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Oplimum ranges of the inerlia ralios, the spring constanis, and the
damping constants have been obtained for the design of a gravitationally
oriented two-body satellile wilth satisfactory over-all damping performance.
In the case of viscous damping, oplimum damping constants can be simply
chosen from diagrams of complex root loci. It is found impossible to con-
vert the optimum viscous damping constants into optimum magneltic hys-
teresis damping constants, and the latter have to be obtained from computer
solutions. The result of this optimization work makes possible a beiter
design of the salellite with lighter allitude control weight, shorter rod lengths,
and smaller earth-pointing error than previously reported in articles in the
Bell System Technical Journal.

I. INTRODUCTION

The dynamics analysis by Fletcher, Rongved, and Yu! has shown
that a two-body satellite will achieve an earth-pointing motion from an
initial tumbling as a result of energy dissipation in the hinge joint
through the relative motion between the two bodies. For a practical
application, we shall consider the earth-pointing body to be like a
dumbbell and the auxiliary body like a sheet, the two being connected
to each other through a hinge mechanism of universal-joint type to
allow a two-degree-of-freedom relative motion. When the satellite is
in an earth-pointing motion, the auxiliary body is parallel to the local
horizontal in its unstable orientation, and the two axes of relative mo-
tions are aligned with the roll and pitch direction (see Fig. 1). The over-
all aspect of such a passive gravitational attitude control system has
been studied by Paul, West, and Yu? employing the magnetic hysteresis
damping mechanism. Certain designs of the satellite in terms of moments
of inertia, spring constants, and damping constants have been given
in both Refs. 1 and 2 for an altitude of 6000 nautical miles (nm). They
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Fig. 1 — Two-body satellite configuration.

are found workable, but by no means “optimum,” which means the
achievement of the best over-all damping performance in tumbling
motion, large-angle motion, torque-free librations, and forced librations
under environmental torques of various frequencies.

The present work concerns a parameter optimization of the afore-
mentioned two-body satellite employing two types of damping: the
linear velocity of viscous type, and the nonlinear magnetic hysteresis
type. With damping of the viscous type, analytical results can be ob-
tained for the librational motions which may be used as a basis of
parameter design in the case of magnetic hysteresis damping. The
employment of magnetic hysteresis damping even makes the (linearized)
equations of librational motions highly nonlinear, such that analytical
treatment becomes intractable and results have to be obtained by
numerical means.

II. GENERAL EQUATIONS OF MOTION

The equations of rotational motion which have been derived in Ref. 1
will be repeated here. The coordinate systems, as indicated in Fig. 2,
are defined as follows. Let O-XYZ be a nonrotating frame, with its
origin at the geocenter 0, its Z-axis passing through the perigee of the
orbit, and its ¥Y-axis parallel to the orbital angular momentum vector.
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Let S,-zyz be an earth-pointing frame, with its origin S, at the center
of mass of the composite satellite, with z axis parallel to OS, (the local
vertical) making an angle ¢ with OZ and with the y axis parallel to OY.
The body coordinates of body 1, Si-213121, are defined along its principal
axes, with adjusted' moments of inertia (I,, I,, I3). Euler parameters
(¢, n, ¢, x) are employed to describe the motion of S;-a1:2, relative to
So-xyz. The matrix of transformation from the latter to the former
frame is given as

- -4 2(8n + x) 288 — mx)
[ai] = 2(& — {x) -4+ -4 2(tx + nb) . (1)
2(& + ax) 2(—&x + nf) IS el Sl ' &

Among the Euler parameters the relation £ + 7" + ¢ + x° = 1 holds.
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Fig. 2 — Coordinate systems.



H2 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

The coordinates Sy-zs22. are defined along the principal axes of body 2,
with-moments of inertia (I, Is, Is). The rotation of body 2 relative to
body 1 is specified by an angle, a, about the z; axis and then an angle,
B, about the ¥, axis. The transformation matrix from Sy-ziy121 to Sa-zaye2s
is

CB SaS8  —CaSB
il =1 0 Ca Ser ) (2)
S8 —SaCp CaCp

where C and 8 are abbreviations of cosine and sine, respectively.

The equations of motion of the two-body satellite with the hinge
joint situated at the center of mass of the auxiliary body and at the
earth-pointing z, axis of the satellite body are:

Loy = (s — 13) (wewy — Gnang) + T + Tar, (3a)
Loy = (I3 — 1) (wswr — Gngny) + (Tre + Ta2)Ca
— TS (3h)
Loy = (I — L) (wws — Grne) + (The + Ta2)Se (30)
+ T':Ce,
Iy = (Is — Is) (wsws — Gngng) — (T + Ta)CB (3d)
+ 788,
Toos = (Is — 1o) (wows — Gnang) — Tos — Tas, (3¢)
Iois = (14 — Is) (wsws — Guans) — (T + Tar)SB (3f)
— T.CB.

In the above, (w;,ws,ws) are the components of the total angular
velocity of body 1 along Si-ri1z1, and (wi , ws , we) are those of body 2
along Sy-wsye2: . The coefficient (7 involves orbital elements: i.e.,

G = 30°(1 — €)1 + Cy)’,

where ¢ = orbital eccentricity, and Q = 2 divided by the orbital pe-
riod. Also,

3
Ny = Qi3, Niyz = E bn:ﬂks, 1= 1, 2, 3,
k=1
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with a;; and b,; the elements of the transformation matrices (1) and
(2). The constraint torque, T, is given as
T (Sﬂa C'a | 83 023)1

T Ay L

{?—(} [(Iu - Il)(wlws - Gnln:i) + (Tr2 + Td2)Cﬂt]
2

- (fj_fx [(Iy = Io) (wws — Grang) + (Tho + T'an)Sal
: (4)
— .[_ﬁ [(Is — Is) (wsws — Gngng) — (T + T') CBI
1

+ C{E [(Iy — I5) (wws — Guns) — (T + Tar)SB)
6

+ d(wgca + wiSa) — ﬁ(mcﬁ + wﬁsﬁ)} .

The restoring torques T,; and 7. acting on body 1 along the 2, and .
axes, respectively, are linear with the relative angle of rotation: i.e.,
Ty = ki, Ty = ko8, where k; and &, are spring constants. The damping
torques acting on body 1, T4 and Ty, along the x; and y. axes, re-
spectively, are defined in the following. Ior viscous damping, Ta = (g,
and Tsp = (48, where €, and (s are viscous damping coefficients. For
magnetic hysteresis damping, the torque is dependent on the history
of motion and is defined in regions I and I1T of Fig. 3 for T's as
*

Ty = Td2* + sz % ) (5)
as long as | T | < T, where B, T are constants, and g*, Ty* are
the values of 8, Tw when B last changed sign. After | T | reaches
T then T remains at 7' as long as 8 does not change sign, as repre-
sented in regions IT and IV of Fig. 3. The magnitudes of B and T will
be given in Section IV, where the minor loops will be described. Accord-
ing to the major loop in Fig. 3, no energy dissipation will result if the
amplitude of oscillation is less then B. T4 is defined by replacing g
by « and subseript 2 by 1in (5).

It can be shown that the Euler parameters and the relative angles of
rotation are related to the w/s, i = 1, - -+, 6, as follows:

é = 3(x\1 — {ha -+ 7hg), (6a)
7= 3(h + xhe — ENs), (6b)
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Fig. 3 — Magnetic hysteresis damping torque vs amplitude, Ty. — 8.

¢ = 3(—n\ + B\ + xNa), (6c)
X = (=8 — e — ©N), (6d)
i = —w + wCh + wiSB, (6e)
8 = —wCa — wSa + ws, (6f)
where
A= wi — Qi i=123, (7)
and
¥ =Q(1 — )71 + Cy)”, (8)

If the w's in (3a) through (3f) are treated as dependent variables,
then (3a) through (3f) together with (6a) through (6f) form a system
of 12 first-order equations in the 12 unknowns £, 7, {, x, «, 8 and w;,
i = 1, ---, 6. This system of equations has been programmed on an
IBM 7090 for numerical solutions for any given initial conditions and for
given dimensionless parameters: satellite moment of inertia ratios
I,/I,, 1 = 1,3, --, 6, spring constants ki/I,9°, damping constants
C: = C./1.9 (viscous damping) or Tui/I.9", i = 1,2, &8 (hysteresis
damping). Some numerical results have been given in Ref. 1, while
more numerical results are summarized in Section IV for parameter
optimization in the case of hysteresis damping,.
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III. PARAMETER OPTIMIZATION WITH VISCOUS DAMPING

In the case of librational motion, the Sy-my2; and Sy-wsy2, axes
oscillate about the earth-pointing rotating frame S,-ryz with infinitesi-
mal angles &, m , & and &, n, &, respectively. Because of the uni-
versal joint constraint, we havea = & — & ,8=m — m,and {» = §.
The position veetor of the hinge in the Si;-r1%:2: coordinate system is
— L%, , while in the S,-wyy»2» it is zero. Let us assume that the orbital
eccentricity, e, is small compared with unity: i.e., € is assumed to be of
the same order as the infinitesimal angles, £, n, {1, a, and 8. Hence,
from (8) one obtainsy = @ + 2200 + 0(¢*), ¥ = U + 28 + 0(€),
and § = —260°SQ + 0(¢'). Equations (3a) through (3f) can then be
linearized in the case of visecous damping to two sets of equations in
pitch and roll-yaw librations. Upon transformation of the independent
variable from ¢ to y = @, these equations become:

* 1 A
em _ 2 Tar + 3pim — kB = 2eSy, (9a)

dlll.', Jrg
a8 d'mo 1, ‘ - , ‘
- + — + = Tu’g -+ (Spg + AA‘g),@ -+ -3]J2711 = 2€S‘J/- (gb)
dy? T dy? Iy
i L, d -
(EI-‘;“‘E a+ (1 — Q‘l)zf—%+4(j1$1— ki = 0, (10a)
da dEl m _ (ff)
d—l[/z+(f—l,b2+ Ta + (1 q2) fl,b {101))
+ (4112 + #El)ﬂ + 4gpb = 0,
P 1 il
T A Ra = R G =R =0 (100)
where
- 1 dea " -1 d,ﬁ
le Clﬂ E@, P2 - CQ 'JJJJ
f(_il = ]‘1/]—192, 111_2 = ’\0/1292,
h7[’/-[5) “:11/14)
po= (L — 1)/, pe = (Is — Is)/1Is,
Q= (- L)/, ¢ = (Iy — Iy) /14,

Hh=0+1; - L)/ s+ 1), and fo (Iy + Is — I5)/

(Is + Is).
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Note that (10c) is obtained by adding up the linearized versions of
(3¢) and (3f).

3.1 Free Librational Motions

For the free pitch libration, i.e., with ¢ = 0 in (9a) and (9b), the
stability criteria have been obtained in Ref. 1. To ensure that the
earth-pointing frame, S.-zyz, be the equilibrium position, it has been
found that the spring constant should be larger than the following critical
value:

P 3ppe
fo* = — ——— . (11a)
’ Apr + P2
Thus, the pitch spring constant & is chosen as
- - 3apips
ke = aks* = — —— = (11b
: : Ap: + P:e’ )
where ¢ > 1. Similarly, the roll critical spring constant is found to be
i dq1qs
ot = — —22 (12a)
' w + g

and the roll spring constant is chosen to be

Fy = byt = — Vo (12b)
HG1 + g2

where b > 1. The characteristic equations in the complex variable s
for the free pitch and roll-yaw librations are, respectively, of fourth order
and sixth order:

s 4+ Co(1 + Ns' + [B(pr + p2) — 3a(h + Dpips/ (Apy + 22))s” )

+ 3C.(Ap; + p2)s + 9pipe(1 — @) = 0,

and

— A+ A1 — qz)2 + (1 — q@)°
w(N + 1) — A(pq + ¢2)

4galge — w(b — Dl + 4qulpg — (b — 1)&'2]] K
gL + G2

s 4 Ci(1 + w)s’ + [(”

_|_

) [(1 W —A) A1 — @)+ A1 = @)1 — g)
p(A + 1) — Auq + @)
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+ 4(pg + @) + (1 — @)pr

p(l —q) + (1 — @) :Is:
p(N+1) — Auq + q2)

(g — Ngelge — (b — 1)aql (14)
44 + qlug — (b — Dl {(x — A) + A(1 — g)*}
(vqr + @) (A + 1) — AMpg + @)}

_ budqiga(1 — @) (1 — @o)
(b1 + @) {e(N + 1) — Mpgs + @)}

[b91Q2(1 - ) :I
— (12(1 - !h)[qz — u(b — 1)q1 s
(g + q2) fuA + 1) — A(ugs + ¢2) }

(u — M) (pg + q2) s 16qiga(p — A)(1 — D) _
eV 1) = Neg+g) - e+ 1) — Mg+ @)

In deriving (14) the satellite body has been assumed to be axisymme-
tric. The optimization problem for the free librational motions is such
that by varying the parameters in the coefficients of (13) and (14) one
gets the largest possible negative real part of the complex roots for the
most slowly damped mode of librations. These parameters are C,,
a, \, p1, and p, for the pitch motion, and C; , b, g, g1, and ¢. for the roll-
vaw motion. The parameter A contained in the roll-yaw charaecteristic
equation is determined from the pitch optimization and is not treated
as a varying parameter in the roll-yaw optimization. From the optimized
values of the six parameters A, u, p1, P2, ¢1, and g» , one can determine
the optimized inertia ratios I;/f., 7 = 1,3, --, 6. The value of I, is
chosen from the magnitude of the gravitational torque at a given orbi-
tal altitude such that, in the presence of various environmental disturb-
ing torques, the forced libration amplitude will not be larger than a
specified value.

For a two-body satellite with geometrie configuration of a dumbbell-
sheet combination, we have

— 4(b — e

- (1 - q1) e\

+ 40, 0.

m=1 p=-1 =1 ad ¢= -1
the characteristic equations are simplified to

)\+182

A—1 (15)
4+ 3N — 1)Ces + 9(a — 1) = 0,

s+ (1 4+ 2)Cas® + 3a

with parameters C:, a, and A, and
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£+ (14 wCs + [4)\ t—n 40+ #'3] r

B A p—1

1+ w—2)+4 - 3
+[ PRI +4(#— 1)]01-5‘

b(u — N (14 ) + 4\ + (b — 1) _ ]
+4[ (= 1)(e+2N) +4b—1) s

(0 =N —1) 16(p — N —1) _
B+ A s TR =0

with parameters C;, b, and p. These two equations have been pro-
grammed on a digital computer for computation of complex roots with
ab = 1.0t0 20, C,, C. = 0to 7.0, A = 1.25 to 6.00, and p = 2.0 to
24.0. The case with a,b < 1.0 will give rise to positive real parts of the
roots and is of no interest to us.

The root loci of (15) and (16) are plotted in Figs. 4 and 5, respec-
tively, with fixed spring constants (¢ = 1.2, b = 1.2) and varying
damping constants and inertia ratios. The roots are plotted only in the
second quadrant of the complex plane, as they are complex conjugates
with negative real parts. In the case of critical and overcritical damping,
roots degenerate into the negative real axis. In the pitch case, with

= 2/[3 — 5'] ~ 2.61804, the two distinct modes will, at C, ~ 1.2805,
coalesce 1nt0 a Slngle point, —n = —Re(s) = —1.16, on the negative
real axis, corresponding to a 1/e damping time of 0.137 orbit at large
tor . ThlS is the result given by Zajac." For other values of A, there
always exists a pair of complex conjugates for the two modes if C, is
not too large. It is noted from Fig. 4 that when ) is in the range of 2.5 to
4.0, a proper choice of the damping constant C, will make —n; of the
least damped mode not less than 0.7, which corresponds to a 1/e damp-
ing time of 0.23 orbit. Values of A in the above range and the corre-
sponding optimum damping constants are given in Table I. This gives
the satellite designer a wide choice of the inertia ratio, I»/Is, and the
damping constant, C5/I.Q, and still the 1/e damping time is not greater
than 0.23 orbit in the free pitch libration case.

From the complex root-locus plot for the roll-yaw free libration (Fig.
5at b = k/ln* = 1.2), it is noted that the highest and the intermediate
modes coalesce into a single point at p ~ 6.425, and C, ~ 0.3625.
The corresponding lowest mode has a poor damping. The intermediate
and the lowest modes coalesce into a single point at u & 18 and Cy ~
0.0935, which gives a poor damping for the highest mode. A close exami-
nation of the plot indicates that for p lying in the range of 8 to 10,

(16)

+ 40,



SATELLITE

TWO-BODY

§7l=Y
o2z=¢
sy
g2=Y
sr2=Y
o=y
s2e=y
gg=Y
o=y

(T1 = 4*Y/*y = v) Surdwep snoosia yym uoneziuiido yayid roy tof joor xa[dwopn —§ "I
A (515 ] \u_._ 5% 2
] 20- +'0- 90— g0 _ oL 2i- t_\\ 91— 9i- o2-
A 4 i o
1 Yooz eee’l
8z’
\ ’ 2
= o...mv 1y 92 / / 50
/ ‘ == !
\\ 7 \\\ g \\ i/ y/ se
o ] — A\ X o1
S22 AT L ———
P e e |
nMNmMrnHﬁ = // // oI /
n.nhil\m 2 =T = 1 / i\ ~ /
ljjijiaMp Eem
slelee) & o X V\ e
AN =z N |
3_099 a| & o N v \ \ \ Je;.r “
\\ P ;,,\\ / _\ _ -
~ \\ ) J
\N \ &R /
\\T‘& \\\ \\ -__ (=34
- /
=
‘ — 7| / \ \\ ot
m— 7 7
e .x_ = geiast \Nn Qndxumu sro=23 oot umm 2 u\wu

f NI (S)WI



(21 = 13/ = @) Surdwep snoosia Yiim woneziuido meL-[{ol 0] 190 3001 xordwoy) — ¢ -Jig

fNI(S) 9y
20~ £0- v'o- S0~ 90— " Lo- 80~
01 sg0:'3
o \\
N nomu.c \ -
““ull 1o(9 =7
%“mnw Trg> £60
217l
MA_HHW.“ 800 £60
8l=1 A 1004 — A4
og=1 5
G -
3
e
j Jf i \ z
= I~ - 2] & =
i S N ~~ / i X\ oz
&\L-y %} P X \\v‘ \ / ) / \\
- nm.i|L\ Y A & /
91+
Eveid — I\T\\\\1\,\ \ ! \-\\_\ | \\‘\ / / \_-
orr et
o %\“\\\I\T\\\‘\l\\,\t\ \_\—\ / \ / / ﬁx
I |.l|||l|l|.1.|\\1..L11T.\...\..l\.\\w|\ J 1 /[ pd d / ° gz
Eegg:1 — 7 7 7 \\.‘
— 7 7 | —T/ / /
.||comou 1 A_ﬂ_ . L T \\ \\ / / \-\.ulh.n\lu\\\.\\n\
i / \\ \\ v 7/ y ey /
/ / |||||lh._lI|I|“\|.I|||\ﬂ\\.l\\|VTl / o
—sc: 7 A 1 S e .;\ 3 .m g o€
o o / o < o ) 8 @ ©
o 3 2 T 8 4 #
mf 5 g B @ :
S'E

60



TWO-BODY SATELLITE 61

TaBLE I — OpriMmum DampinG CONSTANT oF PrTcH LIBRATION

Negative Real Part in ¢, —Re(s)
I» =
A (= E) C
Lower Mode Higher Mode
2.5 1.425 0.88 critically
2.6 1.299 1.04 damped
2.61804 1.2805* 1.16% 1.16
2.75 1.165 0.85 1.33
3.0 0.995 0.81 1.17
3.25 0.870 0.78 1.00
3.5 0.80 0.74 0.90
4.0 0.69 0.70f 0.75

* Both modes coalesce into a single point on the negative real axis.
f Re(s) = —1.16¢ corresponds to 1/e settling time of 0.137 orbit. Re(s) =
—0.70¢ corresponds to 1/e settling time of 0.228 orbit.

a proper choice of the damping constant, €y, will make the negative
real part of the least damped mode, —Re(s)min, larger than 0.24,
which corresponds to a 1/e damping time of 0.66 orbit. If the lower
bound of —Re(s)min is relaxed to 0.20 (1/e time = 0.796 orbit), the
range of u becomes much wider, i.e., 6 to 14, as indicated in Table II
with the corresponding optimum damping constant.

The variation of —Re(s) with the spring constants is such that the
pitch optimum spring constant (for the least damped mode) depends
on the choice of damping constant, C,, at a given inertia ratio, A, as
shown in Fig. 6 for a few chosen cases. In the roll-yaw case, the

TaBLE IT — Oprimum Damping CONSTANT OF ROLL-YAW LIBRATIONS

Negative Real Part in ¢, —Re(s)
n =
“ (: ‘T‘) “@ Intermediate :
Lowest Mode Mode Highest Mode
6 0.65 0.216 0.211 eritically
damped
7 0.49 0.233 0.225 "
8 0.375 0.247 0.250 "
9 0.30 0.258 0.254 0.990
10 0.25 0.265 0.250 0.715
12 0.175 0.280 0.230 0.660
14 0.13 0.271 0.212 ‘ 0.495
Note: Re(s) = —0.2¢ corresponds to 1/e settling time of 0.796 orbit. Re(s) =

—0.28¢ corresponds to 1/e settling time of 0.568 orbit.
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optimum spring constant for the lowest mode is found always smaller
than that for the intermediate mode, as indicated in Fig. 7, while the
highest mode gets better damping for increased £, or b. For example,
at u = 8.0, and ¢, = 0.35, optimum % equals 1.13 %" for the lowest
mode but equals 1.31 £&* for the intermediate mode. From a practical
consideration of the spring design, one should not choose the spring
constant too close to the critical value because of possible decrease due
to vibrations, thermal effects, ete. Furthermore, an analysis of pointing
errors resulting from deviations in geometric configuration (due to
rod deflections,"” ete.) indicates the advantage of employing larger
spring constants. In view of these conflicting results, one may have to
settle for some compromise values, e.g., a,b =~ 1.2 to 1.8.

3.2 Forced Pitch Libration by Orbital Eccentricity
The steady-state solution of (9a) and (9b) for 5, is found to be
m = FiCy + (LS. (17)
Here Fy, = 2eA™'CoPo( Py — P.), and
(h = 2eA7' [P + (1 4 2N) kol 1P

+ Bl A+ (1 4+ N) P+ P (GF + =5,
where P, = 3p, — 1, and P, = 3p, — 1. The ratio of the amplitude,
i o= (F' 4+ )Y to the cceentricity, e, is plotted in Fig. 8 versus the
spring constant, a, with varying €, and . This plot indicates the ad-
vantage of using a lower spring constant, and, for 1.0 < a = 1.4, the
advantage of employing a smaller damping constant. This latter ad-
vantage is further reflected in the plot of /e versus ¢y (a = 1.2)
(Fig. 9), especially when A is in the range of 2.5 to 3.5. It is noted from
both Figs. 8 and 9 that at C. = 0.5 (a = 1.2), /e is relatively inde-
pendent of X. If the optimum damping constant for the free librational
motion, as given in Table I, for A = 2.5 to 4.0 is used, the average value
of #1/€ is approximately 2.25, which is only about 30 per cent larger
than that given by €, = 0.5.

IV. PARAMETER OPTIMIZATION WITH MAGNETIC HYSTERESIS DAMPING

4.1 Energy-Fitting Method

In the case of magnetic hysteresis damping, the equations of libra-
tional motions are the same as (9a) and (9b) for pitch, and (10a)
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Fig. 8 — 717e vs @ with varying A and (',

through (10c) for roll and yaw, except that the damping torques 7'
and T become nonlinear and may be defined as follows. If, for example,
the pitch relative angle of rotation from a neutral position, 8, is larger
then B, then the major hysteresis loop (see Fig. 3) will be traced, and
(5) will be applied for the pitch damping torque. If however, 8 is less
than B after a change of sign of 8, then the torque will in general trace
a minor loop as, for example, that shown in Fig. 10. The maximum
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magnitude of the torque in the minor loop may be a function of the angu-
lar excursion. Since the torque always opposes the motion, the plot of
the torque versus time is a broken curve (see Fig. 10). Each section
of the curve can be represented by an analytical expression if it is ap-
proximated as a section of a rhomboid or an ellipse. Such an approxima-
tion can be used for numerical integration of the equations of motion.

If the Tu-B curve is approximated as a closed loop for a slowly
damped system, the loop area which represents the energy of dissipa-
tion per cycle of oscillation, I, is related to the angular amplitude of
oscillation g as follows:

E, = '1T42(»3 - B) for B = fo, (18a)

and
E, = KTu»8™ for B8 < B. (18b)

In the above, B, 8y, K, and m are constants depending on the charac-
teristics of the damping material, etc., where 8 and 8, are found usually
to be very small, e.g., 8 = 1° to 4°, and 8 = 3° to 7°. If one equates
K, to the energy dissipation per cycle with the viscous damping,
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E, = mCwg’ (v = circular frequency of one of the principal modes)
at a certain value of 8, then a relation between C; and T results. For
example, when E), = E, at 8 = 3, then

- Heen 2] (19)

A similar relation can be obtained between C; and T/l Thus,
from the “optimum” viscous damping constants obtained in Section
III, one may find the equivalent “optimum’ hysteresis damping torque.
Neve1 theless, it is pointed out that the equivalent “optimum” T
obtained in such a way could be erroneous for the following reasons.
First, this is not a slowly damped system, as can be observed from the
computer solutions' of equations (3) with hysteresis damping, and also, as
can be noted from Figs. 4 and 5, Re(s) is of the same order as Im(s) in the
case of viscous damping. Hence, a closed-loop approximation for com-
puting E; and E, based on a particular frequency is obviously a very
poor one. Second, since the quadratic curve for E, can fit the Ej-curve
(m =~ 1.5 power for 8 < fy and linear for 8 = o) at only one point
(see Fig. 11), (19) gives a much worse approximation at other values of
§ than at the point of fit.

4.2 Numerical Method — Computer Solutions

From the foregoing, it is apparent that “optimum’ magnetic hystere-
sis damping constant cannot be accurately evaluated from the “opti-

Tdz Tdz

o ™ s m
o Iz i 13Z law [T law |73
(B=8, sinwt)
ACTUAL HYSTERESIS LOOP —— - — APPROXIMATED AS AN ELLIPSE
————— APPROXIMATED AS SKEW ELLIPSE —— —— APPROXIMATED AS RHOMBOID

Fig. 10 — Minor magnetic hysteresis loops: torque-time diagram.
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mum” viscous damping constant by means of the energy method or
other approximation methods, such as, the describing function method*
(for example, see Ref. 4). Therefore, in the case of hysteresis damping,
it is necessary to resort to numerical methods for the parameter optimi-

* If one defines the equivalent gain as the ratio of the first harmonies of the
output, hysteresis damping torque, to the amplitude of the oscillation angle,
assumed to be sinusoidal, and equates it to C1s or Cas in the characteristic equa-
tions, then the equations will only have terms of even power with, however,
complex coeflicients. This method is actually the same as the energy-fitting method
and elearly offers no advantages.
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zation. The results obtained in Section IIT for the viscous damping
case may, however, be used as a guide. It is found from the computer
solutions that the critical spring constants (11a) and (12a) obtained
from the linearized equations (9a), (9b), and (10a) through (10e¢)
with the viscous damping apply also for the case of hysteresis damping.
It has also been demonstrated by computer solutions that the values
of the inertia ratios, A and g, in the ranges given in Tables I and II,
will give better damping for the same hysteresis damping torques and
spring constants. We shall numerically integrate (3a) through (3f)
and (6a) through (6f) with the hysteresis damping torque defined in
(5) by putting @ and 8 equal to 1° to 4°. This eliminates the unnecessary
complex programming of the minor loops of the hysteresis damping,
though no damping will result when « and 8 are smaller than @ and 8,
respectively. If the initial condition is a tumbling motion, the numerical
results will cover tumbling motion, large-angle motion, and librational
motion. Only in the librational motion does the solution get less and
less accurate when the relative angles get closer to & and 3.

A number of computer runs have been made employing hysteresis
damping constants in a wide range. The results indicate: (a) the number
of orbits after which the satellite will stop tumbling from the initial
COIlditiOIl, w = {1, w = 5Q, ws = Q w3 = wg = wg = 0, and (b) the
librational angles after 20 orbits. Computer runs have also been made
(for the case of A = 3.333, u = 7.4 only) to determine the librational
angles after 10 orbits from the initial condition: at ¢ = 0, 6; = 36°,
6, = 43°, 8, = 27°, a = 1°, 8 = 10° w = —0.84Q, wx = 1.17Q, w3 =
—0.3Q. These angles are defined as 6, = C'(4-%), 8, = C'(th-1),
and 6, = C'(%-2), (the caret denotes a unit vector), where 6, is the
earth-pointing error angle. The results of these computer runs are
summarized in Figs. 12 through 14 for three sets of inertia ratios.

It is noted from Figs. 12-14 that the damping constants which give
better damping in librations are, in general, smaller than those for
better tumbling damping. Poor damping will result in both tumbling
and librational motions when 74 and Ty are either too small or too
large. In the intermediate wide range of the damping constants there is
relatively small variation in the damping time. The “optimum” damp-
ing constants may be chosen from this wide range as, for example,

0.19 — 038 for A = 2.62, p = 6.28

Tw/LQ = 0.16 — 0.32% for A = 3.33, p =74

0.08 — 0.16 for A = 4.0, e = 14,

Theupper limit is taken to be smaller than that given in Ref. 2.
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and T, is chosen to be one-half of T4 . Since only a limited number of
computer runs have been made, it is not possible to display Tai/ X
(i = 1,2) as a function of A(= 2.5 to 4.0) and u(= 6 to 14). The
“optimum” damping constants corresponding to other values of A
and p have yet to be determined from computer runs.

The effects of spring constants have also been investigated on the
computer by varying the spring constants under the same hysteresis
damping constants. It is found that the variation in damping time is
relatively small for &:/k* = 1.2 to 1.8 (¢ = 1,2). The lower limit is
chosen to guarantee stability." To ensure torsional fatigue strength
of the torsion wire, it is preferable to choose high spring constants.
Furthermore, employment of larger spring constants will reduce the
error angle in case of rod bending, as indicated in the error analysis.

The relation between the forced librational amplitude and the orbital
eccentricity has been found from the computer runs to be

0. ~ 2¢ to 3¢

for e = 0.10. At ¢ = 0.2, the satellite starts tumbling from an earth-
pointing position after 1.5 orbits, whereas at e = 0.4 tumbling begins
immediately after the start.

Due to the nonlinear characteristics, the effectiveness of the magnetic
hysteresis damping cannot be measured by the 1/¢ settling time as
with viscous damping. However, an equivalent 1/¢ settling time for
the hysteresis damping may be obtained in the following way. Take,
for example, a typical computer run as plotted in Fig. 15 for
0.\ = 4, u = 14, Tar/ T2 = 0.06, Tar/ 1. = 012, F; = 145" (1 = 1,2),
& = B = 2°. From the envelope curve of the amplitudes of the damped
large-angle motion, the logarithmic decrements can be approximately
evaluated by taking the motion as exponentially damped. It is found
that the equivalent 1/e time ranges from one to three orbits with an
average of two orbits. Within the validity of the librational motion, this
represents an average 1/e time for both pitch and roll-yaw librations
with the above parameters.

V. SUMMARY — ILLUSTRATION OF A PRACTICAL DESIGN

The results given in the previous sections indicate that there does not
exist a single set of optimum parameters which give the best over-all
damping performance. However, there have been found relatively
wide optimum ranges of the inertia ratios, the spring constants, and the
damping constants for the design of a two-body satellite. The optimum
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ranges of the inertia ratios and the spring constants are found applicable
to both viscous and magnetic hysteresis damping. They are A (= /1)
=25t 4.0, u (= I,/I;) = 6 to 14, and &yo/k." = 1.2 to 1.8. The
optimum viscous damping constants, as tabulated in Tables I and II,
can be read directly from the complex root-locus plots, whereas the
optimum ranges of the magnetic hysteresis damping constants cor-
responding to a few inertia ratios are obtained from the computer runs.
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As far as the inertia ratios are concerned, it is advantageous to employ
large A and g so that the deck rods® can be made shorter or the tip
mass can be smaller. By employing shorter deck rods and furthermore
by shortening the mast rod,” it is possible to balance out the solar torque,
which was the largest disturbing torque for the satellite described in
Ref. 2. As long as the solar torque is reduced to a small magnitude, the
lowered gravity torque level resulting from the shortening of the mast
rod will not substantially increase the error angles produced by other
relatively small disturbing torques. In view of the foregoing, we could
improve the design previously given in Ref. 2. The parameters may now
be chosen as follows:

I, = I, = 600, I; = 10 slug-ft*

pitch gravity torque, T, = 0.23 X 10~° ft-Ib/deg = 31 dyne-cm/deg

A =4, Iy = 150; p = 14, I, = 42.8 slug-ft’

T/ TQF = 0.06, Ty = 0.446 X 107" ft-lb

T/ L2 = 0.12, T = 0.892 X 107" ft-1b

Eo= 1.8 &F = 0.55, ky = 0.247 X 107" ft-lb/rad

oo = 18 k" = 1.8, ky = 0.804 X 107" ft-Ib/rad

length of mast rod = 30 ft (assuming 160-1b satellite proper)

length of deck rod = 16.5 ft (4 deck rods)

roll tip mass = 2 X 2.5 = 5 lbs

pitch tip mass = 2 X 9 = 18 lbs

total mass for attitude control (exeluding mast motor and support)
= 26 lbs.

The solar torque error angle is now only 1°, and the total error angle
is found to be about 4° excluding the effect of the orbit eccentricity:

magnetic dipole moment (TELSTAR’s) 2°
solar torque 1°
rod bending (silver-plated rod) 1°
orbital eccentricity, e 2¢ to 3e
total 4° + 2.5e.

In the preceding, the error angle due to the residual magnetic dipole
moment can be easily reduced to 1° or less by further refinement of the
cancellation techniques used on the TELSTAR satellite.
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