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This paper deals with adaptive transmitting arrays in which the excita-
tions of the elements are varied in response to a pilot field incident on the
array from a distant source. General theorems, some quite simple, are ob-
tained relating to optimal power transfer from an adaptive array in an arbi-
lrary reciprocal medium to either a single receiver or a veceiving array. We
assume first that the amplitudes and phases of the transmitling elements are
separalely adjustable, and afterward that only the phases are adjustable.
The results involve in particular the matriz which represents the pilot fields
produced at the elements of the transmitling array by currents at the locations
of the receiving elemenls. In some important special cases, oplimal power
transfer results from making the phase of each transmitting element equal lo
the negalive of the phase of the pilot field at that elemend.

We also consider the dynamic behavior of two adaptive arrays which simul-
taneously transmit and receive, the phases on transmission being made equal
to the negatives of the received phases. Analysis of an idealized model indi-
cates that the arrays will reach a unique steady state which is in practical
cases identical with or very close o the condition for optimal power transfer.
Some numerical simulations of 2- and 3-element interacting arrays have
been made fo show how such arrays approach an essentially sleady state
under moderately realistic assumptions.

I. INTRODUCTION AND SUMMARY

A number of recent papers' 2 have dealt with adaptive antenna arrays,
also called self-steering or retrodirective arrays. In an adaptive trans-
mitting array, the excitations of the individual elements are electroni-
cally varied in response to a pilot field incident on the array from a
distant terminal, in order to steer the beam to the terminal which is origin-
ating the pilot signal. It is easy to see that in free space the required
steering can be accomplished by making the phase of each element equal
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to the negative of the phase of the pilot beam at the given element.
Cutler, Kompfner, and Tillotson' and others? have shown how phase
reversal can be obtained using frequency conversion techniques.

This paper deals with general adaptive transmitting arrays in an
arbitrary environment. The transmission medium need not be homogene-
ous or isotropic, but it is assumed to be linear and symmetric and to be
time-invariant, at least over intervals comparable to the propagation
time between transmitter and receiver. We are concerned in particular
with the conditions for optimal power transfer from an adaptive trans-
mitting array to either a single receiver or a receiving array. We shall also
investigate the transient and steady-state behavior of two interacting
adaptive arrays, each of which simultaneously transmits and adjusts
the excitations of its elements in response to the field received from the
other array.

In Section II we consider an adaptive array in which the amplitudes
and phases of the excitations of the individual elements are separately
adjustable, but the total radiated power is fixed. Such an array is easier
to treat mathematically than one in which the excitation amplitudes are
all fixed and only the phases are variable, even though the latter array
might be easier to build. In the most general case, the power radiated by
the transmitting array is a positive definite Hermitian form in the ele-
ment excitations, and the received power is a positive definite Hermitian
form in the electric fields at the elements of the receiving array. The dis-
tribution of excitations which maximizes the ratio of received to radiated
power is the eigenvector corresponding to the largest eigenvalue of a
certain pencil of Hermitian matrices. The matrices in question are con-
structed from the impedance matrix of the transmitting array, the ad-
mittance matrix of the receiving array, and a Green’s function matrix
of pilot fields produced at the transmitting elements by currents at the
receiver locations. The results simplify considerably if the elements of
each array are uncoupled and are identical among themselves. In par-
ticular, if the receiver consists of but a single element, and if the trans-
mitter elements are identical and uncoupled, then the optimal excitation
of each element is merely proportional to the complex conjugate of the
pilot field at that element.

Section ITI contains a brief discussion of the problem of maximizing
the power transferred from an arbitrary transmitting array to an arbi-
trary receiving array when the excitation amplitudes are fixed and only
the phases are adjustable. Maximum power is always conveyed to a
single receiver by reversing the phase of the pilot field at each element of
the transmitting array. This phase reversal principle, first recognized for
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free-space transmission, is thus shown to be valid for an arbitrary trans-
mission medium. For multielement receivers an explicit solution is not
given; but an example shows that even when each array consists of iden-
tical, uncoupled elements, maximum power transfer does not generally
correspond to reversing the phase of the total pilot field at the trans-
mitter elements.

Section IV deals with the interaction of two adaptive arrays or, in
prineiple, the interaction of an adaptive radar array with itself. A mathe-
matical model is set up, in which each array transmits constant power and
continuously adjusts the excitations of its own elements to be propor-
tional to the complex conjugate of the incident field. A single delay time
is taken to represent the transmission delay between the two arrays. The
transient behavior of this model turns out to be quite simple, and it is
shown that in general, excluding mathematically pathological cases, the
two arrays reach an equilibrium configuration which depends only on the
Green’s function (pilot field) matrix corresponding to the given geome-
try and transmission medium. In the most general case the equilibrium
configuration is not the same as the condition for optimal power transfer
derived in Section II; but it 7s the condition for optimal power transfer
in the important special case when the elements of each array are identi-
cal among themselves and the interelement coupling is zero. If the ele-
ments are nearly identical and the mutual impedances are small com-
pared to the self-impedances, then the equilibrium configuration should
be nearly the same as the configuration for optimal power transfer.

Numerical simulations of the transient behavior of 2- and 3-element
interacting adaptive arrays are described in Section V, both for the case
of simultaneous phase and amplitude variations, and for the case of phase
variations only. The simulations also include the effects of small dif-
ferences in the interelement delay times compared to the average delay
between the arrays. Random choices are made for the elements of the
Green’s funetion matrix and for all pairs of interelement delays. Simula-
tions of 50 pairs of 2-element arrays and 25 pairs of 3-element arrays
indicate that arrays with only phase adjustment approach a steady
state about as quickly as arrays with both phase and amplitude adjust-
ment (of course, the two steady states are not the same). Interelement
delay differences which are small compared to the average interelement
delay produce small fluctuations about the steady state which would be
achieved for equal delays.

The results obtained in this paper depend only on the linearity, sym-
metry, and time-invariance of the transmission medium; in particular,
they do not involve calculating any antenna patterns. Pattern caleula-
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tions would be necessary if one wished to get numerical values for maxi-
mal power transfer, or to estimate the radiated fields in unwanted direc-
tions. Furthermore, the analysis is essentially for a single frequency;
variations in phase and amplitude are assumed to be very slow compared
to the transmission times involved. It would be worthwhile to study the
behavior of adaptive arrays over a finite frequency band, but such a
study is outside the scope of the present paper.

I1I. OPTIMAL POWER TRANSFER BETWEEN ARBITRARY ANTENNA ARRAYS

Consider a transmitting array and a receiving array embedded in an
arbitrary linear, time-invariant medium, as in Fig. 1. The medium may
be inhomogeneous and anisotropic, but the permeability, permittivity,
and conductivity tensors at any point are assumed to be symmetrie.
(This rules out ferrites and plasmas in the presence of a magnetic field.)
All fields are assumed to be time-harmonic with angular frequency w,
the time dependence exp iw! being suppressed. For simplicity the in-
dividual radiators and receivers are taken to be elemental electric dipoles,
although they could equally well be elemental current loops. The assump-
tion of dipole sources is not a major restriction, since the dipoles could
be used, for example, together with microwave circuitry to feed aperture-
type radiators such as elemental horns.

Let the transmitting array have M elements and let the complex
excitation of the 7th element be [, ;. Physically 7,; may be regarded
as the electric moment of an elemental eurrent, having the dimensions
of ampere-meters. The M-component vector

Il= (Il.lrIl,'l:"':Il.M)J (1)

whose components are complex scalars, will be called the excitation of
Array 1. Similarly let the receiving array have N elements, and let the
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Fig. 1 — Schematic representation of arbitrary transmitting and receiving
arrays of electrie dipoles.
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complex electric field component at the location and in the direction of
the jth element be E. ;. Then the electric field at Array 2 is the N-com-
ponent vector

E, = (Eyp, Ean, -+, Ean). (2)

If Array 2 is transmitting and Array 1 is receiving, we define the vectors
I, and E; in an analogous way.

The total power Py radiated by the transmitter over all space is given
by the Hermitian form

Pr = 3(Z.5,, 1), (3)

where Z, is an M X M positive definite Hermitian matrix and (x,y)
represents the sealar product of two vectors x and y. A fuller discussion
of notation and of the properties of Hermitian forms is given in Appendix
A.

In principle the radiation impedance matrix Z, may be determined
from experimental measurements, or it may be caleulated from the
fields of the radiating elements. For example, if the field due to unit
excitation of the 7th element at a great distance R from all currents and
material media is &, ;/R, then by integrating the Poynting vector due
to the whole array over a large sphere we find that the total radiated
power is given by an expression of the form (3), with

i = ! fﬁl,,--ﬂl,j*dﬂ, =12 ---, M; j=12 - M, (4)
1

where 7 is the characteristic impedance of free space and d© is an element
of solid angle.

We now assume that the power P received by Array 2 is given by a
Hermitian form in E., the electrie field which would exist at Array 2 if
its elements were open-circuited. Thus we write

Pr = 3(Y2Es , Es), (5)

where Ysis an N X N positive definite Hermitian matrix. Equation (5)
is equivalent to the assumption that the transmitter field is independent
of whether or not currents are flowing in the elements of Array 2, ie.,
that the back reaction of Array 2 on Array 1 is negligible. This will be a
very good approximation in the practical case where the arrays are far
apart, so that P is a very small fraction of Pr .

The field at Array 2 is related to the excitation of Array 1 by the Green’s
funetion matrix T'; thus

E. = 11, (6)
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where I'is an N X M matrix and T';; represents the field at the 7th ele-
ment of Array 2 due to unit excitation of the jth element of Array 1. A
basie reciprocity theorem for linear, time-invariant, symmetric media,
proved in Appendix B, guarantees that T';; also represents the field at
the jth element of Array 1 due to unit excitation of the ith element of
Array 2. Thus if Array 2 has the excitation I, the field at Array 1 is
given by

E, =11, (7)

where I is the transpose of T.
I'rom (5) and (6), the power received by Array 2 is

Pr = YY.TT,, TL) = {(r'Y.rL, L), (8)

where I is the adjoint (= conjugate transpose) of I'. We wish to maxi-
mize the ratio of received power to transmitted power, which is
&3 _ (FTYzI-'Il,Il) (9)
Py (Z,I, ]1,)
But the right side is the quotient of two Hermitian forms in which the
denominator is positive definite; and it is well known (see Appendix A)
that the maximum value of the quotient is the largest eigenvalue A, of
the pencil of matrices I'Y,I" — AZ, . The desired eigenvalue is the largest
root, of the equation

det (I'Y.I' — AZ,) = 0; (10)

and the corresponding eigenvector, which maximizes the right side of
(9), is any nonzero solution of the system of equations

r'Y.rL, — A yZJd, = 0. (11)

The foregoing equations simplify in a special case which will be im-
portant in what follows, namely when all the self-impedances and self-
admittances are equal and all the mutual impedances and admittances
are zero. In this case we may write

Z, = Rily, Y, = Guly, (12)

where R; and G, are real scalars and 1, and 1y are unit matrices of orders
M and N respectively. Then (9) becomes

Py _ Go (P'TL L)

Pr R (L))’ (13)
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and the maximum value of the ratio is proportional to the largest eigen-
value of the matrix I' T, that is, the largest root Ay of

det (' — Aly) = 0. (14)

The excitation corresponding to maximum power transfer is any non-
zero solution of

C'rL — Al = 0. (15)

The optimal transmitter excitation given by (14) and (15) is one
which ean exist when both arrays are transmitting and the excitation of
each element of each array is proportional to the complex conjugate of
the field incident on the element from the other array. Suppose, for ex-
ample, that

Il = 11]]E1*, Ig = ﬂ[gEg*, (16)

where M, and M, are complex scalars and E, and E, are related to I
and I, by the Green’s function matrix, as in (6) and (7). Then it is easy
to show that I, must satisfy

I, = MM r'rI, . (17)
A nonvanishing solution of (17) exists if and only if
MM* = 1/x, (18)

where \ is an eigenvalue of I' I, that is, a root of the determinantal equa-
tion (14). Although steady-state excitations satisfying (16) are mathe-
matically possible when A is any cigenvalue of I'T, it is shown in Sec-
tion IV that the system is unstable unless X is the largest eigenvalue, and
that the excitations corresponding to the largest eigenvalue are in fact
the excitations toward which two interacting adaptive arrays tend.

We shall now consider optimal power transfer in the special case where
Array 2 consists of but a single receiver. Then Z, is an M X M matrix,
Y.isa 1 X 1 matrix, i.e., a scalar quantity G», and Tisa 1 X M matrix.
Equation (10) is therefore equivalent to

det (A(:g_lzl - I‘tl"') det ()\G{'Zl) det (1_" — lRGz—lzll_] I‘il‘)
MG M det Z, det (1, — T{AG: 'Z,) ')
(NG Y ' (N/Gy — TZ,7'TY) det Z,

I

I

(19)

I

=0,

where in the second step we have made use of a lemma due to Sandberg,’
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which is stated and proved in Appendix C. It follows that the only non-
zero eigenvalue of (19) is

Aw = GTZ'T". (20)
The corresponding eigenvector is
L =z, 71 (21)
up to a constant factor, since it is easy to see that

r'G,rL® — aZ L = T'Grz, ' — \ZZ'T
f f (22)
= I'\y — Ay = 0.
If the elements of the transmitting array are uncoupled, then the
mutual radiation impedances vanish, and Z, and Z, ' are diagonal mat-
rices. The optimal excitation of the jth element is then

Il..‘i = Flj*/RjjJ J =12 :ﬂ[[: (23)

up to a constant factor, where I'y ;¥ is the complex conjugate of the pilot
field produced at the jth element by a dipole at the location of the re-
ceiver, and R ;; is the radiation resistance of the jth element. If all the
radiation resistances are equal, then since the eigenvector is determined
only up to a multiplicative constant, we may take

Il.i = I‘IJ"*: J = 1: 21 T, 1”) (24)

in other words, the excitation is merely proportional to the complex
conjugate of the pilot field.

We have shown that if the mutual radiation impedances of the trans-
mitter elements are zero, then the field at the receiver is maximized, for
constant radiated power, when the phase of the excitation of each trans-
mitter element is the negative of the phase of the pilot field. If, however,
the transmitter elements are coupled by their radiation fields, so that the
impedance matrix Z, is not diagonal, the optimal excitations are given
by (21) and do not generally satisfy the phase reversal condition.

III. OPTIMAL POWER TRANSFER WITH PHASE ADJUSTMENTS ONLY

If the amplitudes of the transmitter excitations are fixed but the phases
are adjustable, we wish to maximize the received power,

Pr = Xr'Y.rL;,1,) = ¥(Y.rL, ITy), (25)

when
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Il..f = T.iemjl J =12 - ,J}Ir (26)

and the r; are fixed but the 8; are at our disposal.

If there is only one receiver (N = 1), the solution is immediate. We
have to maximize
2

Pr = 30, (27)

M
DTl
i=1

by adjusting the phases of the 7;,; ; and it is clear that the modulus of the
sum will be greatest when the phases of all the summands are equal, that
is, when

arg I,; = 0, = —arg Ty; + constant, j = 1,2, ---, M. (28)

In other words, the phase of the jth transmitting element should be the
negative of the phase of the pilot field produced at that element by a
radiating element at the position of the receiver. This result is independ-
ent of the nature of the transmission medium, subject only to the re-
quirements of linearity, time-invariance, and symmetry, and it is in-
dependent of the position of the receiver relative to the transmitting
array.

For a two-element transmitter (1/ = 2) and an arbitrary receiving
array, we have

2P = (I'YaD)yr’ + (DY) e ™"
+ (FTYEF)EIT[TQBiwliﬂ!) + (FTYgr)ggn"gE.
Since I'Y.T is Hermitian, the right side of (29) is maximized by taking

(29)

arg Jrl‘_,‘ — arg I‘LJ =6 — 6 = arg (FTYQF);Q, (30)

and this is the condition for optimal power transfer if the transmitting
array has only two elements.

A complete analytic solution of the problem of maximizing P, for an
arbitrary transmitter with 3/ = 3 and an arbitrary receiver with N = 2
has not been found, although since P is a continuous, periodie function
of each of the @;, it is obvious that a maximum exists and could be lo-
cated as accurately as desired by an iterative numerical procedure.

In contrast to the situation for arrays with both amplitudes and phases
adjustable, the condition for optimal power transfer between multiele-
ment arrays with fixed excitation amplitudes is not generally satisfied
by making the phase of each element equal to the negative of the phase
of the field incident from the other array, even if it be assumed that the
array elements are uncoupled and are identical among themselves. As a
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counterexample, consider the case in which each array has two elements,
and Y, is a multiple of the unit matrix. Let the element currents be

i ('t
]1,1 = '7'3‘ 1, 12.1 = pe 'PJ.’

. . (31)
Il.z = re'eg, I:,z = pe“"",

where r and p are real and positive, and the phases are at our disposal.
Equations (6) and (7) give

oy = r(The™ + TIpe™),
BEan = r(Tae™ + Twe™),
Eyy = p(Tue'™® + Tue™?),
Ei2 = p(Tye™ + Tune'?).

The phase reversal condition leads to the following pair of simultaneous
equations:

(32)

ile1—v2)
I'e T
0 — 02 = arg E1,2 — arg El,l = al'g_l_ﬁW-’-z?
I'ne + I'a

Tue' ™% 4 I

@1 — @2 = arg Fs» — ar B, = ar I 7 P e E—
g fiz1 g e @ 4 1y,

On the other hand, the condition (30) for maximum power transfer re-

duces to

(33)

6 — 6, = arg (I'T) = arg (F11*F12 + T'yn*Ta). (34)

Since T is an essentially arbitrary complex matrix, equations (33) are
not equivalent to (34), although it is possible that in practical cases the
two conditions will yield values of 8§, — 6. which do not differ by very
much.

IV. DYNAMIC BEHAVIOR OF INTERACTING ADAPTIVE ARRAYS

In this section we set up a simple model of the dynamic behavior of
two adaptive arrays, each of which continuously adjusts the excitations
of its own elements in response to the fields from the other array. In
principle the same equations would apply to a single array interacting
with itself, as a combined radar transmitter and receiver. The funda-
mental assumption is that the amplitudes and phases of the element cur-
rents vary so slowly, compared with the transmission time between the
arrays, that a single-frequency analysis is valid.

Since in this model the excitation of an adaptive array is indeterminate
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in the absence of an external field, we have to use an auxiliary antenna
or beacon to turn the system on. The steps are as follows: First the bea-
con is turned on, illuminating at least Array 1. Then Array 1 isturned on,
Array 2 is turned on, and the beaconisturned off, leaving Arrays 1 and 2 to
interact only with each other. It is convenient to assume that when a
transmitter is switched on or off, its radiated power changes continu-
ously, during a finite time interval, from one steady-state value to an-
other.

First we consider arrays in which the excitation of each element is pro-
portional to the complex conjugate of the field incident on that element,
and the total radiated power is a preseribed function of time. Thus let
I.(#) and I,(t) be the (slowly varying) complex excitations of the two
arrays. We assume that the dynamic behavior of the arrays is described
by the following equations:

I,(t) = #1(5)3'“1[213-:'*12.&*(3 — e — 1) + Bt — 71)]:
= (35)

j= 1,2,"',}12[;

Li(t) = .l-la(t)ﬂm2 [Z T 50— 765 — 7)) + Bo Xt — Tz):l,
(36)

j=1
k=1,2 ,N.

In these equations, B, (¢) and B:(t) are the beacon fields, if any, at Arrays
1 and 2, 75; is the transmission delay between the jth element of Array 1
and the kth element of Array 2, r and 7» are constant time delays in the
amplifiers of Arrays 1 and 2, ¢, and J, are constant phase shifts, and
pi(t) and pe(?) are real normalization factors determined by

HZ (1) L(t) = Pad), (37)
%(Zzlz(t),lz(i)) Pu(t), (38)

where the radiated powers P;(¢) and Pu(t) are given functions of time.

Similarly, the equations describing two arrays in which the excitation
amplitudes | 7,,;(¢) | and | I.x(t) | are prescribed functions of time, while
the phases are continuously adjusted to satisfy the phase reversal condi-
tion, are as follows:

N
arg I],_,'(t) =t — arg [Z Pf;jlz_k(l — Tkj — 1'1) + Bl,j(t - 1'1)],
i (39)

_7=1,2,,.Z‘I,
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arg lo(t) = 0y — arg l:g; Tiilh,i(t — 11 — 72) + Bault — Tz)], (40)

k=1,2 ---,N.

Before undertaking numerical simulations of the dynamic behavior
of adaptive arrays, we consider an example which can be handled ana-
lytically, namely the special case of two power-limited arrays in which

all the interelement delay times are equal. We obtain this case from (35)
and (36) by setting

Tk; = T3 = constant, (41)

If we assume for simplicity that the beacon has been turned off, (35)
and (36) take the form

L(t) = m()e”' T'L*(t — 73 — =), (42)
L(1) = w()e”* T L*(t — 75 — ). (43)
Eliminating L yields
L(t) = m(t)e”T'TL(t — 7), (44)
where
? =49 — ¥, T=1+ 7+ 275, (45)

and the normalizing factor u:(t) may be expressed, if needed, in terms
of the radiated power P(¢) by (37).

The Hermitian matrix I'I" is at least positive semidefinite and will
have M real eigenvalues. We suppose that the eigenvalues are numbered
in order of increasing size and that the largest eigenvalue is unique;
that is,

O=EM=ENSE - Ehya <A (406)
The corresponding eigenvectors 7, ', - .. | 2" satisly
rrz” =2z2", =12 ..., M, (47)

and may be taken as orthonormal, i.e.,
(z(i),z(j)) — 6{1 . (48)

Let I,(¢) be expanded in terms of the z'”’, with coefficients depending,
of course, on time; thus
M

L(t) = Zlﬁc«(t)zm. (49)

=
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Repeated application of (44) and (47) gives

M
L(t + nr) = Na()e™ T ei(th2?, (50)
£
where N, (f) is again a normalization factor chosen to satisfy (37).

Now suppose that there is an interval of lengthr,say to =1 <t +,
in which all the ¢;(¢) are bounded and ¢ (t) is bounded away from zero.
It follows from (46) that the term in X" in (50) will eventually dominate
all the others, and we shall have

L(t 4+ nr) — [2P,(1)]" exp [ind + arg ca(1)] 200,
ne (Z1Z(MJ,Z(M))i (51)

for th =t <th+ 7

It is easy to verify that the phase of I,(t), asgiven by (51), is continuous
at t = to + (n 4+ 1)1 if the phase of cx(f) is continuous at t = f, + 7.

We have just proved that two power-limited adaptive arrays with
equal interelement delays will reach an equilibrium state in which the
excitation of Array 1 is proportional to the eigenvector belonging to the
largest eigenvalue of r'r. Similarly, the equilibrium excitation of Array
2 is proportional to the eigenvector belonging to the largest eigenvalue of
rrt (again A y). But it was shown in Section IT that the eigenvector be-
longing to the largest eigenvalue of ' I corresponds to maximum power
transfer when Z, and Y, are multiples of the unit matrix; that is, when
all the mutual impedances and admittances are zero and all the self-
impedances and self-admittances are equal. If this condition is approxi-
mately satisfied, as will often be the case in practice, then the equilibrium
excitation should be nearly the same as the excitation for optimal power
transfer.

We observe that the equilibrium exeitation is unique except in the
pathological case where ' r has two or more equal eigenvalues which are
larger than all the rest. Steady states in which the current distribution
corresponds to one of the smaller eigenvalues of r'r are mathematically
possible, but are unstable. Also, if the arrays are moved with respect to
each other or if the transmission medium changes (either case would
correspond to changing the Green’s function matrix), the final equilib-
rium state depends only on the final positions of the arrays and the prop-
erties of the transmission medium, and not at all on how the situation
was reached.

Tt should be pointed out that the foregoing argument does not apply,
at least in its present form, to fixed-amplitude arrays with only phases
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adjustable. Clearly there are extreme cases in which the behavior of
fixed-amplitude arrays will be qualitatively different from that of power-
limited arrays. Forexample, if T isdiagonal, so that each element of Ar-
ray 1 is coupled to only oneelement of Array 2, then power-limited arrays
will ultimately cut out all of the elements except for the pair which is
most closely coupled; but the elements of fixed-amplitude arrays will go
on indefinitely talking to each other in pairs, with no particular phase
relationship between the elements of different pairs. Nevertheless, the
numerical simulations of the next section indicate that in typical cases
fixed-amplitude arrays do settle down to a steady state about as quickly
as power-limited ones. As yet, however, no mathematical theorem has
been proved about the steady-state behavior of fixed-amplitude arrays.

V. NUMERICAL SIMULATIONS

Because the equations describing the dynamic behavior of interacting
adaptive arrays generally do not lend themselves to analytic treatment,
we have made a few numerical simulations of 2- and 3-element arrays on
an IBM 7094, in order to get some feeling for the possible behavior of
interacting adaptive arrays in practice. Since these simulations were
only computational experiments, no physical significance is to be at-
tached to the specific numerical results.

We shall first deseribe the method of simulation, then show the out-
come of a typical calculation, and finally summarize the results of the
whole study.

For each simulation we selected the elements of the 2 X 2 or 3 X 3
matrix I according to the following scheme: We set

Iy = Gypexp (—imn/5), (52)

where G ;. was a random number selected with equal probability from
the set {1,2,4,8}, and nj was selected with equal probability from the
set { —5, —4, -+, 5}. For the interelement delay times we took

Tik = 20—|—?1jf.-. (53)

As a matter of interest, we also computed the Hermitian matrix r'r
and its eigenvalues and eigenvectors.

If the time delays are all commensurable, (35) and (36) or (39) and
(40) ean easily be solved recursively on a digital computer. To start the
system off, Array 1 was supposed to be illuminated initially by a con-
stant beacon field. Array 2 was turned on linearly during a period of 20
time units, and the beacon was turned off linearly during a similar period.
TFour cases were run with each choice of I'.
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Case I. Power limited, equal delays. The condition
(L,I) = (IL,L) =1 (54)

was imposed, and all interelement delays were set equal to 20 units. This
case must approach a steady state, according to Section IV, provided
only that the largest eigenvalue of I''I" is unique.

Case II. Power limited, unequal delays. Same as Case I, except that
the time delays given by (53) were used.

Case T11. Fived amplitudes, equal delays. The condition

[ Ti| = [Lee | =1 (55)

was imposed, and all interelement delays were set equal to 20 units.
Case IV. Fized amplitudes, unequal delays. Same as Case I1I, except
that the time delays given by (53) were used.
In a typical run, the random number generator produced:

-1 -1 -2
(nw) = 0 -5 —5), (56)
-1 1 3

8/36° 2/36°  8/72°
(Tj) = (2/0“ 8/180° 1/180° ) (57)

8/36° 8/—36° 2/—108°

1t follows that
132.0/0° 64.0/—72.0° 46.4/37.5°
rir = | 64.0/72.0°  132.0/0° 26.5/—12.7° |, (58)
46.4/—37.5° 26.5/12.7°  69.0/0°

M= 20.6, A = 109.8, Az = 202.6. (59)
The eigenvector corresponding to s is

2® = (0.719/0° 0.656/64.5° 0.229/—6.2°), (60)

Figs. 2 through 5 show the results of running Cases I through IV over
the time interval 0 < ¢ < 400. In the figures the phases are referred to
the phase of the first element of each array, and the following notation
is used:

I = (4,, As/en, Asley), (61)
I = (Ba, Bo/Ba, Ba/By). (62)
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The initial behavior of the two arrays depends on the particular way
in which they were turned on and is of no great importance; what we are
really interested in is the behavior at large times. In Cases I and III
(Figs. 2 and 4), under the assumption of equal interelement delay times,
the system appears to settle down to a perfectly steady state. It is easy
to verify that in Case I the steady-state excitation of Array 1 corresponds
to the eigenvector z'¥ given by (60). On the other hand, in Cases IT and
IV (Figs. 3 and 5), where the delays are not all equal, the array excita-
tions continue to show small residual fluctuations about the steady-state
solutions of Cases I and III. These fluctuations are quite apparent in the
original plots from which the present figures were redrawn.

In the numerical study, 50 pairs of 2-element arrays were simulated
and four cases run for each pair. The ratio of eigenvalues Ao/A; of T'T
ranged from 293.5 to 1.385. As expected, the larger values of Ay/)\; gener-
ally produced quicker convergence; but only one case, out of all those
tried, failed to reach essentially steady values by ¢{ = 400. In this par-
ticular example A2/A; was 7.37, and the interelement delays happened to
range all the way from 15 to 25. Cases I, II, and III settled down rela-
tively quickly, but Case IV (fixed amplitudes, unequal delays) went into
a large-amplitude oscillation which was obviously not dying out at
{ = 1000. A similar, subsequent run in which the extreme interelement
delay times were changed to 16 and 24 settled down normally.

Twenty-five pairs of 3-element arrays were simulated, with eigenvalue
ratios A\;/A. ranging from 26.02 to 1.458. Every one of these cases ap-
peared to have reached an essentially steady state at { = 400. The ex-
ample shown in Figs. 2 through 5 is entirely typical.

From the numerical simulations it is clear that sufficiently large delay
differences (perhaps +25 per cent of the average delay time) can make
a pair of interacting adaptive arrays fail to settle down. We conjecture,
however, that the arrays will always reach an essentially steady state if
the delay differences are a sufficiently small fraction of the average delay.
Conceivably one could put bounds on the fluctuations as a function of
the deviations of the delays from the mean delay, but a more practical
approach might be to do some experiments with real adaptive arrays.

VI. ACKENOWLEDGMENTS

I am indebted to W. C. Jakes and C. C. Cutler for bringing this prob-
lem to my attention, and for stimulating discussions. I. W. Sandberg
made significant contributions to the analysis of Section IT. My thanks go
to Mrs. Marie Dolan for all of the numerical simulations.



1.00 360
as
(a)
0.75 270
B 1
2 @
w
s g
g 8
'é 0.5 180 &
2 9
< <
T
o
i
0.25 e 90
As
— az
—
o o
1.00 360
(b)
0.75 — - 270
N — B
n
B‘ m
w e
=3 9
I:-’ \ u
(=]
5 0.50 —H 180 =
= B2 w
< <
I
o
/——F—’—f_’_ BE
0.25 / 90
i Bs
0 ]
0 100 200 300 400
TIME

Fig. 2 — Transient behavior of amplitudes and phases in power-limited adap-
tive arrays with equal interelement delays: (a) Array 1, (b) Array 2.

39



1.00, 360

—————— ]
[ 1
(a) 3
0.75 270
et AI
i
M.&"F‘ M AZ —~
— g
g &
2 ]
E' 0.50 \ 1808
b w
< N 2
N 4
i
0.25 ~ \\\ 90
et ————
A3
P az
A~
| M
o o
1.00 360
(b)
0.75 v 270
\ B,

By
050 \
Hx 5
/_A_\/ﬂhw———‘—’"‘ B,
0.25 / 90

N

AMPLITUDE

®
o
PHASE (DEGREES)

0
o] 100 200 300 400
TIME

Fig. 3 — Transient behavior of amplitudes and phases in power-limited adap-
tive arrays with unequal interelement delays: (a) Array 1, (b) Array 2.

40



ADAPTIVE ANTENNA ARRAYS 41

1.00 360
0.75 270
!—__L -
v}
w
a LH &
5 G
E a
£ 0.50] 1805,
3 Pe u
< n
<
I
o
0.25 — — — %0
az
r—_ﬁ\"—_-\;_r—‘_,_i
A3
a3
0 0
0 100 200 300 400

TIME

Fig. 4 — Transient behavior of phases in fixed-amplitude adaptive arrays
with equal interelement delays.

APPENDIX A

Vectors, Malrices, and Hermilian Forms

We summarize here the notation used in this paper, as well as some
properties of Hermitian forms which are proved in textbooks like that
of Gantmacher.*

A wveclor in n-dimensional complex space is an ordered array of n
complex numbers:

X = (21,Ta, ", &) (63)
The scalar product of the vectors x and y is written (x,y) and is defined
by

(x,y) = ;waye*, (64)

where the asterisk denotes complex conjugate.
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A matrixz is an m X n array of complex numbers:
A= (4, i=12 ---,m; j=12 ---,n (65)
Associated with a given matrix are the following matrices:
Conjugate (A¥);; = Ay¥,
Transpose (A");; = Aj;, (66)
Adjoint (A", = A~
Note that this definition of the adjoint, while in accord with modern
usage, differs from the definitions given in some older textbooks.
A Hermitian matriz is one which is equal to its own adjoint:
H=H o H;=H;" (67)

The product of an m X n matrix and an n-component vector is an
m-component vector, written
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n

y=Ax or yi= p Agr;, i=12--,m. (68)
i=1
If x is an m-component vector, ¥y an n-component vector, and A an
m X m matrix, then from (64) and (66),

m n

(xAy) = 32 Dy = (Axy). (69)
i=1 j=
A Hermitian form is the scalar product of Hx with x, where H is a
Hermitian matrix:

(Hx,x) = zlj _Z;x,-*H,;jx,-. (70)
i=1l j=
Hermitian forms are real-valued, sinee in view of (67),

n 1 n

(Hx,x)* = 3 2wl e = 3 Z a2 H i, = (Hxx). (71)

i=1 j=1 i=1 j=1
A Hermitian form is positive definite if
(Hx,x) > 0 whenever (xx) = 0. (72)

If the > sign is replaced by =, the form is called positive semidefinite.
The product of an m X n matrix A and an n X p matrix B is an
m X p matrix G whose elements are given by

n
C{j: J;jlikBkj; i=1,2,---,m; J=1,2,,1D (73)
A square matrix whose determinant vanishes is called singular. If the
determinant does not vanish, the matrix is called nonsingular. The matrix
of a positive definite Hermitian form is nonsingular.
The snverse of a nonsingular n X n square matrix A is the n X n
square matrix A~" which satisfies

ATA=AA"=1,, (74)

where 1, is the n X n unit mairiz with 1’s on the main diagonal and
0’s elsewhere. The elements of A" are given by

(Ail ) g = a:“

~ det A’ (75)

where @;; is the cofactor of the element A j; in the determinant of A.
If I'is an arbitrary m X n matrix, r'risann X n Hermitian matrix,
since
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(X'0)i; = 2 T Tey = 2 Tl = (r'r),, (76)

If A and B are n X n Hermitian matrices and A is a complex parameter,
then A — AB is called a pencil of matrices. If B is positive definite, the
pencil is called regular. The characteristic equation of a regular pencil,
namely

det (A — AB) = 0, (77)

always has n real roots Ay, Az, -+, Au, which are called the eigenvalues

of the pencil. The eigenvalues correspond to eigenvectors z?, %, ...

z'™, which satisfy the homogeneous equations

Az® = \Bz", k=1,2,--,n. (78)
The eigenvectors may be chosen to satisfy
(B2 29y = 5.5, (79)
where §;; is the Kronecker delta.
The largest eigenvalue A, of the regular pencil A — AB satisfies
(80)

and this maximum is assumed only for eigenvectors of the pencil corre-
sponding to the eigenvalue A, .

APPENDIX B

Reciprocity Theorem for Time-Harmonic Fields

We shall prove the reciprocity theorem in a form convenient for use in
the present paper, following an approach similar to that of Harrington.®

Consider a linear, time-invariant medium characterized by the permit-
tivity tensor e, the permeability tensor w, and the conductivity tensor 6.
All three tensors are assumed to be symmetrie, although they may be
funections of the space coordinates. Let

Y = ¢ + twe, Z = iy, (81)

where w is the angular frequency of the time-harmonie fields.
Consider two sets of electric current densities, J* and J°, which are
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vector functions of position and which give rise to the fields E*, H* and
E’, H® respectively. Maxwell’s equations are

v X H* = YyE* + J°, v X H = YyE'+ 7T,
-v X E' = ZH", -V X E' = zH". (82)
From the first and fourth equations,
Vv (E'XH) =E-vVXH -H"VXE
— Eb.yE' + E'-J* 4+ H"-ZH', (89)
and from the second and third,
v (EXH)=E.vXH -H-vXE
(84)

= E"yE' + E"J’ + H'-zH".
Subtracting (83) from (84) and using the symmetry of Y and Z, we
obtain

v (E'x H' — E'X H) = E"J' — E"J" (85)

Now integrate over a large spherical volume V bounded by the surface
S, which contains all sources and matter in its interior. The divergence
theorem yields

L(Et’ X H* — E* X H') ndS = fv (E*-J* — E'-J*)dV, (86)
where n is the outward normal to S. The individual fields fall off as 1/r,
where r is the radius of V, but for large r the leading terms satisly

E'=q H"Xn, E =q4H Xn, (87)
where 7 is the characteristic impedanee of free space.
Hence for the leading terms,
7 [E' X H* — E* X H]'n
- [(H'Xn) X H — (H" X n) X H]'n (88)
— (H“H') — H'(n-H*) — n(H"-H") + H'(n-H")]'n = 0.

It follows that if all sources and matter are of finite extent, then

[ yav = [ & yav, (89)

where each integral is taken over the region in which the source currents
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are different from zero. If the medium is not symmetrie, the theorem is
still true provided that E° represents the field produced by J® in the
“transposed’”’ medium; but this generalization is not very useful in the
present context.

Now let J* correspond to an electric dipole of unit moment in the di-
rection u® at the point P, , and let J* correspond to an electric dipole of
unit moment in the direction u” at P, . Equation (89) takes the form

u’-E'(P,) = u*-E'(P.), (90)

where the left side represents the components of electric field due to
source A at the location and in the direction of source B, and the right
side represents the component due to source B at the location and in the
direction of source A. This is the desired reciprocity theorem.

APPENDIX C

Sandberg’s Lemma

We reproduce Sandberg’s proof® of the following result.
Lemma. If A and B respectively are n X m and m X n matrices, then
det (1, + AB) = det (1,, + BA).
Proof. First consider the case in which A and B are square p X p
matrices. Then, if A is nonsingular,
det [1, + AB] = det [A™'(1, + AB)A] (o1)
91
= det [1, + BA].

If A is singular, it has a zero characteristic root, and hence there exists a
positive number Ay such that A + A1, is nonsingular for all real A satis-
fying0 < |A| < M. Thus when0 < | M| < N,

det [1, + (A + \1,)B] = det [1, + B(A + AL,)]. (92)

Both sides of (92) are polynomials in A of degree at most p. Furthermore
these polynomials must be identical since they agree throughout the
real interval (0,\p). Therefore (92) is valid when A = 0.

Consider now the case in which A and B are not square. Let
p=m-+n,

m n n m

~ [A 0] = [B 07m (93)
A‘[o 0]m’ B_[o D:In’
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and let the symbol i denote a direct sum of matrices. Observe that
det [1, + AB] = det [(1, + AB) & 1,] = det [1, + AB],

e 94
det [1, + BA] = det [(1,, + BA) | 1,] = det [1,. + BA], (34)

which proves the lemma.
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