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In this paper the general integral equations governing the mode spectra
of optical masers are investigated from a point-of-view based upon certain
theoretical results for Halder continuous kernels. Using an estimation origi-
nally performed by Fredholm, il is proved that the homogeneous inlegral equa-
tion

b
o) = [ Klay) oy) dy

has at least one eigenvalue for Hilder continuous kernels K with exponent
a > 3 and with nonvanishing trace. All the inlegral equations which have
been {reated in laser theory so far can be “factored” into one-dimensional
equations with continuously differentiable kernels, to which this resull ap-
plies directly.

Although in practice the vanishing of the trace is the exception rather than
the rule, the later sections of this paper are devoted lo demonstrations of the
nonvanishing character of the trace of several of the common ‘‘laser kernels”
associated with practical reflector configurations. These results provide in
almost all cases the first rigorous proofs of the existence of eigenvalues and
eigenfunctions for the integral equations of the optical maser.

I. INTRODUCTION

Homogeneous linear Fredholm integral equations with nonsingular
kernels of normal type (which includes Hermitian kernels as a special
case), i.e., kernels for which

fK rz) K(yz2) flx(m) K(zy) dz

have been extensively studied. Within the framework of complex-valued
£° functions, questions of existence, uniqueness, and representation of

i
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solutions can be largely answered for such equations. Recently, however,
a number of integral equations involving kernels which are neither
Hermitian nor normal have arisen in laser theory. These kernels, of which

K(zy) = ™, (1)

with & a given complex constant, may be considered representative, do
have the seemingly beneficial property of being complex-symmetrie, viz.

K(zy) = K(y,@).

Unfortunately, due to the lack of a sufficient analytic theory for such
kernels, this “advantage” has yet to be adequately exploited. Thus,
although it is well-known that every Hermitian kernel distinet from the
zero transformation has at least one eigenvalue, the existence of eigen-
values for general complex-symmetric or other non-normal kernels
still remains an open mathematical question.

These remarks are not meant to imply that there has been a paucity
of theoretical investigation to complement the widespread experimental
work with masers and lasers of various geometries. Quite the contrary!
Boyd and Gordon,' for instance, have shown that for the confocal geome-
try the resultant integral equation is equivalent to that considered earlier
by Slepian and Pollak® and has prolate spheroidal wave functions as
eigenfunctions. Somewhat later, Boyd and Kogelnik® generalized this
work to resonators with unequal reflector apertures and curvatures.
Moreover, iterative computational methods have been applied by Fox
and Li*® and Li’ to integral equations arising from a wide range of inter-
ferometer geometries. Their techniques have produced plausible numeri-
cal deseriptions of the characteristic low-order modes and eigenvalues
for the configurations considered.

Even with the contributions represented by the above papers, how-
ever, there still remains a dearth of knowledge, in a mathematical sense,
about the eigenfunctions and eigenvalues (if any) of the homogeneous
integral equations encountered in the general theory of the optical
maser. The nature of some of the mathematical questions yet to be
answered in this area was considered in an early 1963 paper by S. P.
Morgan.” Since that time some progress has been made regarding the
existence of eigenvalues for certain ‘“laser kernels.” Newman and
Morgan,’ by means of lengthy Taylor series techniques, have proved
that kernels of the form

K(zy) = G(z) F(xy) H(y)

with rather general G, F, H and with nonvanishing trace possess at
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least one nontrivial eigenvalue. Other recent work”'’ has centered
around the use of the natural Hilbert-Schmidt expansions of “planar”
and “near-confocal”” kernels in terms of their singular systems [Ref. 11,
p. 142 fi].

In this paper we want to assume a somewhat different approach based
upon certain theoretical results for Holder continuous kernels. We first
prove (in Section IIT) the following

Theorem: Let the kernel K(x,y) be Holder continuous in either variable,
with exponent & > %, for a < x,y = b. Then if the trace of K does not
vanish, the homogeneous integral equation

b
o(x) =\ [ Kzy) o(y) dy

has at least one eigenvalue.

The essential step in the proof is an estimation of the coefficients in the
classical series representation for the Fredholm determinant of the
kernlt;zl K(z,y), an estimation originally carried out by Fredholm him-
self.

We next observe that all the integral equations which have actually
been treated in laser theory so far ean be “factored” into one-dimensional
equations with continuously differentiable kernels, to which the above
theorem applies directly. Although we expect that in practice the vanish-
ing of the trace is the exception rather than the rule, we devote the
latter sections of this paper to demonstrations of the nonvanishing char-
acter of the trace of several of the common “laser kernels” associated
with practical reflector configurations. These examples are indicative of
the ease with which the existence of eigenvalues and eigenfunctions
can be rigorously established for many of the one-dimensional kernels
arising in the theory of the optical maser.

II. MATHEMATICAL PRELIMINARIES

In general we shall consider complex-valued kernels K(x,y) defined
on the bounded real domain a £ z,y =< b. Thus, where limits of integra-
tion on integrals are not specified, the integrations are to be performed
mé'cr the interval [a,b]. We shall also assume that K belongs to the class
£, 1e,,

b b i
norm K = | K| = [[ [ |K(z,y) |* dx dy:| < o,

and that K(z,y) is a square-summable function of y for each value of
x and conversely.
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Our notation for composite kernels shall be
b
KL = f K(xz) L(z,y) dz.
a

[terated kernels will be denoted by
K" = KK

b
f K(zz) K zy) dz v = 2

with K' = K(x,y). In the same manner

-

b
trace K = tr(K) = f K(zz) dx
and

k, = tr(K") = fbK'(:v,:r) dx

b b
=f f K(zz) K" '(2,x) dz dz.

Reference should be made to Smithies" for further definitions and
standard theorems on integral equations as needed.

Certain notions regarding the characterization of entire or integral
funetions will also be of value in our work. In particular, recall that the
order p of entire f(z) = Y u_oa.z" is given hy

T n log n
p= lln:*silp fog (1/|a])" (2)

Other definitions and results may be found in texts such as Boas."

The property of Hélder continuity is indicative of the smoothness of
a given function. Kernels for which there exist positive constants A and
a such that either

| K(zy) — K(zy) | < Ad|x—2]|" for all z,y,z in [a,b]
or
| K(z,y) — K(z2) | < Ay —z|"“ for all 2,y,z in [a,b]

are termed Hoélder continuous in a or y respectively with exponent c.
If « = 1 the functions are said to satisfy a Lipschitz condition, and thus
Hélder continuity is occasionally designated Lip, . It should be noted
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that continuously differentiable functions automatically satisfy Lip-
schitz conditions with « = 1.

III. THE MAIN THEOREM

Theorem: Let the kernel K(x,y) be Holder continuous in either variable,
with exponent a > %, for a < a,y = b. Then if the trace of K does not
vanish, the homogeneous integral equation

b
olz) = A f K(zy) o(y) dy (3)

has at least one eigenvalue.

Proof: The gigenvalues of (3) are the zeros, if any, of the Fredholm
determinant D()\) associated with the kernel K(z,y). The classical
series representation'” for this entire function D()) is

DO = X dN (@)

v=0

where dy = 1 and

d, = (—1),[{ fK (81’32"”’8") dsidsy - - ds, (v 21) (5)

v! 81,82, *,8y
with
S1,82, "1ty S\ _ e
K (-91 PR sy) = det (K(s;,s;))
I((Sl ,Sl) _K.-(Sl ,32) e K(Sl ,Sy)
K(s,s) K(sa,:) - K(s2,8) (6)
I((sv lsl) I\T(S, :82) ot K(Sv ,Sy)

We want to determine the order g of D(A) under the above hypotheses
on the kernel K(z,y). Let us assume, therefore, that K is uniformly
Halder eontinuous with respect to the second variable, that is

| K(zy) — K(zz) | <Ay —z]" (7)
with & > 3.
To estimate the coefficients d, ,* we first transform the determinant

in (6) by subtracting the second column from the first, the third column
from the second, ete., thus obtaining

* Thig estimation was originally performed by Fredholm in 1903.12
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det (K(si,s;)) = [(81 — 82) (82 — 83) =+ (81 — 8)]°

€11 €12 e €1,0—1 K(Sl ) Sv)
€91 €2 oo e, K(8 ,Sv)
€ €2 T €y, v—1 I\’r-(sv ] Sv)

where

_ [(( Som ,sn) - I{(sm ,S'n+1)

I3 =
mn (S" _ S,H,]_)“

m= 12, n=12- -,v—1.

Since | emn | < A by (7), and K(a,y) itself is bounded by continuity,
a simple application of Hadamard’s inequality yields

| det (K(s:,8;)) | < Cu”pml ($1— s2)(82— 83) -+ (8,0 — 8) |7 (8)
where C is a constant. Inasmuch as the determinant of (6) is symmetric

in the s;, we may assume in deriving a further upper bound that

bz z2wz - =28 =a

The right side of (8) is then maximized by spacing the s; uniformly
between a and b. As a consequence we obtain

_ a(v—1)
| det (K(si,5;)) | < """ [b “] (v > 1)

y — 1
from which it follows that the estimate™
|d,| < (const.)” y™* (9)

is valid for the coefficients of the power series of (4).
The relation (9) implies that the order of the entire function D()\)
satisfies '

1
< —
e t3

which becomes less than 1 for « > 1. Since

b
b= — [ Koy dsi = —tr(K) (10)

* We have used Stirling’s expansion for the factorial funetion.
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does not vanish by hypothesis, D(A) must be a nonconstant entire func-
tion of order less than 1 and hence must have at least one zero (see
Ref. 13, p. 22 ff). It follows then that the integral equation has at least
one eigenvalue.” Q.E.D.

For entire functions of finite order a general product expansion follows
from the Hadamard factorization theorem. In view of the above results,
therefore, D(A\) may be written as the canonical product

D()\) =I?I(1—l) (11)

r=1 Av

where A, Az, - - - are the zeros of D(A) arranged in order of increasing
modulus. This expansion converges absolutely and uniformly on com-
pacta.

If we differentiate the two representations of D()\) given by (4) and
(11), set A = 0, and make use of (10) we obtain

tr(K) = i-l-

p=1 Xv-

(12)1

Thus kernels Hélder continuous in either variable with exponent « > }
are one of the overlapping categories of nondegenerate kernels for which
the expansion (11) and hence the relation (12) is valid. Other classes
include

(7) Hermitian kernels with only a finite numhber of eigenvalues of
one sign or the other (Mercer’s Theorem), and

(1) composite kernels of the form K = K.K, (Lalesco’s result; see
Ref. 15).

IV. ONE-DIMENSIONAL EQUATIONS FOR THE OPTICAL MASER

Careful analysis of an idealized diffraction model for the optical maser
results in the following coupled integral equations for typical field quan-
tities, such as the current densities:®

&y (2 ,00) = M [ Koo(xy 150 y2) $al22,ya) daedys,
Js,

(13)
By 20,32) = RzL Kor( 20 23 20,31 ®1(20 1) dady,
1

* If the order u of the Fredholm determinant D(\) satisfies 0 < u < 1 then we
can conclude that there exists a countably infinite set of eigenvalues of the equa-
tion (3) since entire functions of nonintegral order have an infinite set of zeros.

t This relation is not generally valid for arbitrary £? kernels. In fact it may
be inferred from results of Salem!* that there are continuous symmetric kernels

with denumerably many eigenvalues for which Z:’;l (1/x,) does not even exist.
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where
Kyo(xy, 91572, 42) = Ka(®a, 2 521, %)
exp ik [(z1 — 22)° + (g1 — 1)* (14)
+ (21, 1) + ha(2a, y2)].

In these relations, S; and S, are the mirror surfaces, hi(z;, ) and
hao(as , y2) represent their respective departures from parallel planes,
and k is a dimensionless parameter containing the wavelength as well
as various geometrical dimensions such as the average mirror separation.

The solutions ®; » of (13) are eigenfunctions which describe the field
distributions at the reflectors of the possible normal modes of laser
oscillation; A; and A, are the corresponding eigenvalues that specify
the loss and phase shift which a propagating wave undergoes between
the reflecting surfaces. Note in particular that these coupled equations
(13) are single-transit relations; that is, they give the field at each mirror
in terms of the reflected field at the other. They can, of course, be com-
bined into a single integral equation with a composite kernel.

In the derivation of the above relations, the active maser material
is assumed to be infinite in extent, homogeneous and isotropie. Diffrac-
tion effects at the edge of the reflecting surfaces are neglected. Moreover,
the separation between the reflectors, as well as the radii of curvature
of these surfaces, is taken to be large compared to typical transverse
dimensions.

Although the integral equations (13) are two-dimensional, the pre-
ponderance of analytic work on this problem has been under the addi-
tional assumption that the laser kernels (14) can be adequately approxi-
mated by a product of functions of single variables. If the field quantities
are correspondingly decomposable, namely if

®(z,y) = X(x) Y(y)

or
®(r,6) = R(r) 6(8),

the general problem may be reduced to consideration of integral equa-
tions in one independent variable. These equations take the form

by
401(31) = 7\1]. Klz(il?l ,32) (Pz(xz) d»’ﬂz,
- (15)

by
ea(x) = 7\1_[ Ko (22,11) e1(21) day,
a
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with the single-transit kernels K given, for instance, by

Ku(l‘l 3 ;132) = Kg](.’l'g ,.’[’1} = exp ik [(‘.I'] - ;1‘2)2 + pl(l?l) + pz(:lfz)]. (16)
Since these kernels are in general continuously differentiable functions of
their arguments, we can use the main theorem of the preceding section
directly to show the existence of eigenvalues whenever the trace is non-
vanishing.

V. ANALYSIS OF SPECIAL REFLECTOR CONFIGURATIONS

In this section we examine the kernels associated with several well-
known practical interferometer geometries and establish the general
nonvanishing character of the traces.

5.1 Plane Reflectors

Tor rectangular plane reflecting surfaces which are mirror images of
each other, the integral equation of interest is

e(x) = A f_l K(zx') o(a') da'

with kernel
K(aa') = exp [ik(x — o)’

It is a trivial matter to verify that the trace of this differentiable func-
tion is 2, from which we infer the existence of eigenvalues of the above
integral equation. In fact, for this kernel one can use parity arguments
to show there are at least two eigenvalues for & = 0.°

5.2 Circular Plane Reflectors

When the plane reflecting surfaces have circular cross section the
integral equation kernel becomes"

K(rp') = Ju(krr’) v exp [ik(r* 4+ "*)/2]  7p"in [0,1]

where J,, is a Bessel function of the 1st kind and nth order. The integer
index n is indicative of an angular variation ¢ which has been sup-
pressed. The trace of the kernel K is proportional to

1
T, = f T (k) 6 dr,
0

and thus the nonvanishing of 7', will imply the existence of normal
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modes of oscillation for the system. Using an integral representation of
Jy , for example, we obtain

_ 10t ikrt 2\ —4 ikr
Ty = Z ] &1 = ) e didr
0w

Il

1 1 N 1 .
+ f (1 _ t2)——, f ezkr(1+t) drdt
™ -1 0

1 1 - [eik(1+t) 4 1:,
BEZ TR R ke

It is easy to see that for Im (k) = 0, for instance, the real part of the
integrand is negative almost everywhere. Hence the trace of the kernel
does not vanish in this particular case, and we may draw our conclusion
as to the existence of eigenvalues.

5.3 Other Reflector Configurations

For certain kernels, of course, there is little fo be learned from applica-
tion of our results on Hélder continuous functions. Such is the situation
regarding the kernel

K(za') = ™™

associated with mirror image reflectors of square cross section, each
having the curvature of a sphere centered at the center of the other
reflector. As noted previously, this particular kernel gives rise to eigen-
values and eigenfunctions which may be expressed in terms of prolate
spheroidal wave functions.”

At the same time, however, it is advantageous that the eigenvalue
existence question can be easily settled for more general reflector geom-
etries which do not exhibit as beneficial analytic properties as the
confocal configuration. In particular, the kernel

K(zza') = exp ikl(z — 2')* + p(z) + p(z')],

which pertains to mirror image square reflectors with shape function
proportional to p(z), has eigenvalues if

T = fK(x,:t:) dx = fez"“(”) dx = 0.

The vanishing of T for practical geometries would certainly seem to be
the exception rather than the rule.
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5.4 Composite Kernels

The above examples show how our main theorem can be used to
establish simply yet rigorously the existence of eigenvalues and eigen-
functions for the one-dimensional laser kernels arising when the reflectors
are mirror images of each other. For more generalized configurations in
which the reflecting surfaces may be of unequal size and curvature, the
applicable kernels are of a composite nature (see Refs. 3 and 5). In
view of this one might choose to reason from Lalesco’s results on com-
posite kernels mentioned earlier rather than from our main theorem.
This would be an acceptable method of attack. However, since (12),
relating the trace to the sum of reciprocal eigenvalues, is valid in both
situations, a verification of the nonvanishing character of the kernel
traces is needed in either case. As a last illustrative example we shall
provide this verification for the integral equations associated with
asymmetric spherical reflectors of arbitrary curvature.

Teta, = —bi,a = —bs, pi(my) = az;” and pa(x2) = Bas’. The one-
dimensional integral equations (15) then become appropriate for analysis
of an idealized interferometer having two rectangular mirrors of unequal
size and unequal curvatures. As usual, these two coupled equations (15)
ean be combined into a single integral equation for either ¢ or ¢ .
Moreover, this new integral equation may then be split apart into two
subsidiary equations according to whether the eigenfunction modes are
even or odd. The kernels resulting from this division are given by

bo Iy )
Koo(ay) = 2 L {""S Zka'y } exp [iH(2* + ) (1 + )

1 sin 2ka’y (17)
+ 227%(1 + 8) — 2a'2]} da’
and have traces
bt cos 2ka’e S
tr(K,.) = 2 fﬂ [b! {’i cin 2k:c’:c} exp {2tklz"(1 4+ @) (18)

+ 2*(1 4+ B) — a'z]} da'da.
It is easy to show that at least one of these traces is different from zero
for real k& and arbitrary curvatures «, 8.
Note first that
by b
(k) — w(K) =2 [ [ exp (20ka*(1 + @)
Jo bo

+ 2”%(1 + B)]} da'dz
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by
=4 U exp {2ik(1 + a)xz}dz:l
0

by
. [j; exp [20k(1 + B)a"} da:':l .

Now neither of the two bracketed terms on the right-hand side van-
ishes, since the real parts of these Fresnel integrals are positive for real
k, @, 8. Thus, the difference between the two traces, and hence at least
one of the traces itself, is different from zero [one suspeets, of course, that
both of the kernels (17) have nonvanishing traces]. Although this argu-
ment gives no measure of the loss to be expected with any individual
eigenmode, it does show that normal modes of oscillation exist for this
arbitrary asymmetric spherical configuration.
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