Differential Detection of Binary FM

By R. R. ANDERSON, W. R. BENNETT,
J. R. DAVEY and J. SALZ

(Manuseript received August 27, 1964)

Detection of binary FM by multiplication of the received signal by itself
delayed is analyzed. Error rales vs signal-lo-noise ralio for additive Gaus-
stan noise are calculaled as a function of sampling time, differential delay
at the receiver, and delay distortion in the channel. It is found thatl the
differential detector can give better performance than the more conventional
zero-crossing counter or frequency discriminalor under condilions of severe
delay distortion in the channel.

I. INTRODUCTION

It has been found possible to realize excellent practical performance
in FM transmission of binary data by use of a detector in which the
signal is multiplied by a delayed repliea of itself. This method has been
called ‘‘differential detection” on account of its resemblance to the
scheme of that name in widespread use as a detector of phase-modulated
waves. The name ‘‘product demodulation” has also been applied. We
can regard the detector either as a particular kind of frequency dis-
criminator or as a phase comparator operating on the phase changes
inherent in an FM wave. The former concept is suitable for a steady-
state analysis, while the latter is more convenient in the study of signal
transitions.

II. THE DIFFERENTIAL DELAY PRODUCTOR AS A FREQUENCY DISCRIMINATOR

Viewed as a discriminator, the detector has a steady-state response
function calculable by multiplying a sine wave A cos (w. + w)t by the
corresponding delayed wave A cos [(w. + w)(t — 7)], i.e.,

A co8 (w, + w)t-A cos [(w, + w)(t — 7)]
= (A*/2) cos (w, + w)r (1)

+ (A%*/2) cos [2(w, + w)t — (w. + w)7].
111
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When the double-frequency component is suppressed by a low-pass
filter, we obtain the response

Vi = (A%/2) cos (w, + w)7. (2)

Consider w as the frequency deviation in radians/sec from the midband

frequency w,. Then a discriminator characteristic can be realized by
setting cos w,r = 0, sin w,r = =1, giving

Vi = F(A%/2) sin wr. (3)

The resulting steady-state response is nearly proportional to frequency
deviation over the range in which sin w7 is approximately equal to wr.

A linear relationship is not necessary for binary FM detection, since
only the sign of the deviation is significant. Unambiguous results in
the noise-free case can be seeured over a range of wr from —= to =.
In particular, if @ = ztw,/2 where w;, is 27 times the bit rate, values of
7 in the range zero to the reciprocal of the bit rate could be used, and a
value equal to half the bit interval appears to be a good compromise.
As 7 is made small the linearity improves, and, as will be shown later,
the performance approaches that of an ideal phase differentiator, which
we shall refer to as a de/dt detector. The latter type is of particular
interest because its performance is closely approximated by either a
zero-crossing counter or a frequency diseriminator.

IIi. FM DETECTION BY DIFFERENTIAL PHASE COMPARISON

We illustrate the operation as a differential phase comparator by
following a particular noise-free sequence through the detection process.
The binary signal to be transmitted is shown in Fig. 1(a). It is assumed
that this rectangular wave modulates the frequency of a carrier with a
total shift between mark and space equal to the bit rate. This results
in the phase change during a marking bit interval differing from that
during a spacing bit interval by 360°. With respect to the mid-frequency
as a reference, the variation of carrier phase versus time becomes +=180°
per bit interval, as indicated by the solid triangular wave of Fig. 1(b).
Whien the channel is shaped to give a raised-cosine pulse spectrum at
the demodulator input, the phase-versus-time pattern becomes rounded
at the transitions approximately as shown by the dotted waveform of
Fig. 1(b). The received signal is passed through a network with an
envelope delay of one-half bit interval and with a phase shift at midband
frequency of 270°. The phase-versus-time pattern of the delayed signal
is shown by the dashed-line wave of Fig. 1(b). For a long mark interval
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(d) signal space diagram.
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Fig. 1 — (a) Binary data, (b) phase of undelayed and delayed FM waves,

(e) demodulated signa
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the two phase patterns are seen to be in phase, while for a long space
interval they are 180° apart. The demodulation process consists of
taking the product of these two waves with a switch-type modulator
and filtering out the high-frequency component. If the amplitude
modulation of the received signal is negligible, the demodulated signal
becomes equal to the cosine of the phase difference between the delayed
and undelayed versions of the signal.

The phase difference between the two signals at numerous points is
indicated in Fig. 1(b). The shape of the demodulated wave, together
with appropriate sampling times to recover the binary information, is
shown in Fig. 1(c). It will be noted that the demodulated wave is de-
layed one-quarter bit interval from the instantaneous frequency of the
received signal but is advanced one-quarter bit interval from the in-
stantaneous frequency of the delayed signal.

A signal space diagram, such as described by J. R. Davey,! is given in
Fig. 1(d) with lettered points corresponding to the lettered points on
the phase pattern of the received signal. At a transition in the demodu-
lated signal, the vectors representing the received signal and its delayed
version are in phase at points such as (i), (k), (n), and (o). At a sampling
instant having a transition on only one side, such as at #;, the vectors
representing the received signal and the half-bit delayed signal are at
points such as (d) and (i). These form an angle of approximately 80°
which, when the delayed signal is shifted 90°, becomes an angle of 10°
or 170° depending on whether a mark or space is received. At a sampling
instant having a transition on both sides, such as at {, , the two vectors
are at points such as (o) and (n). The angle is then about 70°, which,
after the added 90° shift, results in an angle of 20° or 160°,

For a constant-amplitude signal the departures from the ideal 0°
and 180° angles would decrease the amplitude of the demodulated signal
at the sampling time. The diagram of Fig. 1(d) shows, however, that at
least one of the vector amplitudes at these times is above steady state.
If the increased signal amplitude appears at the linear input of the
demodulating productor, it more than compensates for the phase error,
thus tending toward an overshoot of the baseband signal. The low-pass
filtering will of course determine the final extent, if any, of the overshoot.
It is of interest to note that a linear productor would over-emphasize
these amplitude variations. Consequently, it would be expected that a
switched-type modulator would result in a more perfect eye pattern.*
Ty“eye pattern’’ is meant the oscilloscope trace obtained by sweeping the
detector output against a linear time base synchronized with the bit rate. A basic

description of the properties of such patterns has been given by Brand and Car-
ter.?
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This does not mean, however, that the probability of decision error
would be different. In fact, as will be shown later, limiting one of the
two inputs to the multiplier, and hence obtaining in effect a switched-
type modulator, does not change the error rate.

Fig. 2 shows a computer printout of the noise-free eye pattern corre-
sponding to one-half bit delay when the demodulator follows a product
law, the total frequency shift is equal to the bit rate, and full raised-
cosine spectra apply. The origin is taken at the midpoint of the bit
interval in the undelayed wave. Traces of like polarity are concurrent at
this point, showing the absence of intersymbol interference at these
particular instants. The peak responses of the detector are not reached
until a time later by half the differential delay, and the individual peaks

SIGNAL LEVELS
/
N\

-2
-1.0 -0.5 o] 0.5 1.0
TIME IN BIT INTERVALS

Fig. 2 — Eye pattern from product of undelayed and delayed FM waves with
delay of one-half bit interval.

for different adjacent data sequences are spread over a range of values.
The traces concur again at a time equal to the differential delay, and
the same signal levels are observed as at the first point of concurrence.
The decision-threshold (zero signal level) crossings are almost concurrent
at a time preceding the origin by half the difference between the bit
interval and the differential delay.

The time relations of Fig. 2 are peculiar to the choice of differential
delay, ratio of frequency shift to bit rate, and spectral shaping. It will
be shown later* for example, that if the differential delay is & bit in-
tervals, the first concurrence of traces is at the origin, the second one is
at & bit intervals later, the peaks occur at §/2, and the threshold cross-
ings nearly at — (1 — 8)/2. If the raised-cosine shaping were changed to
any other satisfying Nyquist’s first criterion® for suppression of inter-

* See Figs. 9-12 and the discussion following equation (99).
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symbol interference, all concurrences would be maintained except the
threshold crossings, which could spread out more. Finally, if the rela-
tion between frequency shift and bit rate were changed, all concurrences
would be destroyed, but this would not by itself imply a significant
increase in error rate.

Eye patterns obtained when a limiter is inserted in one, but not both,
of the two inputs are shown in Fig. 3. In Fig. 3(a), the undelayed signal
is limited, giving in effect a switched modulator with the polarity of the
undelayed signal switching the delayed signal. In Fig. 3(b), the delayed
signal is limited, thereby interchanging the switching roles of Fig. 3(a).
Comparing Fig. 3(a) with Fig. 2, we note that the concurrence of traces
at 0.5 is destroyed and that the peaks of the responses are shifted to the
left. In Fig. 3(b) the concurrence at 0 is destroyed and the response
peaks are shifted to the right. In spite of these differences, which can
be verified by fairly straightforward analysis, the probability of error
at a specified sampling instant must be the same for all three cases, as
will be shown in detail later.
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Fig. 3 — Eye patterns when one signal is limited before application to mul-
tiplier input. Delay of one-half bit interval. (a) Undelayed signal is limited; (b)
delayed signal is limited.
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The eye pattern for a dg/d! receiver, which is equivalent to the case
of zero differential delay, is shown in Fig. 4. The traces concur at the
peak response, which is at the origin, and the threshold crossings are
half a bit interval away, as would be deduced by setting 6 = 0 in the
discussion of the detector with differential delay. As & approaches zero,
we thus approach an equivalence with the performance of conventional
frequency detectors.

The question of utility of eye patterns for nonlinear detection proe-
esses merits some further discussion. Although we cannot deduce error
rates from them, we can at the least distinguish between “go” and ‘“‘no
go” conditions in the ahsence of noise. We can also use a given pattern
as a basis for choosing the best sampling time. In making the choice,
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Fig. 4 — Eye pattern for dg/dt detector.

we consider both the horizontal and vertical margins, since relative
immunity to timing jitter is important as well as the spread of sample
values at the time of decision. We have verified in our calculations that
the direction of change in the error rate with sampling time can be
deduced by comparing eye openings for the two instants. Such dedue-
tions are not valid for comparing error rates corresponding to eye
patterns for two different conditions.

Another use of the eye pattern is in laboratory diagnosis of system
distortion. For such purposes we make use of established correspondence
between the nature of the eye and various kinds of distortion in the
particular system under test.

IV. THE EVALUATION PROBLEM

We are concerned here with the performance of the differential FM
detector when the binary FM signal suffers transmission impairments.
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We analyze particularly the effects of delay distortion and noise in the
channel. A significant measure of performance is the curve of error rate
vs signal-to-noise ratio at a specified bit rate for a channel with specified
amplitude and delay variations with frequency. It is important that
such a measure be determined over the range of transmission impair-
ments encountered in actual channels. It is found that the prineipal
virtue of the differential-delay scheme relative to the more familiar
axis-crossing and frequency-diseriminator types is an improved im-
munity to severe delay distortion.

Since there are many parameters which influence the performance of a
data transmission system, the discussion would get out of hand if
individual attention were given to all possible combinations of econdi-
tions. Fortunately, we ean select representative regions of interest
which are deseribable in terms of relatively few quantities. Our approach
makes use of both direct analysis and digital computer back-up. In
caleulating the noise-free responses of the system under various condi-
tions, we first establish formulas for a generalized data sequence. We
then go to the computer to evaluate response functions vs time for a
family of sequences of given length.

In theory it would be possible to calculate error rates by adding
programmed noise in the computer calculation of response functions.
A practical deterrent to such a procedure is the long computing time
needed in the interesting cases of almost error-free transmission. It has
been our experience that determination of error rates by computer
simulation of additive noise is inferior to computer evaluation of analytic
formulas for probability of error. Use of the latter procedure has been
chiefly successful with additive Gaussian noise, but this does not neces-
sarily imply serious limitation of utility. The premise that rank-order
established on the basis of Gaussian noise holds for other kinds of
interference has a good empirical foundation. A useful simplification
from the Gaussian analysis is that the curves for error rate vs signal-to-
noise ratio tend to be roughly parallel for different systems and to be
characterized sufficiently well by their asymptotic slopes.

In terms of the normalized signal-to-noise ratio M, which is defined
as the ratio of average signal power to the average white Gaussian noise
power in a bandwidth equal to the bit rate, the asymptotic error rate is
expressible? in the form F(M) exp (—«M). The function (M) turns out
to be of slight interest because of its relatively minor effect when M is
large. For practical purposes the number x determines the performance.
For an ideal binary phase modulation system, x has its maximum value
of unity. The quantity 10 log;, (1/«) expresses noise impairment in db
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relative to the ideal. It has been found possible to calculate this quantity
directly without determining the entire error-rate curve.

The calculations we have made evaluate the effect of the following
factors important in system design:

1. The sampling time relative to the signaling interval. The preferred
sampling time is indicated by the eye patterns, but is more precisely
established by error-rate calculations.

2. The length of the delay line. Equivalence of zero delay with a
dyp/dl detector establishes a reference at one end of the range in terms of
a better-known system.

3. The data sequence. Results for the most and least vulnerable
sequences are exhibited.

4. The delay distortion. Parabolic and linear variation with frequency
are studied. The results are presented in terms of maximum delay
variation expressed in bit intervals.

V. THE MODEL

A block diagram of the transmission system under study is shown in
Fig. 5. The data source emits a sequence of binary symbols which for
full information rate are independent of each other and have equal
probability. The analysis can be generalized without analytical incon-
venience by assigning a probability m, to one of the two binary symbols
and 1 — m; to the other. In conventional binary notation the symbols

TRANSMITTER
DATA LOW-PASS FM BANDPASS_]
SOURCE FILTER OSCILLATOR FILTER

LINE

RECEIVER
—  DATA

— ouT
BANDPASS LIMITER MULTIPLIER oW PASS SLICER
FILTER [

DELAY
LINE

Fig. 5 — Binary FM transmission system with differential delay detection.
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are 1 and 0. It is convenient to express binary frequency modulation of
an oseillator in terms of positive and negative frequency deviations.
The combination of data source and low-pass filter is accordingly defined
by the shaped baseband data wave train

() = 3 baglt = nT) (4)
where
b, = 2a, — 1. (5)

The values of a, represent the data sequence in binary notation. The
probability is m; that the typical a, is unity, and 1 — m, that it is
zero. The value of b, is +1 if a, is unity, and —1 if a, is zero. The
funetion g(¢) represents a standard pulse emitted by the low-pass
filter for a signal element centered at ¢ = 0.

Ideally, the oscillator frequency follows the baseband signal wave
8(t). This would imply an output voltage from the FM oscillator speci-
fied by

V(t) = A cos [mct + b+ _/;!s(h)d)\:l. (6)

Here, A is the carrier amplitude, w, is the frequency of the oscillator
with no modulating signal applied, ¢, is an arbitrary reference time,
6, is the phase at { = {,, and u is a conversion factor relating frequency
displacement to baseband signal voltage. The instantaneous angular
frequency of the wave (6) is defined as the derivative of the argument
of the cosine function. It can be written in the form w, + w;, where
w; , the deviation from midband, is ideally expressed by

wi = ps(t). (7)

In the praectical case, the transmitting bandpass filter restricts the
frequency-modulated wave to the range of frequencies passed by the
channel. The purpose of this filter is to prevent both waste of trans-
mitted power in components which will not reach the receiver and
contamination of the line at frequencies assigned to other channels.
The result is a transformation of the voltage wave (6) to a band-
limited form, which must depart in more or less degree from the ideal
conditions of constant amplitude and of linear relationship between
frequency and baseband signal. The line also inserts variations in ampli-
tude- and phase-versus-frequency which cause further departures from
the ideal. For our purposes it is sufficient to combine the line charac-
teristics with those of the transmitting filter into a single composite



BINARY FM DETECTION 121

network function determining the wave presented to the receiving
bandpass filter.

The receiving bandpass filter is necessary to exclude out-of-band noise
and interference from the detector input. It also shapes the signal wave-
form and can include compensation for linear in-band distortion suffered
in transmission. Two contradictory attributes are sought in the filter —a
narrow band to reject noise and a wide band to supply a good signal
wave to the detector. Previous work® has indicated a cosine filter as a
near optimum.

The noise-free input to the detector will be written in the form

V.(t) = P(t) cos (wt + 6) — Q(t) sin (wt + 8). (8)

P(t) and Q(¢) represent in-phase and quadrature signal modulation
components respectively, which are associated with a carrier wave at
the midband frequency w, with specified phase 6. Such a resolution can
always be made, even though the details in actual examples may be
burdensome. The added noise wave at the detector input is assumed to
be Gaussian with zero mean and can likewise be written as

o(t) = x(t) cos (wd + 0) — y(¢) sin (wt + 8). (9)

If v(t) represents Gaussian noise band-limited to 2w, , x(¢) and y(t)
are also Gaussian and are band-limited to Zw, . If the spectral density
of v(t) is w,(w), the spectral densities of z(¢) and y(t) are given by®

we(w) = wy(w) = w(w + w) + w(w. — ), lo| < w.. (10)
In general, x(¢) and y(t) are dependent, with cross-spectral density
Way(w) = Jlwi(w. — w) — wy(w + )] (11)

and cross-correlation function expressed in terms of R,(r), the auto-
correlation function of »(f), by

R.,(7) = —2R,(r) sin w,r. (12)

The cross-correlation vanishes at = = 0, and hence the joint distribution
of z(t), y(1) at any specified ¢ is that of two independent Gaussian
variables.

A convenient analytical model of the detector is a multiplier with
delayed and undelayed waves applied as inputs and with a low-pass
filter in the output to select the difference-frequency components of the
product. In practical systems various departures from the basic model
may offer a more convenient realization by physical circuits. The pure
product law can be approximated by a switched modulator, an example
of which is shown in Fig. 6(a). Here one of the two inputs operates a
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Fig. 6 — Differential detector with switched modulator.

two-transistor reversing switch in the path of the other input. The
second input wave is in effect multiplied by a rectangular wave with
axis crossings determined by the first input. The same result would be
obtained from a strictly analog multiplier if the amplitude of one input
were severely limited beforehand as shown in Fig. 6(b). We will base our
analysis on a true productor with no limiter, but we show in Appendix
A that limiting one input does not affect the results in the narrow-band
case. In this detector the noise waves associated with the delayed and
undelayed signal inputs are correlated. The amount of correlation de-
pends on the value of the delay. The value of the delay relative to one
bit interval will remain as a parameter to be optimized. However, we
will require that the delay line should be designed to have a phase shift
equal to an odd multiple of =/2 radians at the midband angular fre-
quency w.

VI. ANALYTICAL SOLUTION
By adding (8) and (9) we obtain the signal at the input of the detector
E(t) = 1(t) cos wt — () sin wt (13)
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where

.’C]_(l'r)
n(t)

x(t) + P(1)

14
y(t) + Q(1). e

The delayed signal is,
E(t— 1) =a:(t — 7) o8 (ol — wer) — ya(t — 7) sin (wet — wer)  (15)
where
0<r<T.
In the case in which w7 = 270°% we write for E(t — 7)
Fy(t) = —rasin wld — Yia COS wt (16)

where we set [({ — 7) A fa.
The low-frequency component £;(t) of the product E(t)Ea(t) is
given hy

2K = it — Ty = £ (17)

The performance of our system can be studied by analyzing the prob-
ability distribution of the quadratic form in (17). Since this is a binary
system we only need the distribution at one point, namely “zero.”

By a relabeling of the variables in which y1, 21, 914, and a4 are
replaced by 21, #2, 5, and a4, respectively, the calculation is reduced
to the single problem of evaluating the probability that the quadratic
form xws + 2.3 is negative or positive, where a1, 2, 3 and x4 are
Gaussian random variables with equal variances ¢° and mean values
given by:

Bl = Q(1), Elasf = —P(t)
Elw) = Q(t — 1), Elad = P(I — 7).

We remark that all these average values, in general, will depend on the
signal sequence.

A solution of this general problem in terms of an integral has been
found® when the variables are independent. The present case is more
complicated in that with an arbitrary delay 7, the noise samples become
dependent. We must now include a nonzero covariance of x and w4
and of 1, and y1« . We point out that a solution based on uncorrelated
noise samples would indicate a considerably poorer performance than
found when the actual correlation is included. This is a case in which
noise correlation is beneficial rather than harmful.

(18)
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It has been found possible to apply the previous solution for the
independent case by subjecting the four dependent Gaussian variables
to a linear transformation. The new set of variables 2, 2., 2, and 2
becomes independent while preserving the invariance of the quadratic
form on which deeisions are based, i.e.,

212 + % = Tily + oy (19)
The nonzero covariances of the variables are:

cov (y,ya) = ra°

Il

cov (ay, x3)
. (20)
cov (22, 2d) = —cov(z,ay) = —ro.
The value of r is the normalized autocorrelation function of the noise
evaluated at lag time 7. The autocorrelation function is the Fourier
transform of the spectral density. In the optimum receiver design the
filter preceding the detector has a cosine amplitude-frequency response
reaching zero at a frequency displacement from midband equal to the
bit rate. Hence with white Gaussian noise on the line, the spectral
density of the noise at the detector input is a squared- or raised-cosine
function. Such a speetral function has the property that its Fourier
transform, the autocorrelation function, decreases to zero when the
lag time increases from zero to 7'. The solution we shall give is valid
for any value of » within the permissible range from —1 to +1.
The transformation that satisfies (19) and at the same time diago-
nalizes the covariance matrix of the z variables is:

7= 3w — T+ x5 4+ T4)
Zr = 3(w1 + a2 + 13 — T4)

(21)
2y = %("’-‘l'l + ¥+ s+ -’1‘4)

2 = %(5131 + T — a3 + 11?4)‘

It can be verified that (19) is satisfied when this transformation is
applied and also that if the correlation matrix of the »’s is:

’>1 0o r 0

0 1 0 —r

R.=d1 91 o (22)
[0 —r 0 1

the correlation matrix of the z’s becomes:



BINARY FM DETECTION 125
1+ 0 0 0 —|
_ 2 0 1 + r 0 0
R. = 0 0o 1—r 0 [ (23)
0 0 0 1—7r

s . 3
We now recall the previously obtained result” for the four uncorre-
lated Gaussian variables z , 22, z;, and 2z, with the pair z and 2 hav-
. - 2 . . .
ing equal variances o, and the pair z; and z; having equal variances
2-

ay -

Prob [(zizs + #2) < 0 when 232 + 22 > 0] = A(pab)

1 ! L
27 Q%r L exp (—p'2?) erf [ap(1 — 2%)* — balda (24)
where
2, .2
pz _a .+ 22 (25)
20’0
_ RE T+ EE
“= 2a109p (26)
p= 2 Hh (27)
2g162p
In our case
o = (1 +r)d’, o = (1 — 1) (28)

It is shown in Appendix B that the integral in (24) can be simplified
and reduced to a two-parameter form. We also show how the general
asymptotic expression for large signal-to-noise ratio is derived.

The simplified version of (24) is

where

and k =

1 [ -
A(p,ﬂ,b) = Er./; exp [m] dqﬂ (29)
2 20-2!32
il e | (30)
. [ 4 a — 1)+ 4T
d = R (31)

b/p.
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The signal-to-noise ratio appears only in the parameter p. The asymp-
totic expression for large signal-to-noise ratio is therefore obtained as
the limiting form of (29) when ¢® becomes large. The result, as shown
in Appendix B, is:

14 d? —c?
Moah) = Glod) ~ 5o | 5G| (82)

It is of particular interest in our problem to write the asymptotic ex-
pression in the form:

Gled) = PR (33)

IR

The values of & and 8 are:

_E+d+ 1+ +d = 1)+ 47
- A (k2 + @ — 1) + 4k

. 2a°

SR a 1+ (B e — 1)+ 4R

These are the general results we need.

(34)
B

VII. A REPRESENTATIVE EXAMPLE

A convenient analytical representation of a band-limited FM signal
was first proposed by Sunde.* This representation approximates very
closely the actual signals generated by practical data sets.? In the case
of ideal transmission, we write for the signal at the input to the detector

E(t) = A sin w4t sin wd — Asi(1) cos wd (35)

where

() = 3 (—1)"bug(t — nT) (36)

n=—~0u

Tws = , T A bit interval.

The standard pulse response g(¢) must satisfy Nyquist’s first criterion,
ie.,

g(mT) = dmo. (37)

The value of b, is +1 for mark and —1 for space.

As can be seen, the signal (35) can be synthesized by exciting a net-
work having impulse response g(¢) by a series of + or — impulses oc-
curring at integral multiples of the bit interval T. The sinusoidal com-
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ponents of the signal are added to the response to the impulses. When
delay distortion is present, the impulse response g(t) is suitably modified
by introducing a quadrature component.

The delayed version of (35) becomes:
E. (t) = A sin (wil — wiT8) sin (0l — w.T6)
(38)
— As(t — T6) cos (wd — w.T8)

where § = 7/7. When the noise components are added and the condition
w.T6 = 3r/2 is satisfied, the low-frequency product is

E(t) = —[A sin (wal — m8) + y(t — To)][Asi(t) + x(8)]
+ [A sin e + y(O)[Asi(t — T8) + 2(t — T8)].

The function £(¢) represents the signal as it appears at the output of
the ideal low-pass filter. To obtain the information, £(¢) must be sam-
pled at integral multiples of the bit interval. The sample thus obtained
att =T+ 0= e 1is

HT + Te) = —{Asin [v(1 + ¢ — 8)] + yIT(1 + ¢ — )]}
HASIT( + O] + 2[T(1 + o))
+ (A sin [w(1 + O] + ylT(1 + )]
HASIT( 4 € = 8)] + 2[T(1 + € — 8]}

As is characteristic of nonlinear detection processes, the presence of
noise introduces dependence on signal history. The memory can be
minimized by using a pulse spectrum which satisfies the second as well
as the first of Nyquist’s criteria,® i.c., one which preserves the spacing
of transition times as well as axis crossings. To illustrate let e = 0
and 8 = 1. In this case (40) reduces to:

ET) = —[(A + y(T/2)si(T) + (T}

(39)

(40)

(41)
+ (T A(T/2) + 2(T/2)]
where
si(f) = i (—1)"bag(t — nT) (42)
si(T/2) = — 3(by — bo), s(T) = —=b. (43)

The memory is thus reduced to one previous symbol. It follows, there-
fore, that

E§T) =[x — Abll—ya — Al + yloa — (A/2)(by — bo)]. (44)
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The probability of error is the weighted average of the conditional
probabilities that the sample is negative when b; is +1 and that the
sample is positive when b; = —1. Since the sample depends on the
present and immediately preceding symbols, there are four different
cases to consider: by = —bo = 1; b, = by = 1; by = —bp = —1; and
by = by = —1. If marking and spacing symbols are equally probable,
each case has a probability of one-fourth. We now write for the average
probability of error

4
Z PI'Ob (rlnrdn + "Uﬂnxﬂn) < 0] (45)

where the variables z1n , 20 , 3. , and s, are specified by Table I.

A physical interpretation of the detection process in this case can be
obtained by regarding the quadratic form in (44) as the scalar product
of two vectors, e.g.:

Tike + T3 = WV (46)

where if i,j represent unit vectors along rectangular coordinate axes,
the four possible pairs of vectors are:

wo=i(—A + 2) + jy

(47)
vi=i(—4 —ya) + j(—A4 + za)
u = i(—A + z) + jy (48)
v. =i(—A — ya) + jaa
u = i(Ad 4+ z) — jy (49)
v; = i(A + ya) + j(A + za)
w=i(4d+z)—jy (50)

vi = i(4 + ya) + jaa.

Occurrence of error is synonymous with a negative value for the
scalar product of any pair of vectors, and hence is also equivalent to an

TasLE I
n Tin Xap Xin in
1 z— A y e — A —ya — A
2 z— A y Za —ya — A
3 z+ A -y g+ A ya+ A
4 z+ A -y T2 ya+ A
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angle greater than 90° between the vectors of a pair. We can use this
representation to explain the beneficial effects of correlated noise
samples. There is positive correlation between x and zs as well as
between y and ys. This means that x, is likely to have the same
sign as x and similarly for ys and y. Inspection of the vector com-
ponents shows that such noise values have opposite effects on the size
of the angle between the two vectors, as shown in Fig. 7, illustrating
(49).

At this point we can obtain an explicit expression for the probability
of error. From Table I, we note that the average values of the 2’s are
given by Table II. From (21), the Z’s are given by Table III. It is seen
that the cases of n = 3 and 4 differ from n = 1 and 2 respectively by a
change of sign throughout. A change of sign in all the 2’s in (25)-(27)

Y AND Yg OF SAME SIGN HAVE OPPOSING EFFECTS IN GOING FROM 6 —= 6,
I AND Ig OF SAME SIGN HAVE OPFOSING EFFECTS IN GOING FROM 8, —=#f
Jxd
rd
rd
. . ,I
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- //,
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Fig. 7 — Effect of correlated noise samples on angle between vector inputs to
detector.
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TasLE 1T
n Zin Ton Iyn Tgn
1 —A 0 —4 —A
2 —A 0 0 —A
3 A 0 A A
4 A 0 1] A

leaves the parameters a and b unchanged. Therefore, the four probahil-
ities of (45) reduce to two distinet ones with the multiplying factor
changed from i to 3.

The values of the parameters for the two cases are found to be

2 _ J.)A2 2 __ A2
LTI e T
(Il:?: 1+ a2=1/1_+_’" (51)
H 1 -7 1 -7
h= ——F—— _L by =0
YT 204/5(1 — 1) P

As demonstrated in Ref. 3, the mean square of the signal wave on the
line with random data is A® in the optimum case for white Gaussian
noise. The noise input to the detector has a squared-cosine spectral
density function, with ¢” equal to the area. Hence " is one-half the mean-
square value of the noise on the line in a band of width equal to twice
the bit rate. In terms of the parameter M, defined as the ratio of average
signal power on the line to average noise power in the bit-rate band-
width, we have

M = A%/, (52)
Substituting the appropriate correlation value of » = 4, we obtain

TasLe 11T

n Zin Zan Zin Z4n

1 —34/2 —A/2 —A/2 —A/2

2 —A 0 0 —

3 34/2 A/2 A/2 A/2

4 A 0 0 .
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for the two sets of parameters

2 5 M
o= M o=
a = %\/73 a =3 (53)
h = — ,‘/ ‘Té by = 0.

The probability of error is given by
P.=3A(pr,a1,b1) + 3 A(p2, a2, ba). (54)

Using the computer program previously established for A(p,a,b), S.
Habib has obtained the uppermost curve of Fig. 8. Also shown are the
ideal performance for coherent hinary detection, the ideal performance
for noncoherent binary detection, and an experimental curve obtained
by E. R. Day.
It is also instructive to apply the asymptotic formulas given in (33).
In this example, applying (53) to (34), we obtain
3 /5

ﬂl=1 Er’ B =

S A T
012—2/‘/21!_, o

Substituting these values in (30) we find
3 3 a3 9

—_— M3 D —_— _M/3 _
w2l ¢ sV svo’ - (86

In terms of the notation introduced in Section IV, x = 4. The asymptote
is plotted in Fig. 8 and is found to he very close to the result of the
exact caleulation in the region of interest. Since the optimum coherent
system has an error probability proportional to e ™, the half-bit differ-
ential system in the limit requires 10 logy 3 or 4.8 db more signal-to-
noise ratio than the optimum for the same performance. Of this penalty,
3 db is accounted for by the steady-state informationless tones which
make up half the average power of the F'M signal. The remaining 1.8 db
can be ascribed to the differential-detection scheme.

It is also possible to decode the message by providing a full-bit delay
at the receiver. However, the decoding has to be performed on the
transitions. In addition, the phase shift must be such that cos w T = 1.

(51N &

(55)

P. ~
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Fig. 8 — Error rates in binary data transmission.

As before, if we perform the indicated multiplication, reduce to a sum
of single-frequency terms, and reject those that contain the midband
frequency w. , we obtain the post-detection filter output, which we now
designate as V;;(¢). Again, to simplify the formulas we omit showing
the functional dependence on ¢ and use the subseript d to indicate
values of functions at { — 7. Then

2VU = 1l — l'p"ism — ‘.lfldA‘iSl + A23_|_81,1 (57)
+ A(n — ?]ld) sin wat + Niha — AE sin® wgl.
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Finally, we assume samples to be taken at multiples of 7, which means
that sin wat becomes sin wgmT = 0 and
s = s(mT) = (—)"bm (58)
s — sif(m — DT = (=)" by - (59)
For the mth sample, then
2V = mww + i — (= )" A(bu2a — buoazs) — Abubyoy . (60)

Let the binary information be coded in the transitions. Then, for ex-
ample, a “1” is represented by b, = —b._ and a “0” by b, = b._1.
The two signaling conditions are then:

Wi = A* 4+ (=)"buA (2 + 1) + 0212 + NYa
= [4 4+ (=)"buri)[A + (=) "bara] + yiy1a

2V = —A* + (=) "bpA (2 — 21) + €210 + Y1214

=4 = (=)"buaillA + (=) "bural + titha.

The sampling interval T is typically large enough in this case to make
the delayed noise samples independent of the direct samples. With this
assumption we can regard &y, y1, 414, and yi. as independent Gaussian
variables. In the first condition, we set

(61)

E = 4'1 + (’_)mbm-rl (G:;)
tr= A 4+ (=) "butia (64)
2V, = Eka 4+ itha - (65)

Then £, £4, 11, and 114 are independent Gaussian variables with standard
deviation ¢, where ¢ is the rms noise voltage at the detector input, i.e.,
the rms value of either &, or 7, . The mean values of 3, and ¥4 are zero,
and the mean values of £ and & are A. In the second condition, we set

E = — .’! + ( et ) mbml‘] (U{j)

and obtain the same relations except that the mean value of £ Lecomes
— A instead of A.

Correct decisions are made in the first condition if 2V, is positive,
and in the second condition if 2V, is negative. Hence if we let

z = ta + i (67)
and designate pi(z) and p.(z) as the probability density functions of z
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when £ has the means A and — A respectively, the probabilities of error
in the two conditions become

Py

Il

_[ m(z)dz (68)

P, fﬂ pa(2)dz. (69)
This is the same problem solved in equations (54)-(58) of a previous
paper’, and the final result is found to be

P — Pl - Pz — %8745/(253) L %G—Mﬂ . (70)

Equation (70) shows 3 db poorer performance than ordinary differ-
entially coherent phase modulation. The one-bit delay differential
system with transition coding thus suffers 3.9 db penalty 1ela.t1ve to
ideal coherent detection in the error probability range of 107"

An interesting result is obtained when the delay line at the receiver
is allowed to become small relative to the bit interval while still main-
taining the condition that the phase shift at the carrier frequency w.
equals 270°. We show in Appendix C that the performance in this case
approaches the performance of an ideal phase differentiator.

VIII. RESULTS WITH NO DELAY DISTORTION

The first part of our numerical results deals with the performance of
the differential M detector as a function of the value of differential
delay and the sampling instant in the absence of delay distortion on the
line. As a preliminary, we show in Figs. 9-12 inclusive the computer
print-outs of the eye patterns for differential-delay values of 0.2, 0.4,

2 ] “
it
g
ot ™~ - T~ ~
5 0
fzp L~ e e N~
@
-2
-1.0 -0.5 0 0.5 1.0

TIME IN BIT INTERVALS

Fig. 9 — Eye pattern for differential delay of 0.2-bit interval.
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Fig. 10 — Eye pattern for differential delay of 0.4-bit interval.
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Fig. 11 — LEye pattern for differential delay of 0.6-bit interval.
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Fig. 12 — Eye pattern for differential delay of 0.8-bit interval.
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0.6, and 0.8 bit interval. Some of the features found have been previously
mentioned in Sec. III. As before stated, the patterns are not to be
interpreted as furnishing quantitative evaluation of performance. For
the latter, we rely entirely on error rates vs signal-to-noise ratio. The
figures illustrate what would be seen at the detector output in the
absence of noise for the various cases and indicate the preferred sam-
pling time for each case.

For any pair of values of § and e in (40), £ is a random variable possess-
ing a probability density determined by the additive noise and previous
signal history. We have conserved computation time without loss of
essential information by concentrating attention on the asymptotic
performance when the signal-to-noise ratio is large. The corresponding
db impairment or degradation relative to optimum binary PM as
expressed by 10 logo (1/«) has been computed for various values of
8 and ¢ and for all data sequences of length 5 bits. For a few representa-
tive cases, we have used the exact formula over a range of signal-to-noise
ratios to indicate the degree of approximation given by the asymptotic
formula for typical conditions of interest. A raised-cosine pulse spectrum
on the line has been assumed. Details of the computations are given in
Appendix D.

The IBM 7090 computer was programmed to evaluate the parameters
developed in Appendix D for all 32 possible 5-bit sequences and for
different values of § and e. Figs. 13—18 represent the degradation vs
value of delay for different sampling instants across the bit. The sampling
time is measured from the midpoint of the bit interval in the undelayed
wave. The curves on each graph represent the various sets of sequences.
It appears from the graphs that the 32 sequences tend to bunch into
four distinet sets. We did not attempt to label or identify these sets,
since the average performance is more closely determined by the se-
quences which suffer the most. This is because the relative probability
of error for the sets varies exponentially with the degradation. It can be
seen that as the value of delay exceeds half a bit the performance
degrades rapidly.

We next examined the performance of the receiver for fixed delay line
values and variable sampling instants. As shown in Appendix C, the
de/dt detector may be regarded as a limiting form of differential delay
as the value of delay approaches zero. Fig. 19 shows the performance
for the worst and best sequences as the sampling instant is varied across
the bit. It is clear from this figure that the best sampling instant is in
the middle of the bit, i.e., midway between transitions of the detector
output wave. It turns out that the best sequence is the sequence of all
marks or spaces, while the worst sequence is that of reversals.
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_ Fig. 17— Db degradation vs differential delay with sampling at 0.41-bit
interval.
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Fig. 19 — Db degradation vs sampling time for de/dt detector with no delay
distortion.

Fig. 20 exhibits the same information as Fig. 19 with the half-bit
delay. In this case the worst sequence is a function of the sampling
instant. At one-fourth bit and three-fourths bit sampling points re-
ferred to an origin at the transition points of the detector output, the
intersymbol interference is zero, and at these instants the degradation
is 4.8 db for all sequences. Nearer the center of the bit interval as seen
from the detector output, the degradation is slightly greater. We never-
theless conclude that the best sampling instant is at this center, which
we shall refer to as “mid-bit.” By sampling at this time, we obtain a
spread of half a bit interval tolerance to sampling jitter.

Similar curves are found when the receiver delay line is other than
zero or a half-bit. In Fig. 21 we show the degradation of the worst
sequence as a function of the receiver delay line. The zero and half-bit
values are as shown on Figs. 19 and 20. The curve as shown applies to
use of a delay line in which the phase shift is an odd multiple of 7/2 at
midband. We have previously shown that the signal can be recovered
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Tig. 20 — Db degradation vs sampling time for half-bit differential-delay de-
tector with no delay distortion.
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Fig. 21 — Db degradation vs differential delay for most vulnerable sequence
sampled at mid-bit.
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with low degradation at a full-bit delay by differential encoding and use
of a delay line with phase shift equal to a multiple of = at midband.

The above results indicate that, neglecting sampling jitter, least
degradation results with least receiver delay, and the de/dt receiver is
best. Differences are small up to a half-bit. Addition of delay distortion
alters this conclusion.

IX. EFFECTS OF DELAY DISTORTION

We preface our discussion by exhibiting sets of computed eye patterns
for cases of linear and quadratic delay distortion in the channel. The
amount of distortion is specified by the increment in delay measured in
bit intervals between the center and edge of the transmission band.
Results for the dp/dt detector are shown in Fig. 22 and for the half-bit
delay differential detector in Fig. 23. The eye is found to close for smaller
amounts of linear delay variation than for quadratic. As before, these
results are not to be taken as quantitative measures of performance.
The same numbers which determine the eye traces are also used in
calculating error probabilities, but in a different way which precludes
derivation of either final result directly from the other.

Tig. 24 shows the calculated degradation from the ideal for the dp/dt
detector with various amounts of quadratic delay distortion measured
in bit intervals. The results are plotted as a function of sampling time
for the most vulnerable data sequence. There is an indication that the
best sampling time is not at mid-bit when the delay distortion is large.
However, the decreased tolerance to timing jitter would make such a
shift undesirable. The effect of lincar delay distortion, as exhibited in
Tig. 25, is considerably worse. A comparison between effects of the two
kinds of distortion is obtained in Tig. 26 by replotting the mid-bit
sampling results of Figs. 24 and 25 as a function of delay distortion.
As stated before, the de/dt detector is equivalent to zero differential
delay.

Figs. 27 and 28 present corresponding curves for the case of a half-bit
differential delay. The shapes are similar to those for dg/di. There is
slightly more tolerance to jitter, and the best sampling time is still at
mid-bit.

In an effort to compare various receiver delay lines, previous data are
cross-plotted in two ways. In Fig. 29, we in effect extend I'ig. 21 to
show how performance is affected by amount of differential delay when
various amounts of specified linear and quadratic delay distortion are
present in the channel. The curve for zero delay distortion replotted



144 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

-0.5

3&1\\ Tl
/ W[
77 \
/) \\
\ /i Tk
‘k N
Vi W
/ \!
) \|
X1 N/ -
A
VY /4
0170\
11/ 4/BRN\N\\
/A WA
G < L
= T TN /
A, \{\ \ [ //
\ N
\|
VNN N
/ //Il \§\ \\\&\
AL | 1 [

-1.0

[l

-2

S13A37 IVYNIS

1.0

0.5
quadratic distortion

(d) linear, one bit interval.

=0.5

) quadratic, three bit intervals;

1.0 -1.0
TIME IN BIT INTERVALS

0.5
g. 23 — Eye patterns for half-bit differential delay detector with delay distortion: (a)

of one bit interval; (b) quadratie, two bit intervals; (c

Fi



BINARY FM DETECTION 145

35

25

'l

N

\ INTERVALS

TN

DEGRADATION IN DECIBELS
o
/
»
\.\

57
//

/f/ﬁ

o 0.2 0.4 06 0.8 1.0
SAMPLING TIME IN FRACTION OF BIT

Fig. 24 — Db degradation of de/dt detector vs sampling time for quadratic
delay distortion.

from Fig. 21 shows the dg/dt receiver as best for a constant-delay channel.
For quadratic delay distortion of two bit intervals or linear delay distor-
tion of one bit interval, there is slightly less degradation at a half-bit of
differential delay. For larger amounts of delay distortion the advantage
from more receiver delay is greater.

The same conelusions ean be drawn from Fig. 30, in which the abscissas
are amounts of quadratic delay distortion and the curves are drawn for
specified values of differential delay. The curves cross over from the
condition of a preference for least differential delay with low delay
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Fig. 25 — Db degradation of de/dt detector vs sampling time for linear delay
distortion.

distortion to a preference for greatest delay with high delay distortion.
The exact choice of delay line depends on several factors. Say the maxi-
mum delay distortion is not greater than three bit intervals, then the
half-bit delay is best over most of the range and only slightly worse
over the rest. If the delay distortion is never more than one bit interval,
a dy/dt detector is best, while if very high delay distortions are encoun-
tered, and fairly high degradation is permissible at lower values, a delay
line of 0.7 bit interval would be better. It was also found that the longer
delay lines provide more tolerance to jitter in the sampling time.
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Fig. 28 — Db degradation with half-bit differential delay vs linear and quad-
ratic delay distortion.

The asymptotic values of db impairment at large signal-to-noise
ratio have been used throughout our discussion of Figs. 24-30 as a
measure of performance for conditions of practical interest. As a check
on the validity of this concept, complete curves of error probability vs
signal-to-noise ratio have been computed from the exact formulas in
representative cases. These curves are shown in Fig. 31 together with
the asymptotic approximations. It appears that the latter are sufficient
for most engineering applications.

APPENDIX A

Assume that a limiter is inserted in the undelayed input to the mul-
tiplier as shown in Fig. 6(b). The input to the limiter is then given by
(13), which can also be written in the equivalent form

E(t) = R(t) cos [wd + o(t)]
R(t) = [='(t) + ()2 0 (71)
tan ¢(t) = y(t)/z1(t).

I
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Fig. 20 — Db degradation vs differential delay for various amounts of linear
and quadratic delay distortion. Curves are designated “L” for linear and “Q”
for quadratie, followed by number of bit intervals of delay distortion.
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Fig. 30 — Db degradation vs quadratic delay distortion for various amounts
of differential delay.
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If the limiter is ideal, its output E.(t) is a positive constant E, when
the value of the cosine function is positive and is a negative constant
— E; when the cosine is negative. That is, if z = wd + ¢(t),

Iy, cosz >0
E.L(t)

—F,, cosz <0

4B, = (=)"cos (2n + 1)z
T ne0 2n + 1 '

(72)

Multiplying E.(¢) by the delayed signal and substituting cos w.r = 0,
sin w,r = —1, gives:

C2ER(t — 1) = (=)"
N r|=02n+ 1

-[sin [2nod 4+ (2n + De(t) — ot — 7)1 (73)
— sin [2(n + Dt + (20 4 1De(t)
+o(t — 7)1}

If it is possible by low-pass filtering to accept the term

E (t)E(l — 1)

sin (1) — e(t — 7)]
while rejecting the next higher-frequency terms sin [2w.d + 3¢(1) — ¢
(t — 7)]and sin 2wl + (1) + @(t — 7)], the filtered response becomes:

_ 2GR0 — 1)
m

Vig(t) sin [p(2) — @(t — 7)]

_ 2EWR(E — 1)
T

(Sin ¢ €0S @4 — COS ¢ SiN @a) (74)

_ 2E()R(t - T)(yl.rm — -rlyld)
r(x? + yd)H (e + )t

The only term in (74) which can have both plus and minus signs is
Y1Ta — Ty, which is the same term found to be the basis of binary
decisions in (17) for the case in which a pure product was taken. The
switched modulator therefore gives the same error performance as the
productor if there is sufficient frequency separation tetween the desired
low-frequency output and the sidebands on 2w, .

An ideal limiter was assumed for simplicity in the argument just
given, but the equivalence can be proved for a wide class of nonlinear
devices in one of the two paths. It is sufficient that the output of the



152 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1965

device is of the same polarity as the input and can be expanded as a
TFourier series in terms of the input values. We can then write

E(t) = F(R cos z)

=ﬂ—|—z F, cos nz (75)
2 n=l1
1 3r/2
F, == F(R cos z) cos nz dz. (76)
m J=7/2
Note that R varies with time but eannot be negative.
In particular
1 /2 1 3w/2
F, = —[ F(R cos z) coszdz+—[ F(R cos z) cos zdz.  (77)
™ x/2 M J—7x/2

In the first integral cos z is positive and hence F(R cos z) is positive.
In the second integral cos z is negative, F(R cos z) is negative, and the
product is positive. It follows that F, is positive.

If we repeat the calculation leading to (74) with the Fourier series
(75) replacing (72), we find that 2E,/= is replaced by F,, and since
F'\ is positive, the conelusion is the same. It will however be more diffi-
cult to isolate the desired low-frequency term when F, and F', are present,
since these coefficients lead to components centered about w,. It is
therefore preferable that the nonlinear funetion /' have odd symmetry
about the origin, in which case the even-order coefficients vanish.

The more general argument is useful in showing that the switched
modulator does not have to be perfect. Note that the equivalence is
destroyed if limiters are inserted in both paths. There would then be
sidebands on harmonics in both inputs to the modulator, and the beats
between these sidebands would generate additional components in the
low-frequency band.

APPENDIX B

Simplification of the Error Probability Formula and Determination of Iis
Asymplotie Form

First, replace the parameter b by

b 3E — 55
k= 2" Sewnt (78)
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The expression to be evaluated is now

Mlpak) = 2 2\/[ = orf [p(av/T = & — k2)]dz.  (79)

Substitute pr = 2’ and replace the error function by its definition as an
integral. The result is

av/p—r—kz
Alpak) == f f ’ ey dy. (80)
—p

A graph of the region of integration in the zy-plane is shown in Fig. 32.
From this figure, we deduce that by a change to polar coordinates, we
obtain the equivalent expression

. Vo

kp

_Kp

Fig. 32 — Region of integration for evaluation of double integral in (80).
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r—are tan k S1(8)
Ai(pyad) = % -1 f de f e"r dr
] 0
T —pfoos 8
_1 f do f e dr (81)
T v y—arctan k 0
—arc tan k plcos 6
_1 f de e "r dr
w Jo 71(6)
where
f1(8) = Ap[(sin § + k cos 6)* + a” cos® 6]7* . (82)

The integration with respect to r can be:f)ét'formed, and after some sub-
sequent combining of terms, we find

B L fw N a2p2
Mlpak) = o o P [ (sin'® + k cos 8)% + a? cos? § do. (83)

By the substitution 26 = ¢, (83) transforms to

1 2
Al(p,a,fc) = E-r .[U

e (84)
- exp [_f'2 ; . “az'a — :|d¢p.
24+ a4+ 14+ (k*4+a®> — 1) cose — 2k sin ¢
We then note that
(K*+a*— 1) cose — 2k sine
iyt g 2% (85)
_[(’\, + a 1) +4k1 COS(QD"‘B.I‘CtH.Dm).

Taking advantage of the faet that the range of integration is one com-
plete period of the integrand in ¢, we can replace the sum of ¢ and a
constant angle by a new variable without changing the limits. Noting
furthermore that the integrand then becomes an even function of the
variable of integration, we obtain finally

M(pak) = Gled)

L C2 d (86)
=5 [ oo [ ]

where ¢’ and a* have the values given by (30) and (31).
Applying the method of steepest descents to the case in which ¢ is
large, we write : :
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Gled) = Ql- ¢y (87)

m Yo
®(p) = (1 +d'cose)”
®'(p) = d*(1 + d°cos o) sin g

(88)
@' (o) =0ate=0o0rm
" (@) = d*(1 + d’ cosgn) “cosgo > 0 for ¢ = 0.
Hence, we set ¢o = 0 and approximate ®(¢) by
B(p) = ®(ea) + 30" (¢o) (¢ — @0)" + - ,
= (1+d)" + WA +d) 7+ - e
If > 1,

1+ & & )
~ 2edv/2x TP\ 1 + &*)-
APPENDIX C

Limit of Performance as Delay Approaches Zero

As the delay = is made small, the delayed variables in (17) can be
expressed in terms of the undelayed ones by the linear approximations,
Ty == T1 — Ti‘q
(91)
ha =Y — Th, .
where the dot signifies the derivative with respect to time. In the limit
we then find

QEU ~ T(.le‘]] - ylifl) . 7 (92)

The amplitude of the detected signal approaches zero as the delay is
made small, but if r is not actually zero, the lack of output ean be com-
pensated by linear amplification. Hence in the absence of imperfections
other than additive noise in the channel, binary decisions are made on
the basis of the sign of i — ¥y .

In the case of a dp/dt detector, binary decisions are made on the
basis of the sign of
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de _ d are tan 11 — hih — hh (93)

ﬁ di X .1312 + yl‘2 ’

Since z;° + y:° cannot change sign, the decisions are actually made on
the sign of x3; — # . We conelude that the binary error rates of the
two systems must approach equality as 7 approaches zero.

APPENDIX D

Computational Details

Tor the pulse response (36) we use the impulse response corresponding
to a raised-cosine speetrum, namely

sin 2m
(3
g(t) = - (27{) |:1 ~ (2%)2] (94)

The sampled value of the pulse train at ¢ = T + €T is then given by
si[T(1 + €)]

- Z R ajii 35{[11 - ai(I f] 5 —n)Y ' (&) Y
and the delayed version after = seconds hy
s[T(1 + e — &)l
=2 (=)', (1 — a?iiz;r)[tl_—al(_l i] 5 — n)f sl'(8) o
where
§=r1/T, bs—e=20, & —0=25h. (97)

In terms of the two new variables &, 8., the noise correlation is
given by

sin 27 (8, — &)

2r(8) — d2)[1 — 4(8 — 82)% (38)

r(8) =

The observed voltage or current £ ean now be written as a function of
1 and &, in the following form:

£(81,8:) = [As:%(8:) + x][— A sin 761 — yd] (99)
+ [A sin w8, + y][As:°(81) + xd] .
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In the ealculation of eye patterns, the noise samples z, xq, ¥, and yq
are omitted. By dropping these terms in (99) and substituting suc-
cessively ¢ = 0 and ¢ = §, we verify that the samples at these instants
depend on only one value in the data sequence. This confirms the state-
ments made in Section III in the discussion of eye patterns. When the
noise samples are inserted, the entire previous signal history exerts its
effect at all sampling instants, and in fact the preferred sampling instant
from the standpoint of low error rate and tolerance to jitter in sampling
time is not necessarily the one in which intersymbol interference vanishes
in the absence of noise.

The probability of error for a particular sequence is:

P, = £ Pr{[ds;(6:) + 2][—A sin 78 — y.]
+ [A4 sin 78 + y][As; T (8) + x4 < 0}

+ 3 Pr{[ds; (8:) + z|[—A sin 78, — ydl (100)
+ [A sin w8, + yllds (61) + xa] = 0}
where
st ()
Y o, — 101
- E}(—l)"b" 2r(1 — :brlll;[fr—[—]dl(l#— ,r.:Tﬂ ) =+ () o
Applying the transformation in (21) we obtain:
55 = (A/2)[s:5(8:) — sin 78 4 s,7(8;) — sin =8y
55 = (A/2)[s77(8:) + sin w8 + s (8:) + sin mdy] ‘
7" = (A/2)[—s7(8:) + sin w8, + s,7(8;) — sin 78 (102)
z25 = (A/2)[s,"(8:) + sin 76, — s7(8;) — sin 7] .
The required parameters in (25)—(27) are
oM ata (103)

P= B0 o (61 — 62)

2Z 4 25 /1 4 (6 — 82)
- 104
4 I 1 — r(6, — 82) (104)

202y — 2123 ’]_ + T(EJ —_ 62) -
v = . 108
e TFa VT =5 (105)

As pointed out before, the asymptotic degradation is given by
degradation = 10 log,e (1/x)db (106)
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where
2 2 2 2 12 213
K___k +a +l+[(k2+a 1)" + 4k (107)
2a’p,*
and
p = Mp . (108)

When delay distortion is present in the channel, a convolution is
performed to evaluate the resulting in-phase and quadrature components
of the noise-free input to the detector. It is convenient to combine the
assumed delay distortion with the equivalent amplitude characteristic
arising from signal pulse shaping, sending filter, transmission line, and
receiving filter to form a single complex transmittance function

H(w) = A(w)e™™ . (109)

The impulse response of the medium is then

h(t) :[ H(w)e’;wt dw/2

f A (w)ej[a(m’+m’] dew /2w (110)

= [:A(w) cos [f(w) + wl] dw/mr.

Let A(w) = B(w — @) = B(v), 8(w) = ¢(0 — @) + 00 = o(v) + @0,
and decompose (110) into the in-phase and quadrature components

h(t) = f B(v) cos [p(v) 4+ vt + wd + @d dv/x
g (111)
= hi(t) cos wd — ha(t) sin w.t,
where
h(t) = fw B(v) cos [e(v) + vt + @] dv/m
o (112)

he(t) = _[m B(v) sin [p(v) + vi + @l dv/7.

Since the medium is assumed to be linear, the signal input to the
detector is the convolution of the input and the impulse response,

V.(t) = [‘” V(t — r)h(r)dr, (113)
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where V(t) can be written in the form:
V(t) = Po(t) cos wit — Qu(t) sin wl. (114)
Then from (111),

Vi(t) = j;w [Po(t — 7) cos (wl — wer) (115)
— Qu(t — 7) sin (wd — wer)][hi(7) cos wer — ho(7) sin werldr.

Dropping the double-frequency terms, we obtain for the input to the
detector

V.(1) = P(t) cos wt — Q(¢) sin w.d (116)
where
P(t) = [ [Pyt = mhalr) = Qult = 7)ha(r)dr/2
" (117)
Q) = [ 1P = Dhalr) + Qult = Din()ldr/2.
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