Wide-Angle Radiation Due to Rough
Phase Fronts

By C. DRAGONE and D. C. HOGG
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Nonunaformities in the phase fronls of electromagnetic and acoustical
waves give rise to radiation in directions other than that desired. The magni-
tude of this effect is discussed here with special reference to quasi-random
roughness. It is found that the level of wide-angle radiation is a strong func-
tion of the phase deviations and that reflecting surfaces, for examaple, should
be held to tolerances of about 40.01\ to prevent the level of the wide-angle
radiation from exceeding twice that due to a perfectly smooth reflector.

I. INTRODUCTION

A rough or nonuniform phase front, be it acoustical, radio, or optical,
usually degrades the desired performance of components which transmit,
reflect, or receive the wave. The effect is well known in the field of micro-
wave antennas, where lenses are required to have sufficient homogeneity
of dielectric constant and reflectors sufficient smoothness of surface to
produce uniform phase fronts. Likewise, the quality of optical compo-
nents is specified, among other things, by ability to reproduce or modify
wavefronts in a prescribed manner without undue distortion.

If roughness is introduced into a wavefront by a component, some of
the power is no longer radiated in the desired specular direction; it propa-
gates at angles well removed from that direction. This effect can be de-
scribed by a system of modes in the radiating aperture, each of which
radiates in a specified direction.*

In practice, it is difficult to describe the roughness properly. Consider,
for example, the reflector of a microwave antenna. If large, seldom is it
constructed from a single sheet of metal. More often, sheets are cut and
shaped to form modules of given dimension, these then being assembled
with the desired precision to construct the antenna. One might expeet,
therefore, that the power spectrum of the wavefront would have a com-

* Often called the angular power speetrum.
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ponent at a spatial wavelength related to the module dimension. Inevita-
bly, there is also a somewhat random component. Only in special cases
can one estimate the predominant spatial wavelengths in the random
case. For example, if an optical component is ground with particles of
given average diameter, then the roughness may be expected to have a
corresponding spatial period. In the discussion that follows, we will be
concerned mainly with the problem in its relationship to microwave an-
tennas.

Degradation of the radiation patterns of microwave antennas in the
vicinity of the main beam due to various phase errors has been studied
quite thoroughly.!? From these studies it is often concluded that A/16
is a suitable tolerance for reflector surfaces as far as the main beam and
immediate side lobes are concerned. The purpose here is to investigate
the effect of phase error on that portion of the radiation pattern well re-
moved from the main beam, i.e., the far or wide-angle lobes. For ex-
ample, we question whether ==\/16 is a suitable tolerance for receiving
antennas at earth stations of space communications systems, since in
this application the far side lobes control significantly the amount of
noise that enters the antenna due to radiation from the earth. At the same
time, these lobes influence the amount of man-made interference that
such a receiving antenna will withstand. Likewise, one requires that the
radiation pattern of transmitting antennas be as clean as possible, thus
permitting only the least possible radiation to be propagated in directions
other than that of the main beam.

A description of the radiating modes is given first (in one dimension).
The circular aperture is then discussed as a specific example. Single sinus-
oidal phase errors and quasi-random errors construeted from multiple
sinusoids are treated. From these calculations, it is concluded that
+0.01\ is a desirable tolerance for reflecting surfaces of good quality.
Finally, the caleulation is compared with some experimental data.

II. THE ONE-DIMENSIONAL CASE

Consider a rectangular aperture with sides of length a, b. The center
of the aperture is taken as the origin of a Cartesian system of coordinates,
and the z, y axes lie in the plane of the aperture. For descriptive purposes,
the electric field existing within the aperture is assumed of constant
amplitude and directed in the y direction, K., = Eoe™® | where y(z) is
the phase error. The exponential ¢ can be expanded in its Fourier
series

R - E A, exp jn2rz )
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n being a positive integer. One has
Ve =, (2)

By means of (1), one can express the field over the aperture as a sum
of the partial fields K.,

9 .
E.. = E, (A,. exp‘m*a-"r-E + A_, exp if”—m) (3)

n being the number of sinusoidal phase deviations across the aperture.
These elementary modes satisfy the orthogonality relation

a2
.[ Eoloyde =0 if n = m.
a2

Then the power P radiated by the aperture is given by the sum of the
powers P, radiated by each mode.

P=3P,.
0

The radiation field associated with the nth mode can be derived from
the magnetic Hertzian potential directed along the z axis’

_ _ 9 .
(1), = @_ it [An exp Jn;x — A_, exp JT;QWZ] (4)

n2mrwu

where h, = kV/1 — (n/n)? ko = 2x/A and ny = a/\. The component
of the magnetic field associated with %,, in the plane of the aperture is
given by (H;).(Z.). = (E,)., (Z.), being the wave impedance of the
nth mode measured in the z direction and (), = jwp d(11,),/dx. That
is

Z, = (B,/H,), = (ho/ke) 'Zo = Zo(W1 = (n/no)?) " (5)
Zyp is the intrinsic impedance for a plane wave. After integrating the z
component of the Poynting vector over the aperture, one has

al2
Po=b f | Eun [ 1/ dz. (6)
l—a ]2

When n > no, the wave impedance is imaginary and no real power is
radiated in the nth mode, in which case P, corresponds to production of
a storage field. When n < ng, P, is real, and the nth mode radiates prin-
cipally in the directions

sin 0 = s4n/ny (7)

where 6 is measured with respect to the z axis in the 2-z plane. This fact
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can be readily seen from (3) by noting that the nth mode can be thought.
to be generated in the aperture plane by the superposition of two plane
waves traveling in the two directions 6. The amplitudes of these two
plane waves are given by FEod, , EeA_, . If one substitutes no = a/\ in
(7), the grating formula sin 8 = =nM/a results.

In the geometrical optics approximation, these two components would
radiate all the power in the two mentioned directions. Indeed, according
to the diffraction phenomena, the radiation pattern of E,, has two main
lobes of amplitudes A,Ey, A_,E,, directed in the above-mentioned di-
rections. Further, one finds that the patterns of all other components
have zeroes there.

The radiation pattern generated by Fy is then the only one to con-
tribute to the power radiated per unit solid angle along the axis of the
aperture. This power is proportional to | 4o I*, Remembering that A, = 1
when ¢(z) = 0, one finds that 1 — | 4, |* gives the decrease in gain of
the aperture caused by the phase error y(x). From (6), the power radi-
ated by the higher-order modes (n > 0) is given by

2
P = BE (AL 4 1AL IV = (/)

Zo (8)
= Pu(| A [P + A= [DVT = (n/ne)?
where P. = abE¢/Z, is the power radiated by the aperture when

y(x) = 0*

III. THE CIRCULAR APERTURE

Consider the circular aperture of Fig. 1. Let the field distribution be
given by

(1 — a(2p/D)")e” (9)

where ¢ is the phase error and a square-law taper of amplitude « has
been considered. The radiation pattern of the aperture of diameter I is
then given by

2w 1
glu, ) = D2/4f f (1 — Fa)re® e drdy’  (10)
0 (1] .

*If n & no , then Z, = Zo and P, = P, (| A, [* + | A-a [*). The total power
radiated by the higher modes represents an increase in the power radiated in the
side lobe region of the radiation pattern. Let P, be this power; then

P, = P, An 2
’;0| |
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Fig. 1 — Aperture and coordinates.

where u = («D/A) sin @ and r = 2p/D is the normalized radial co-
ordinate, 8 being the angle between the antenna axis and the field point.*

Let us now consider a radial phase error ¢ = ¥(p). In this case the
pattern is symmetrical about the aperture axis, and after performing the
integration over ¢, (10) becomes

1
glu) = wl)g/Zf (1 — a®)or-e Jolur) dr. (11)
0

When ¢ = 0, integration of (11} is readily performed and the result
after normalization is

qilw) = 201 — a)Ji(u)/u + dads(w) /o (12)

where J,(u) is the Bessel function.

Different types of phase error y will now be considered, and the result-
ing radiation patterns will be compared in the far side lobe region with
the ideal case given by ¢ = 0. In all cases, since we are considering
specifically paraboloidal antennas, the amplitude of the aperture field
will be assumed to taper in square-law fashion to —10 db at the edge.
After substituting the appropriate value of 0.684 for « in (12), one ob-
tains the ideal pattern with no phase error shown in Fig. 2.

3.1 Effect of Single Sinusoidal Errors

Rather than expand the function ¢’ in a series as described in Section
II, we choose here to expand the phase itself in a series for purpose of

* There are criticisms of the Huygens-Kirchhoff diffraction theory, especially
when ealculations are made at angles well removed from the axis; although some
of the eriticisms are known to be valid, we ignore them for these calculations. The
(1 4 cos 8) factor is neglected; it can readily be multiplied in for any given an-
tenna.
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Fig. 2 — Radiation pattern for zero phase error; illumination 10-db taper.

computation. Thus by means of (11), g(u) is calculated for single sinus-
oidal phase errors of various periods; that is, for

\b = &, cos (27l'mT) (13)

m being the number of periods along the aperture radius. The cases
m = 6 and 12 for ® = 2x/16 have been computed and the results are
plotted* in Fig. 3.

The curves of Figs. 3(a) and 3(b) show that a sinusoidal phase error
causes a large disturbance only in a relatively small angular region of the
radiation pattern and that these regions are located at angles which in-
crease with the number of fluctuations in the phase distribution. The level
of the disturbance depends upon the amplitude of ® and is sensibly in-
dependent of m for the cases considered. Clearly, these disturbances are
simply related to the various radiation modes discussed in Section II.
For example, in Fig. 3(b) where m = 12, a disturbance occurs at u = 75;
this same value is caleulated by substituting n = 2m = 24 in (7) for
sin 6, thereby evaluating the appropriate u. Thus Fig. 3(b) shows the
effect of mode II.s4 described by (4).

Data other than those given in Fig. 3 show that there is little overlap-
ping of adjacent disturbances, for example, between patterns for m = 6
and m = 7. In Fig. 3(a), note that a small “second harmonic” disturb-

* The patterns are plotted in decibels below the peak value. Since the peak

value (the gain) is reduced only slightly due to the small phase errors considered
here, the correction is neglected.
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Fig. 3 — Radiation patterns — single sinusoidal phase error. (a) m = 6; maxi-
mum phase error, \/8 peak-to-peak; illumination 10-db taper. (b) m = 12; maxi-
mum phase error, \/8 peak-to-peak; illumination 10-db taper.

ance is evident at « = 80; this is the position of a second-order fringe if
the aperture is interpreted as a weak grating.
3.2 The Iffect of a Typical Phase Error

Let us now construct from many sinusoidal components a phase error
given by the I'ourier series

v = @(Z sin (2rm[r — (m — 1)/2M — 1])) (14)

m=1
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Fig. 4 — Typical phase error derived from 15 sinusoidal components of equal
amplitude.

in which the M coefficients are of constant amplitude ®, = ®. If the
spectrum of roughness were known, the ®,, would be written as a function
of r at this point. By means of the term (m — 1)/2M, the phase of each
component is (somewhat arbitrarily) shifted so that ¥ does not have
excessive irregularities and has a reasonable peak-to-peak value, Ay,
between the maximum and minimum value of y. The phase distribution
resulting from (14) is plotted in Fig. 4 for the case M = 15; the resulting
peak-to-peak phase for this example turns out to be A¢y = 9.95¢. Of
course, one can see certain regularities in the function; but as mentioned
previously, in practice these would be related to the design of any given
reflector.

Radiation patterns have been computed using the phase function of
Fig. 4; these are plotted in Figs. 5, 6, and 7 for peak-to-peak phase
(Aga) of 031N, 0.155), and 0.1, respectively.

In Fig. 8, the envelopes of the patterns shown in Figs. 5, 6, and 7 are
compared with that of the ideal pattern, Agy = 0. Beyond u &~ 30, I'ig.
8 shows, for example, that wide-angle radiation is 10 to 15 db above the
ideal case if the peak-to-peak phase error is 0.155\ (roughly equivalent
to a reflector with tolerance 4=\/25). Also shown in Fig. 8 is the envelope
for Ags = 0.048), in which case the far side lobes are about 3 db above
the ideal case.

Sinee data have been computed for five values of phase error (includ-
ing zero), we may plot degradation in side lobe level relative to the ideal
case versus peak-to-peak phase error for various angles from the desired
direction of propagation. That plot is shown in Fig. 9 for angles corre-
sponding to © = 50.
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Fig. 5 — Radiation pattern: typical phase error — maximum phase error 0.31x
peak-to-peak; illumination 10-db taper.

Let us now define a good radiation pattern for a real reflector by stipu-
lating that the wide-angle radiation be less than 3 db above the ideal
case. Referring to Fig. 9, one sees that for this condition to obtain,
Ayy = 0.05); therefore, since phase disturbances are roughly doubled in
reflection from, say, a relatively shallow paraboloid, surface tolerance
must be held to about £0.0125,
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Tig. 6 — Radiation pattern: typical phase error — maximum phase error 0.155)
peak-to-peak; illumination 10-db taper.
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peak-to-peak; illumination 10-db taper.
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3.3 Comparison with Experiment

In Fig. 10 the results of an experiment reported some years ago by H.
T. Friis and W. D. Lewis® are shown as full curves. In that experiment
the radiation patterns of two paraboloidal antennas were measured at
centimeter wavelengths; one employed a searchlight mirror as a precision
reflector, the other a carefully constructed metallized wooden paraboloid
with the same diameter and nominal contour. The diameter of the
aperture was 36 wavelengths in both cases. The data in Iig. 10 clearly
show that the precision antenna has a lobe level about 10 db below that
of the wooden antenna for angles 8 = 20°.

In Fig. 10 the measured patterns are compared with those calculated
for the typical phase error of peak-to-peak value Ay = 0.155\ (Fig. 6).
One sees that it is possible to account for the measured increase in the side
lobe level of the wooden antenna if one assumes a tolerance of about
+X/25 in its surface.

Of course, we realize that actual antennas, especially paraboloids, are
beset with other deficiencies, such as spillover, edge currents, reradiation
by feed supports, and aperture blocking, all of which give rise to wide-
angle radiation. However, in the comparison experiment under discus-
sion, these other factors are believed to be the same in the two cases.

IV. CONCLUSION

If one demands that wide-angle radiation from a reflector with quasi-
random roughness be of the same order as that for a perfectly smooth
surface, caleulation shows that the reflector tolerance should be held to
4+0.01x. The caleulation is verified, in part, using data obtained on para-
boloidal reflectors at centimeter wavelengths. Roughness of the type de-
seribed results in interference-prone microwave antennas; it also de-
grades their noise performance.
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