Effect of Differential Loss on Approx-
imate Solutions to the Coupled
Line Equations
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The assumption of zero differential loss belween coupling modes in a
multimode transmission line reduces the complexily of theoretical analysis.

Here we show that in general the approvimate solution including differ-
ential loss between modes may be computed by convolving the solution for
the case of zero differential loss with the Fourier transform of exp (— | Aau |).

The rapidity of loss variation versus frequency is limited to (2Aa/AB)f
for transmission lines with high Aa.

I. INTRODUCTION
Consider the coupled line equations
If(z) = —Tolo(2) + je(2)I1(z) (1)
I/(2) = je(2)Io(2) — Tuli(2). (2)

These equations are useful in describing the effects of coupling between
a signal mode, represented by a complex wave amplitude o, and a
single spurious mode, represented by I, caused by geometric imperfec-
tions in a multimode transmission line. These equations may be derived
in two ways from basic principles. The coupled line' or generalized
telegrapher’s equations®® may be derived directly, or the geometric
imperfections may be considered discrete; the case of continuous im-
perfections can then be considered as a limiting form of the discrete
case.!

Exact solutions for these equations are known in only a few special
cases, s0 considerable attention has been given to approximate solu-
tions."® A second-order approximate solution is difficult to examine in
general; however, Rowe and Warters"® have given a very thorough in-
vestigation for the case of equal attenuation for the two modes or zero
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differential loss (Re [y — T] = 0). Rowe® has shown in the case of a
random coupling that the average loss for the TEy in a circular guide
mode may be calculated as the convolution of the Fourier transforms
of three functions: an attenuation funetion, a triangular funetion, and
the covariance function of the coupling. Here we show that in general
the approximate solution for loss and phase of the TEy; mode may be
calculated by convolving the solution for zero differential loss with the
Fourier transform of the attenuation function.

II. PROOF

Approximate solutions to (1) and (2) are more conveniently described
by normalizing the mode amplitudes in the following way

Go(z) = Io(2)e™™
Gi(z) = I(2)e™™.
The approximate solution® for Gy(z) is
Go(z) =1—0p

where
p = f P duf clz)e(x + u) dz
0 0

AT = Aa + jAB = Ty — Ty
and the initial conditions are
1o(0) = Go(0) = 1
L(0) = Gi(0) = 0.
The normalized loss, A = —In | Gy |, may be further approximated by
A =TRep
and the phase 6 by

= —Im p.

2.1 Loss

Consider first the case of real coupling ¢(z); then the normalized loss
for a guide of length L is

L L—u
A = f e*™ cos ABu duf c(z)e(z + u) da.
0 0
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Let
é(z) = p(x)e(x)
where
p(z) =1 0=z=1L
=0 otherwise.
Ve

Then we write

/

! L—u
R(u) = f c(z)e(x + u) dx

as
R = [ a@)e(z + u) d.
We observe that B(u) so defined is an even function of © and vanishes
for |u| > L.
R(u) = R(—u)
R(u) =0, |u| > L.

Assuming the signal mode is the lowest-loss mode of the transmission
line, such as the TEy mode in circular wave-guide, we will have Ao = 0
and may write the normalized loss as

A(g) = % :67[“"' () cos 2méu du
or
A(g) = % f: ¢ R(u) € du
where

2 = AB.

Thus A(¢) is the Fourier transform of the produet of two functions and
may be written as the convolution of their individual transforms. The
transform of the first function is

B(¢) = f g 1Al i gy

—o0

2 1

)
L+ 1a¢
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The transform of the second function is the solution for Aa = 0,

Ao(s) = f_ R——(Q“) ¢ du
=3|CO[
where
o) = [ atuw) e au.
Thus
A($) = B(§) * Ao($)
where

BG) « Au(t) = [ BOAL — ) de.

We observe that for Ae = 0, B({) becomes the unit impulse function
which is the identity function for the eonvolution operator

Ao(§) = B(§) * 4o($), Aa = 0.

2.2 Phase
The same analysis may be applied to the normalized phase as follows

L L—u
o(r) = —f "™ sin Afu duf e(z)e(z + u) dx
0 0

—f ™ R(w) sin ABu du
0

= _%f ¢ 4! R(u) sgn u sin ABu du
o

where
sgn u = +1, u>0
= —1, u <0
= _f g 1A E(u )J sgn u e % du
—o0
then

6(r) = —B(F) % Ao(t) ,rl;
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or
1
0(¢) = —A(¢) »—
w
which means the loss and phase functions are related by Hilbert trans-
forms.”

The extension to complex coupling is straightforward and we obtain
the following results:

Let
é(x) = [Cr + jCile(x)
then
A(g) = B(p) [(C‘f — CPANE) + (20,0 As(8) *FL;_]
06) = =BG »[ (RCOA) + (¢ = CHA) o]
and
B() = —A(F) + =
w{
sinee
1 1
1?{ * ;s: = 6(¢)

where 8({) is the unit impulse function.

III. DISCUSSION AND INTERPRETATION OF RESULTS

For simplicity we discuss only real coupling, but the results apply
equally well to complex coupling. Consider the representation of c(x)
by a Fourier series over the length L with coefficients ¢, . Rowe and
Warters' have shown that for the case of zero differential loss, A¢({)
may be expressed as a double infinite summation

) o w . _ : —
Aﬂ(r) = % mgna 1|=Z—:un C”'Cﬂ*( —1 )m_“ = 1;'((221 - ?:1)):1(1;5(51’77!) ﬂ)

which is an expression for loss in terms of free-space wavelength, since
at frequencies considerably above cutoff 2xf = DXy (D constant).

Ay(¢) is a band-limited function. Its sample points have relative fre-
quency separation 6f/f = 8¢/t = 1/2¢L, so the signal mode loss may
vary more and more rapidly with frequency as the line length increases,
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for Ae = 0. Since 4,(¢) is a band-limited funetion, A(¢) is a band-
limited function also. If we consider ¢ as a time variable, then A (¢) is
the result of filtering 4,(¢) with a low-pass filter whose impulse response
is B(¢). If A is very small B({) has large amplitude at the origin and
approaches zero rapidly away from the origin, and convolving B({)
with Ao(¢) results in little change. The most noticeable change is a
reduction in the peaks and an increase at the original minimums of the
loss fluctuations. However, if A« is increased until the spacing of the
half-height points of B({) is wider than the sample point spacing of
Ao(), the rapidity of the loss fluctuations with frequency will be con-
trolled by B(¢). In general for high Aa the frequency separation between
half height points for A({) is approximately the same as that of B({)
which is independent of length

- ()

A numerical example pertaining to the waveguide problem is the
following: Consider the previously mentioned loss function for a guide
with a two-foot wiggle. The signal mode is TEq, . Let

L = 1000 ft.
k= 500
Aa = —0.184 neper/ft.

Now the peak loss point is for { = 1/2 which is near 50 kme for TE;, in
2-inch diameter circular copper waveguide. The Aa value is typical of
TE: in lossy-jacketed helix waveguide. Now consider the half-height
points for A,. This bandwidth is approximately 0.084 kme, which is
very narrow compared to B({), so that after convolution 4 ({) ~ KB( ).
The half-height points for B(¢) are about 6.0 kme. Thus the addition of
the differential loss changes the TEy loss from a very rapidly varying to
a very slowly varying function of frequency. This effect is of great value
for wideband transmission systems. It is also important in experimental
measurements, since the number of measurements necessary for a guide
with high loss to the spurious mode is greatly reduced.
Finally we recall that é(x) = p(x)c(x) so that

ek = (Le*"*” Si‘;}j’f) * C(¢)

which makes the solution for a TFourier series representation of e¢(x)
obvious, since '({) would be a series of impulse functions, and the con-
volution operation is very easy.
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_ 1 —jxtL sin TI'L\(' 4j2rtL sin 'JrL_‘:'
A(f) = 2B(f) * I:(LG xLe - ¥ C(f)) (LG ‘Tbg_—' * G*(f))]

L2 +» +oo

A(i’) = B({) * [.—) Z Z emCn*(—=1)"7"

& m=—0 n=—0

_sin w(¢L — m) sin #({L — n):l
(L — m)r({L — n)

IV. ACKNOWLEDGMENT

The author would like to thank H. 1. Rowe for his suggestions and
assistance.

REFERENCES

1. Miller, 8. E., Coupled Wave Theory and Waveguide Applications, B.S.T.].,
33, May, 1954, pp. 661-720.

2. Schelkunoff 8. A., Conversion of Maxwell’s Equations Into Generalized Teleg-
raphist’s Equations, B.S.T.J., 34, September, 1955, pp. 995-1043.

3. Morgan, 8. P., Theory of Curved Circular Waveguide Containing an Inhomoge-
neous Dielectrie, B.S.T.J., 36, September, 1957, pp. 1209-1251.

4. Rowe, H. E., and Warters, W. D., Transmission in Multimode Waveguide with
Random Imperfections, B.S.T.J., 41, May, 1962, pp. 1062-1067, 1087.

5. Rowe, H. E., Approximate Solutions to the Coupled Line Equations, B.S.T.J.,
41, May, 1962, pp. 1017-1018.

6. Unpublished work.

7. Guillemin, E. A., Synthesis of Passive Networks, John Wiley & Sons, Ine., N.Y.,
1957.



o




