 =~0

case analytically, namely that of a gap-length distribution p(k) such
that p(1) = e and p(k) = 0 for & > 1. Then the generating function
g(z) for p(k) is essentially ez and

Hm(Z) = pz [l - az:r (a_z)mfl-

1 —2z

Determining the coefficient of z" in the above [using (1 — 27P=1+
2z + 32° + 42° 4+ - - -] we obtain

P(mp) = pa" '[(n — m + 1) — 2a(n — m) + o'(n — m — 1)]

which in a logarithmic plot as a function of m is almost a straight line.
A distribution of this type with a small, or a slight modification
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thereof, may be useful in matching the initial segment of field test data
as in the foregoing examples. In general, the initial segment of a P(m,n)
curve which has the same general shape as our two field test examples is
determined by a gap-length distribution p(%) having 5 to 40 per cent
of the probability spread over the first three or four values of k. It is
reasonable to assume also that p(%) is monotonically decreasing and
that p(k) = 0 for k much larger than 4.

For the intermediate segment of such a curve, the gap-length dis-
tribution may contain between 70 and 80 per cent of the probability
in the first four or five terms. A definite hump begins to appear in the
P(m,n) curve when much over 90 per cent is contained in the same
range. Amounts of 95 to 99 per cent produce humps as extreme as we
note in our examples.

The exact way in which p(k) is distributed over these first few terms
can influence the shape of the P(m,n) curve considerably. In general,
large values of p(1) cause the P(m,n) to remain large for a more ex-
tended range of values of m. Beyond these few general remarks, the
process of fitting remains a matter of trial and error. First we find gap-
length distributions which give rise to P(m,n) curves which approxi-
mate in shape the various segments of the curve we are trying to match.
Then weighting factors are chosen so that when the various components
are so weighted and added together, they yield numerical agreement
with the desired curve.

Berger and Mandelbrot® and Sussman® have claimed that the error
processes on the telephone network are indeed of the renewal type and
they have some data® to support this view. We have not investigated
this matter, but we do note that for the AGN data the composite gap-
length distribution given in Table III is approximated reasonably well
by that for our model. Our model, however, has p(k) = 0 for & > 5,
whereas for the AGN data p(k) 0 # for k > 5. These observations neither
confirm or deny the existence of renewal processes on the telephone
network. The accuracy with which our model approximates the field
data is, however, indirect support for the notion that the error processes
are at least not widely different from renewal processes.

The humps in the P(m,n) curves at m = n/2 are rather remarkable.
We have suspected that they are at least partially due to drop-outs and
to the nature of the error-recording procedures in the field tests. For
example, in the AGN tests during a drop-out, the error pattern recorded
would coincide with the test word (Ref. 8, p. 1402) and would appear as
repetitions of

111101111001011000010000110110.
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TasLE IIT — Gap-LEngTH DisTRIBUTIONS FOR AGN DaTa
AND MoODEL

k= 1 ] 2 3 4 5
AGN data 0.24 0.09 0.05 0.02 0.03
Model 0.20 0.14 0.04 0.01 0.03

When this pattern is present, the gap-length distribution induced would
be that given in Table IV. This is essentially the distribution we have
used to produce the hump in our model for the AGN data (cf. Table I).
We found that it gave a slightly better fit than some other distributions
we tried, but other distributions did yield rather good fittings. This is
not sufficient evidence to conclude that the hump is entirely due to
drop-outs but it does support the hypothesis that it is at least partially
caused by them.

One other tentative interpretation of our models for the AGN and
TW data lies in the gap-length distributions for their initial segments.
The term p(1) for the TW data is almost twice as large as that for the
AGN data, which means that double errors would be more prevalent
in the TW data. This is consistent with the occurrence of dibit errors
for the four-phase data set employed in the TW tests.®

So many gap-length distributions seem to give reasonable approxima-
tions to the intermediate segment of the P(m,n) curves of these field
tests that it is difficult to ascribe much significance to them. They do,
however, represent instances where errors have high probabilities of
following other errors, thereby producing bursts. Very short drop-outs
would offer one explanation, but there are no doubt others.

The accuracy of our approximations is certainly sufficient for many
purposes, and in particular for the estimation of error rates for codes
by the methods given in Ref. 5. An advantage of the models which is
somewhat independent of accuracy is the following. When the block
length n is very large there are two defects in the P(m,n) values obtained
directly from the field-test data. First, the plot of P(m,n) becomes
erratic due to the small sample size afforded by the field-test data, and,
second, the computer processing time to obtain P(m,n) becomes ex-
cessive. On the other hand, P(m,n) computed from the model yields a

TaBLE 1V — Gap-LEneTH DisTriBUTION FOR TEsST WORD

k

p(k)

1 2 3 l 1 5 | >5

0.563 0.250 0.062 1 0.0 0.125 | 0.0
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smooth curve with very little time required in the computations. This
appears to be a significant advantage of representing the telephone
network by way of mathematical models.

VY. ERROR RATES ON THE TELEPHONE NETWORK

The use of P(m,n) in estimating error rates for error-detecting codes
is desecribed in Ref. 5. It has also been used for some error-correcting
codes in Ref. 9. For error-correcting codes, the probability P, of in-
correct decoding may be conveniently and usefully bounded in some
cases. For example, if the code is capable of correcting all (m — 1)-fold
(or fewer) errors, then certainly P, < P(= m,n) where

P(z mn) = 3 P(im)

and 7 is the code’s block length.

In Ref. 5 we find another use for the probabilities P(= m,n). For an
error-detecting code used with retransmissions for error correction, let
P. be the probability of an undetected error and P, be the probability
of retransmission. Then,

P.~2°P(2 dpn)

and
P, ~P(= 1,n)

where d is the minimum distance of the code and ¢ is the number of
check bits in each code word. The above approximation for P, is best if
¢ is small, n is moderately large, and the check bits are not too trivial.
It may be used in some other cases but with special caution if either
extremely low error rates are desired or n is quite large.

Using the model for the AGN data, P(= m,n) vs n has been com-
puted and displayed in Fig. 11 form = 1, - - -, 10. Fig. 11 is useful for
the kind of estimates indicated above and for other considerations in
error-control systems (e.g., synchronization).

VI. THE EFFECT OF INTERLEAVING ON ERROR RATES

Time division multiplexing (interleaving) has often been considered
as a means of enhancing the error-control effectiveness of error-correct-
ing codes. Its effect on the error statistics of a Gilbert burst-noise channel
were noted in Ref. 5, p. 1987.
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With interleaving, the blocked bits from the data source are rearranged
(by some delay and storage device) and put onto the line so that of two
originally adjacent bits in a block, the second is the tth bit on line
following the first. The number ¢ will be called the “interleaving con-
stant.” When ¢ = 1 there is no interleaving. We let n be the block
length, and for error-rate considerations we are concerned with the
probabilities P,(m,n) that m bit errors occur among the n bits of an
interleaved data block. For Py(m,n) we write simply P (m,n) as before.
Thus, P,(m,n) is the probability of m errors among n bits which are
equally spaced with { — 1 other bits between each two.

To obtain m errors among n bits spaced ¢ — 1 bits apart, we must
have r errors in the total block of in bits wherem = r = (t — 1) n + m.

in—r

Given a total of r errors in in bits, there are (;)( ) collections of

n bits (from the total) containing m errors. There are, however, ('T)
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possible collections of n bits. The probability that n bits selected from
the in bits contain m errors is hence

()50 ()

and, assuming that a sample of n regularly spaced bits is similar to a
random sample of n bits, we may conclude that

() (r)(tn -r )

t—=1)n+m

Pmn) ~ 2 ﬂﬁ”& P(rn). (1)
n

This formula could be used to approximate P.(m,n) from the P(r,n)
values, except that N = tn may be quite large and the computation
of P(r,N) then becomes infeasible even with the efficient programs used
in connection with our mathematical model of the telephone network.
Let us abandon this approach.

Now, P(r,N) is expressed by

P(r,N) = i?\;P‘(r,N)

where Pi(r,N) is associated with the renewal channel determined by
the gap-length distribution p’(j). If we interleave on one of these re-
newal channels, we effectively have another renewal channel deter-
mined by a modified gap-length distribution p,’(j). Expressions for this
will be given below. Thus,

P,(mmn) = i?\;P.‘(m,ﬂ) (2)

where P, (m,n) is obtained from p,’(j) in the same way that p‘(r,NV)
is obtained from p’(j) and involves only modest computations.

Using (2) we are then capable of computing the P,(m,n) values for
the switched telephone network that are displayed and discussed below.

For a renewal channel the gap-length distribution p(j) specifies the
probability Pr(0°'1 | 1) that, given a bit error, the next error is the
gth following bit. (The superseript ¢ is dropped from p(j) here, since
the three cases 7 = 1 to 3 are treated the same.) Let a be the autocor-
relation function for the process so that a(j) = Pr (al | 1) where « is
any binary word of length j — 1. Then

a(1) = p(1)
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and

j—1

a(j) = p(J) + ; p(s)a(j — ) (3)

forj > 1.
Now, if we interleave with a constant ¢, error bits remain renewal
events and p,(7) is the probability

Pr (a10a20 e Ct,-'__.10a'_f1 | 1)
that looking at every tth bit there are j — 1 correct bits preceding the

next error (ay, as, -+, a; are arbitrary binary sequences of length
t— 1).
1
o ]
6 J=1
al— | i“-._ﬁ\
N
2
2 \"w -
u:r'a == \\
el N
4

oy
Fil

pt (J)
b
<
7/
A
T
.-/—-‘

. B‘\\\

10°3 E\\ \\\\\\\\l

p TNV

i I \ AU
4 | AL
PN
SRR\

I ‘i‘X‘SH\\ q

2 4 68

2 4 6 2

i 10 %02
INTERLEAVING CONSTANT, t

Fig. 12 — Gap-length distribution p2(j) vs ¢.



106 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

Thus,
p:(1) = a(i)
and
pd) = a(t) — 3 alts)pdli — 9) 4)
forj > 1.

This last equation follows from the fact that the first term on the
right is the probability that the #th bit following an error is also in
error, and the second term is the total probability that at least one of
the tth, (2¢)th, ---, (7 — 1)tth bits is in error. Their difference then is
p(J).

We reintroduce the superseript 7 (=1,2,3) on pi(j) to denote re-
spectively the initial, intermediate and hump gap-length distributions
given in Table I. The corresponding autocorrelation functions deter-
mined by (3) turn out to be well approximated (at multiples of 25) by
the following formulae.

a'(j-25) = 1.43 X 107°{2.295 X 107"

a’(j-25) = 0.990{1.863 x 10737
a’(j-25) = 0.407{0.763} 7",

TABLE V — Gapr-LENGTH DISTRIBUTIONS P:(j)

t j i=1 2 3
1 0 0.01 0.41
2 0 0 0.14
25 3 0 0 0.05
1 0 0 0.02
5 0 0 0.01
1 0 0.0002 0.31
50 2 0 0 0.08
3 0 0 0.02
1 0 0 0.01
1 0 0 0.18
100 2 0 0 0.03
3 0 0 0.005
1 0 0 0.06
200 2 0 0 0.004
3 0 0 0.0002
1 0 0 0.008
400 2 0 0 0.0001
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Using (4), these give rise to the following gap-length distributions
pi(j) (for ¢ = 25, 50, 100, 200 and 400) shown in Table V (therein
0 indicates a number less than 107%).

To illustrate further the dependence on ¢ we have plotted p,'(j)
(7 = 1 to 8) in Fig. 12.

Using the gap-length distributions in Table V, we have computed
P,(n,m) for n = 15, 31, 93 to obtain P,(= m,n). These are summa-
rized in Figs. 13 and 14, which give P((= m31) vs {form = 1 to 7
and P,(= 3,n) vs n for the values of ¢ in Table V.

The correction of all single and double errors is generally considered
to be a reasonable procedure for capable codes of almost any block
length. For such codes, the probability P, of a decoding error cannot
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exceed P,(= 3,n), where n is the code’s block length (and the inter-
leaving constant is ¢).

Noting Fig. 13 and considering the Bose-Chaudhuri (31, 21) code,"
which corrects all double errors, we conclude that interleaving with
t = 300 would provide an error rate P, of 10”7 or less. Such error rates
are usually aceeptable. The storage capacity required to obtain ¢t = 300
for this block length is 31 X 300 = 9,300 bits.

VII. CONCLUSIONS

Representation of the telephone network by a combination of re-
newal-type channels may be accomplished by the specification of
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slightly more than a dozen parameters. This has the advantages of being
compact and convenient, and of admitting to extrapolation to large
block lengths and giving accuracies which are more than adequate for
most error-control evaluations.

Interleaving on the telephone network can significantly enhance the
error-control effectiveness of error-correcting codes when the separation
between adjacent bits of a code word is on the order of several hundred
bits. The storage requirements for achieving such interleaving are ex-
cessive for general application, but, where computers or other special
storage facilities are available, interleaving can provide an interesting
trade-off between decoding complexity and simple storage.
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